
����������
�������

Citation: Qiao, H.; Peng, W.; Jin, P.;

Su, J.; Lu, H. Performance

Improvement of Single-Frequency

CW Laser Using a Temperature

Controller Based on Machine

Learning. Micromachines 2022, 13,

1047. https://doi.org/10.3390/

mi13071047

Academic Editors: Cuifang Kuang

and Wei Zhao

Received: 30 May 2022

Accepted: 27 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Performance Improvement of Single-Frequency CW Laser
Using a Temperature Controller Based on Machine Learning
Haoming Qiao 1, Weina Peng 1, Pixian Jin 1,2, Jing Su 1,2 and Huadong Lu 1,2,*

1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,
Shanxi University, Taiyuan 030006, China; 202022616076@email.sxu.edu.cn (H.Q.);
201912607006@email.sxu.edu.cn (W.P.); pxjin@sxu.edu.cn (P.J.); jingsu@sxu.edu.cn (J.S.)

2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
* Correspondence: luhuadong@sxu.edu.cn

Abstract: The performance improvement of an all-solid-state single-frequency continuous-wave
(CW) laser with high output power is presented in this paper, which is implemented by employing a
temperature control system based on machine learning to control the temperature of laser elements
including gain crystal, laser diode and so on. Because the developed temperature controller based on
machine learning combines the back propagation (BP) neural network algorithm with the proportion-
integration-differentiation (PID) control algorithm, the parameters of the PID are adaptive with the
variation of the environment. As a result, the control speeds and control abilities of the temperatures
of the elements are dramatically enhanced. In this case, the output characteristic and the adaptability
to the environment as well as the stability of the single-frequency CW laser are also improved greatly.

Keywords: stable single-frequency laser; temperature control; machine learning; BP neural network;
PID control

1. Introduction

All-solid-state continuous wave (CW) single-frequency lasers have been applied in
quantum optics and quantum information [1,2], precision measurement [3], optical holog-
raphy [4], optical storage [5], cutting [6], welding [7–9], sensing [10,11] and so on, owing to
their intrinsic advantages of compact structure, high stability, low intensity noise and high
beam quality [12,13]; however, in order to attain a stable all-solid-state single-frequency
CW laser with high output power, the temperatures of the pump source and gain crystal
as well as nonlinear crystal must be precisely controlled in addition to the design of a
unidirectional resonator to eliminate the spatial hole burning effect [14]. Especially for
the gain crystal, in the process of laser emission, a lot of waste heat is generated due to
quantum defect, energy transfer upconversion (ETU), excited state absorption (ESA) and
cross relaxation (CR), and dissipates within the host lattice, which can change the operating
temperature of the gain crystal and further induce the thermal lens effect, thermal astig-
matism and so on [15,16]. In other words, it is difficult to obtain a stable single-frequency
CW laser if the temperature of gain crystal cannot be controlled well—the gain crystal
may be damaged; therefore, it is necessary to accurately control the temperature of the
optical elements by designing and building a temperature controller with good perfor-
mance. Traditional proportion-integration-differentiation (PID) control is one of the earliest
developed control strategies, which can meet various control requirements for different
controlled objects because of the unique PID control algorithm [17]. The basic principle
of traditional PID control is to create a closed control loop to reduce the error between
the measured and set values. Despite its robustness and reliability, traditional PID control
suffers from a major drawback of fixed PID parameters, which directly influences its control
abilities [18]. In general, an empirical method is widely used in many control systems to
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optimize PID parameters, which can not only lose a lot of time but also adapt badly to
different environments.

Emerging technologies such as artificial intelligence and cloud computing have been
widely used in the field of industrial production, yielding positive results. Machine learning
is a new research field of artificial intelligence. Using machine learning, a robot or computer
can automatically obtain action parameters, which paves a good way to auto-optimize the
PID parameters with the variation of the environment after combining traditional PID with
machine learning. As early as 1943, W. S. McCulloch and W. Pitts proposed a theory of
artificial neural network (M-P model) according to the structure and working mechanism
of biological neurons, which has become a cornerstone of the neural network [19]; how-
ever, the weight value in the M-P model was fixed. In order to adjust the weight value
to achieve the optimal value and expand the neurons number of output layer, the back
propagation (BP) neural network was proposed by D. Rumelhart in 1986 [20]; however,
limited by the computational power and calculation speed [21] of the computer, the BP
neural network remains in the theoretical stage. Around 2010, benefiting from improve-
ment of the computation speed and the emergence of the big data, all types of machine
learning algorithms including the BP neural network achieved remarkable results in the
fields of artificial intelligence such as computer vision, intelligent speech recognition and
autonomous driving [22–25]. Especially, Y. Zhou et al. compared the performance of reactor
before and after combining the BP neural network with the PID temperature control system
in 2009 [26]. The simulated results revealed that the dynamic response speed of the system
was dramatically improved and the system overshoot was effectively reduced when the
PID temperature control system was based on the BP neural network. In this paper, we
present an all-solid-state high-power single-frequency continuous-wave (CW) laser with
good performance, which is implemented by employing a temperature control system
based on machine learning.

2. Experiment Design and Theory
2.1. Experiment Setup

The performance improvement experiment was implemented in a homemade high-
power single-frequency CW 532 nm laser, which is depicted in Figure 1. In order to
achieve high output power by effectively reducing the thermal effects of the gain crystal,
a fiber-coupled laser diode (LD) with the center wavelength of 888 nm acted as the pump
source [27]. Its fiber core diameter, numerical aperture and maximum output power were
400 µm, 0.22, and 110 W, respectively. A telescope coupling system consisted of two lenses
with focal lengths f1 = 30 mm and f2 = 80 mm, respectively, was employed to optimize the
beam size of the pump laser to achieve the optimal mode-matching of the laser.

The resonator of the laser was a butterfly-shaped ring cavity including 4 mirrors.
The input coupling mirror M1 was a concave–convex lens with the curvature of 1500 mm,
which was coated with high-transmission (HT) film at 888 nm (T888nm > 99.5%) and high-
reflection (HR) film at 1064 nm (R1064nm > 99.7%), respectively. M2 was a plane-convex
mirror (R = 1500 mm) coated with a high-reflection (HR) film at 1064 nm (R1064nm > 99.7%).
M3 and M4 were both plane—concave mirrors with the curvature radius of 100 mm
(R = −100 mm), where M3 was coated with HR film at 1064 nm (R1064nm > 99.7%), and the
output coupler M4 was coated with partial transmission (T1064nm = 1.5%) at 1064 nm
and HT film (T532nm > 95%) at 532 nm [28]. A type I non-critical phase-matched lithium
triborate (LBO) crystal was inserted into the cavity for intracavity frequency-doubling.
To ensure the unidirectional operation of the laser, an optical diode (OD) including a
terbium gallium garnet (TGG) crystal surrounded by a magnetic field and a half-wave plate
(HWP) was adopted.
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Figure 1. Schematic diagram of high-power single-frequency CW 532 nm laser. LTC, Laser Tempera-
ture Controller (Including pump source LD and laser temperature control system); OF, Optical Fibers;
f1– f2, lenses; M1–M4, mirrors; Nd:YVO4, Nd3+ doped yttrium vanadate; HWP, Half Wave Plate;
TGG, Terbium Gallium Garnet; LBO, lithium triborate; PM, Power Meter.

2.2. Design of Laser Temperature Control System

The designed and built temperature controller of the all-solid-state continuous wave
(CW) single-frequency laser contained four modules [29], which were utilized to control
the temperatures of laser diode, gain crystal, LBO crystal and the resonator, respectively.

The temperature control process of the every module was divided into five parts,
which include temperature acquisition unit, micro control unit (MCU), temperature control
unit, controlled object and display panel. The thermistor TCS610 was used as a temperature
acquisition unit considering its characteristics of low cost, small size and wide measurement
range. A digital signal processor (DSP) chip (TMS320F28069, Texas Instruments, Dallas,
TX, USA) was employed as the MCU owing to its excellent processing speed. The motor
driver (DRV8432, Texas Instruments, Dallas, TX, USA) and the thermoelectric cooler (TEC,
Ferrotec, Hangzhou, China) were utilized as the temperature control unit to heat or cool
the target objects by changing the supplied current. In addition, the display panel was
connected to temperature collection device and MCU by RS232 serial port communication.
The specific system was shown in Figure 2.

The temperature information of the controlled object was firstly collected by the
thermistor TCS610 and its corresponding temperature value was displayed on the host
computer screen through the RS232 serial port. At the same time, this value was sent to
the MCU for BP neural network PID calculation. A pulse width modulation (PWM) signal
was then obtained after the calculation, which was further transmitted to the motor driver
(DRV8432) to ensure the supplied driver current to TEC according to the duty cycle of
PWM signal. Once the driver current was loaded to the TEC, the controlled object was
heated or cooled since the controlled object and TEC were tightly attached together by
thermally conductive silicone grease. In this case, the temperature of the controlled object
would vary towards the target temperature value. At this moment, a closed-loop control
system was built and a whole control cycle was spent in 0.0875 s; however, in the actual
process, several closed-loop control cycles were needed to make sure that the temperature
of the controlled object was stably controlled at the set point by the BP neural network PID
controller. It can also be seen that the BP neural network PID was the most crucial part of
the whole closed-loop control system from the framework shown in Figure 2 because the
calculated results directly influenced the driver currents loaded to TEC.



Micromachines 2022, 13, 1047 4 of 12

Figure 2. Framework of the Laser Temperature Control System. BP, back propagation; MCU, micro
control unit; PWM, pulse width modulation; TEC, thermoelectric cooler; PID, proportion-integration-
differentiation.

2.3. Theory of BP Neural Network PID

The machine learning algorithm of BP neural network was utilized to real-time adjust
PID parameters according to the operating state of the laser [30]. By referencing the theory
of the BP neural network [20] and the online learning strategy [31], online learning BP
neural network algorithm was designed in temperature controller to enhance the self-
adaptation and improve the performance of the all-solid-state CW single-frequency laser,
as shown in Figure 3. The BP neural network consisted of three different sub networks:
input layer, hidden layer, and output layer. In this network, there were three neurons in the
input layer, which were the amount of error: ∆e(k), the trend of error: e(k), and the change
of error: ∆e(k)− ∆e(k− 1). The output layer also has three neurons, corresponding to the
proportional coefficient: Kp, the integral coefficient: Ki, and the derivative coefficient: Kd.
Considering the finite computational power and calculation speed of MCU, a relatively
simple and classical BP neural network algorithm with one hidden layer was employed.
Based on empirical formulas:

√
m + n+ a, the limited number of the hidden layer’s neurons

was calculated. Where m was the number of neurons in the input layer, n was the number
of neurons in the output layer, and a was a constant between 1 and 10. After several tests,
the number of hidden layer neurons was defined as 8. In the following formulas, neurons
in the input, hidden and output layers were represented by i(1∼3), j(1∼8), and l(1∼3),
respectively.

Thus, the input layer neuron was set,
X1 = ∆e(k)
X2 = e(k)
X3 = ∆e(k)− ∆e(k− 1)

(1)

and the output layer neuron was set,
Y1 = enet21

enet21+e−net21
= Kp

Y2 = enet22

enet22+e−net22
= Ki

Y3 = enet23

enet23+e−net23
= Kd

(2)
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Because the output range of the hyperbolic tangent function shown in Equation (3) was
between −1 and 1, it can be used as an activation function to coordinate the temperature
rise or fall, especially in the calculation of hidden layer neuron.

tanh(j) =
ej − e−j

ej + e−j (3)

However, as shown in Equation (4), in calculation of output layer neuron, we chose
the sigmoid function with a range of 0 to 1 as activation function to coordinate the PID
parameters due to the PID parameters need to be positive.

sigmoid(l) =
el

el + e−l (4)

The other formulas about BP neural network were referred to Reference [20].

Figure 3. Structure of BP Neural Network.

2.4. Design of Parameter Optimizing System

It can be seen from Equation (2) that all PID parameters calculated by BP neural
network were in the ranges of 0 to 1. The obtained parameters cannot be directly used in the
temperature controller, owing to the calculated increment of current with these parameters
being too small to drive the TEC to effectively and rapidly control the temperature of
the crystal. To this end, a parameter optimizing system was designed for temperature
controller to further optimize the PID parameters.
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In order to make the PID parameters suitable for the temperature controller, the ob-
tained parameters from BP neural network should be amplified by a certain proportion
and the amplification factors should be regulated dynamically. Here, the amplification
factor of 10n was chosen as shown in Equation (5) and the positive integer n was limited
within 3, owing to that the calculated control value with n ≥ 4 exceeded the limitation of
the control system. Consequently, three groups magnified PID parameters, Kp(n), Ki(n),
and Kd(n), were obtained and a group of appropriate parameters could be selected from
these three groups parameters in different conditions.

Kp(n) = 10n · Kp

Ki(n) = 10n · Ki
Kd(n) = 10n · Kd

(5)

For the purpose of selecting the appropriate parameters, the control value was calcu-
lated with n = 3, 2, and 1 in turn according to Equation (6). Then, the data were predicted
through calculating the increment of current by each group of the amplified PID parame-
ters, which was represented as Equation (6). The purpose of this step was to prepare for
filtering data.{

∆u(n)(k) = Kp(n)[e(k)− e(k− 1)] + Ki(n)e(k) + Kd(n)[∆e(k)− ∆e(k− 1)]
u(n)(k) = u(n)(k− 1) + ∆u(n)(k− 1)

(6)

Lastly, screening out the increment of current, which conforms to Equation (7). The rea-
son why the maximum increment of current was setup 200 is that the maximum duty cycle
of the PWM was 200 in TMS320F28069 chip. The group of the amplified PID parame-
ters with the larger n was chosen if not just one increment of current would conform to
Equation (7).

0 ≤ |u(n)(k)| ≤ 200 (7)

3. Experimental Results

For a high power single-frequency CW laser, the temperature stability of the gain
crystal was the most important factor for the stable operation since lots of thermal generated
in the process of laser emission could increase the temperature of the gain crystal and then
directly restrict the output power and optical conversion efficiency as well as the stabilities;
therefore, in the experiment, we paid main attention to the influence of the temperature
control ability of the gain crystal on the performance of the single-frequency CW green laser.
The output power of the built single-frequency CW 532 nm laser with the increase in the
incident pump power was firstly recorded when the traditional PID and BP neural network
PID was adopted, respectively, and the results are depicted in Figure 4. In the experiment,
increasing the incident pump power can be divided into three stages. In the first stage,
the incident pump power automatically increased at a rate of 0.40 W/s before the threshold
pump power (37.42 W). Although there was no laser emission, the laser resonator would
gradually access the stability range because of the cumulative thermal lensing effect of the
gain crystal. Once the incident pump power was beyond the threshold value, a minute
was needed to ensure that temperatures of all elements including gain crystal, LBO crystal
and the resonator were stabilized to their set values. Thereafter, the incident pump power
quickly increased from the threshold value to the optimal operating point (78.00 W) at a
rate of 10.15 W/s, and the trend is shown in curve (a) in Figure 4. Curves (b) and (c) are
the output power of the achieved laser for the traditional PID and BP neural network PID,
respectively. It can be seen that the maximum output power of the 532 nm green laser
was about 18 W; however, after the temperature controller based on the traditional PID
was replaced by that of the BP neural network PID, the spent time of the process that the
output power reached its maximum value from zero was shortened from about 740 s to
240 s. The control speed was increased by 67.6%. Especially, when the traditional PID



Micromachines 2022, 13, 1047 7 of 12

temperature controller was used in the experiment, serious power fluctuation was observed
before reaching the maximum output power of the laser. Even the output power fell down
to 6.99 W at 116 s; however, when the BP neural network PID temperature controller was
adopted, we only saw the tiny ripples and the output power of the single-frequency 532 nm
green laser reached the maximal value fast. Moreover, the output power only dropped
to 10.74 W before it started to return. The results proved that the BP neural network PID
temperature controller not only had an excellent ability for temperature control of the laser
but also greatly enhanced laser output performance.

Figure 4. The change of the laser output power when the incident pump power increased from the
threshold point to the optimal operating point. The orange line (a) was the change of the incident
pump power, the blue line (b) was the laser output power of using traditional PID controller, and the
red line (c) was the laser output power using BP neural network PID controller.

In the process of recording output power of the achieved laser, the temperature of gain
crystal (Nd:YVO4) was also monitored in real time, which is depicted in Figure 5. Curve (a)
is still the incident pump power trend, the same as in Figure 4. Curves (b) and (c) are the
crystal temperature of the achieved laser for the traditional PID and BP neural network
PID, respectively. The set temperature value of gain crystal was 27.10 °C in the experiment.
After the incident pump power exceeded the threshold point (37.42 W), the temperature of
the gain crystal increased monotonously with the incident pump power until it reached the
optimal operating point (78.00 W). Then, in the process of that incident pump power being
maintained at the optimal operating point, the temperature of the gain crystal dropped and
oscillated several times until it was controlled back to the optimum operating temperature.
The time spent in this process was shortened from about 400 s to 200 s. The control speed
was increased by 50%. Especially, when the temperature controller was using traditional
PID, the temperature fluctuation of the gain crystal was observed—the maximum and
minimum values reached up to 29.20 °C and 26.44 °C, respectively; however, when the
temperature controller used the BP neural network PID, the temperature of the gain crystal
only reached 28.40 °C, and the temperature fluctuation was relatively stable. The control
overshoot was decreased by 53%. The results further proved that the BP neural network
PID temperature controller can help the gain crystal to control its temperature within
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the optimal operating temperature range, and further improve the performance of the
single-frequency CW green laser.

Figure 5. The change of the crystal temperature when the incident pump power increased from the
threshold point to the optimal operating point. The orange line (a) was the change of the incident
pump power, the blue line (b) was the crystal temperature of using traditional PID controller, and the
red line (c) was the crystal temperature of using BP neural network PID controller.

After the output power of the laser was stabilized, the temperature control abilities of
the traditional PID and the BP neural network PID were further compared by decreasing
and increasing the temperature of the gain crystal by 1 °C in the experiment, respectively.
The results are shown in curves (a) and (b) of Figure 6. When the set temperature of
the gain crystal was decreased from 27.10 °C to 26.10 °C, it was found that the spent
time of the temperature stably reaching the set value and the maximal overshoot were
about 300 s and about 0.1 °C, respectively, when the traditional PID temperature controller
was used. Moreover, the multiple temperature oscillations were easily observed in the
process of the temperature control; however, once the BP neural network PID temperature
controller was employed, this time and overshoot were shortened to 50 s, and near zero,
respectively. Further, only several tiny ripples can be observed in the process of the
temperature control. The phenomenon for increasing the set temperature value resembled
that of the decreasing process. The results revealed that the temperature control speed was
significantly improved by replacing the traditional PID temperature controller with the BP
neural network PID temperature controller, which was of great significance for attaining a
stable single-frequency CW green laser with high output power.
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Figure 6. Comparison between traditional PID control and BP neural network PID control when
changing the same temperature. The blue line (a) is traditional PID control, and the red line (b) is BP
neural network PID control. The temperature decreased by 1 °C in 200∼500 s and increased by 1 °C
in 500∼800 s.

When the temperature of the LBO crystal was controlled to the optimal phase-matching
temperature of 147.46 °C, the power fluctuations of the 532 nm laser were measured in 2 h
with both temperature controllers, which are shown in Figure 7. When the temperature of
the crystal was controlled by the traditional PID controller, the maximum output power
was limited to 18.01 ± 0.09 W, and the stability of the output power of the 532 nm laser
was ±0.51% in 2 h; however, when the BP neural network PID controller began to work,
the maximum output power reached up to 18.03 ± 0.06 W, and the power fluctuation of
the 532 nm laser was reduced to ±0.36% in 2 h. The obtained power fluctuation of ±0.36%
was less than that of the 532 nm laser controlled by traditional PID controller. The result
showed that the presented method of the BP neural network PID control in this paper can
also enhance the stability of the 532 nm laser. The comparison of the experimental results
between traditional PID and BP-PID is summarized in Table 1.

Figure 7. Comparison of output power and its stability between traditional PID control and BP neural
network PID control. The blue line (a) is traditional PID control and the red line (b) is BP neural
network PID control. Test time was 2 h.
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Table 1. Comparison of the experimental results between traditional PID and BP-PID.

Experiment

Increasing the Pump Power to Optimal Operation Point

Variation of the Laser Power Variation of the Crystal Temperature

Maximum Minimum Time Maximum Minimum Time

PID 17.65 W 6.99 W 740 s 29.20 °C 26.44 °C 400 s

BP-PID 19.04 W 10.74 W 240 s 28.40 °C 27.10 °C 200 s

Experiment

Changing the Crystal Temperature Set Value Stability of
the Output Power

(2 h)
Decrease (−1 °C) Increase (+1 °C)

Overshoot Time Overshoot Time

PID 0.1 °C >300 s 0.1 °C >300 s ±0.51%

BP-PID <0.01 °C <50 s <0.01 °C <50 s ±0.36%

4. Conclusions

In conclusion, we have manufactured a new stable single-frequency CW laser tem-
perature controller based on machine learning, which combined the BP neural network
algorithm and PID control algorithm. A BP neural network with PID parameters as output
layer neurons has been built, which had the adaptive ability of forward learning and
backward training to calculate the most appropriate PID parameters according to different
working environments. In the BP neural network, the error, the change of error and the
trend of error between the measured and set values were defined as the neuron of the input
layer. We used the TMS320F28069, a DSP chip produced by Texas Instruments, as MCU
to achieve the calculation of the BP neural network and temperature control of the gain
crystal (Nd:YVO4). The performance improvement of single-frequency CW laser in our
experiments was achieved by replacing the traditional PID temperature controller with the
BP neural network PID temperature controller. The experiment results showed that the
speed of that the output power reached the maximum value was increased by 67.6% when
the incident pump power was injected from the threshold point (37.42 W) to the optimal
operating point (78.00 W) at a rate of 10.145 W/s. Simultaneously, the temperature control
overshoot of the gain crystal (Nd:YVO4) was decreased by 53%. Moreover, the power
fluctuation of the homemade single-frequency CW 532 nm laser was reduced to ±0.36% in
2 h when the BP neural network PID temperature controller was used. The research illus-
trated that not only the laser crystal temperature control ability but also the output power
stability of the single-frequency CW 532 nm laser can be improved by using the BP neural
network PID temperature controller. For the purpose of further improving the laser perfor-
mance, more complex machine learning algorithms based on the deep neural networks,
such as long short-term memory (LSTM), reinforcement learning and so on, processed
in the GPU or FPGA will be adopted in the laser temperature control systems to stably
control the temperature of the key optical elements in laser resonator and synchronously
optimize the laser beam quality, laser linewidth, stability of the single-longitudinal-mode
as well as intensity noise. The performance improvement of single-frequency CW laser was
of great significance to the study of quantum optics, laser medical technology and laser
holography technology.
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