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Abstract: We propose a multidimensional reconciliation encoding algorithm based on a field-
programmable gate array (FPGA) with variable data throughput that enables quantum key dis-
tribution (QKD) systems to be adapted to different throughput requirements. Using the circula-
tory structure, data flow in the most complex pipeline operation in the same time interval, which
enables the structural multiplexing of the algorithm. We handle the calculation and storage of
eight-dimensional matrices cleverly to conserve resources and increase data processing speed. In
order to obtain the syndrome more efficiently, we designed a simplified algorithm according to the
characteristics of the FPGA and parity-check matrix, which omits the unnecessary operation of matrix
multiplication. The simplified algorithm could adapt to different rates. We validated the feasibility
and high speed of the algorithm by implementing the multidimensional reconciliation encoding
algorithm on a Xilinx Virtex-7 FPGA. Our simulation results show that the maximum throughput
could reach 4.88 M symbols/s.

Keywords: continuous variable quantum key distribution; multidimensional reconciliation; field-
programmable gate array; encoding; variable throughput

1. Introduction

Quantum cryptography can provide information-theoretic security by combining one-
time pad with quantum key distribution (QKD) [1,2] and has become an important branch
and hotspot in the field of modern cryptography. QKD allows legitimate parties, Alice and
Bob, to share secure keys even if the quantum channel is controlled by eavesdropper Eve.
The fundamental theorems of quantum physics (no-cloning theorem, etc.) guarantee that
quantum states transmitted through a quantum channel cannot be replicated accurately.
Any eavesdropping behavior inevitably disturbs the quantum states on which the key
information is encoded, which results in the increase in channel noises. Such noises can
be monitored by the legitimate parties; therefore, any eavesdropping behavior can be
discovered.

According to different carriers of the key, QKD can be divided into discrete-variable
QKD (DVQKD) and continuous-variable QKD (CVQKD) [3–6]. DVQKD uses the polar-
ization or phase degree of single photons to encode key information, which can realize
long-distance key distribution using single-photon detection technology and post-selection.
CVQKD employs the quadrature components of quantum states to encode key information;
it is compatible with existing optical communication technology, and the key rate is high for
short and medium distances. Important progress has been made recently [7–14]. However,
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the data post-processing of CVQKD is relatively complex because it usually works at a
low-SNR regime.

A typical CVQKD system usually consists of three parts: (1) preparation, distribution,
and measurement of quantum states; (2) data sifting and parameter estimation; (3) data
post-processing process [15]. The last part can be divided into two stages, information
reconciliation and privacy amplification. In the information reconciliation stage, Alice and
Bob obtain the same binary keys by correcting the data errors between their raw keys.
After information reconciliation, Alice and Bob extract the final secret key using privacy
amplification techniques.

At present, there are two schemes for data reconciliation in the CVQKD system, slice
reconciliation [16] and multidimensional reconciliation [17], which are suitable for different
SNR ranges. Slice reconciliation is suitable for relatively high SNRs, i.e., larger than 1 (short
transmission distance) [18,19], and multidimensional reconciliation is suitable for low SNRs,
from 0.01 to 1 (long transmission distance) [13,20]. In the case of Gaussian-modulated
CVQKD, the multidimensional reconciliation algorithm provides a powerful encoding
scheme for low-SNR scenarios and thus effectively extends the key distribution distance.
In this way, the channel between Alice and Bob is converted into a virtual binary input
additive white Gaussian noise (AWGN) channel; therefore, efficient binary codes can be
employed.

In quantum information processing, error-correcting codes play a very critical role in
protecting information from noise interference [21]. In CVQKD, an error correction code
(ECC) with a large block is required to obtain high reconciliation efficiency, which is crucial
for system performance. Because multiple iterations and low-density parity-check (LDPC)
codes [22] are required in data reconciliation, the required computation complexity is high.
On the other hand, the repetition rate of the CVQKD system increases rapidly. In this
case, the speed of the corresponding data post-processing should match it; otherwise, the
actual key rate would be reduced. The throughput of error correction algorithms based
on general central processing units (CPUs) is very limited. A feasible solution to increase
throughput is to utilize hardware-based acceleration, such as Graphics Processing Units
(GPUs) [23–27] and field-programmable gate arrays (FPGAs) [15,28], which dramatically
improve the computation speed. FPGAs are very attractive when designing prototypes
and are applicable to small-scale production. They have high processing speed, parallelism,
re-programmability, and low power consumption. The last one provides them with good
integration abilities.

Multidimensional reconciliation algorithms have not been realized on an FPGA plat-
form. In this paper, we achieve the encoding algorithm of multidimensional reconciliation
with variable data throughput on an FPGA. To this end, we use flexible division of pipeline
operation combined with an equal-interval circulatory structure, which can achieve dif-
ferent throughput. The calculation and storage of eight-dimensional matrices is cleverly
designed to conserve resources and increase data processing speed. The high data process-
ing speed of encoding can increase the real-time secret key rate of the CV-QKD system.
Furthermore, a simplified algorithm without operation of matrix multiplication is exploited
according to the characteristics of the FPGA and parity-check matrix to construct the
syndrome efficiently.

The rest of this paper is organized as follows: In Section 2, we present the principles
and steps of multidimensional reconciliation. In Section 3, we present the design and
the detailed implementation of the multidimensional algorithm on an FPGA chip. The
performance of the algorithm is analyzed in Section 4. In Section 5, we give a summary.

2. The Principle of Multidimensional Reconciliation

For Gaussian modulation CVQKD protocols, the shared raw keys of Alice and Bob are
correlated Gaussian variables. For long transmission distances, the SNR is very low. In this
case, the Gaussian variables have a small absolute value and are distributed around 0; thus,
it is difficult to discriminate the sign and realize the encoding. The basic ideal of multidi-
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mensional reconciliation [17] is that one can perform a proper rotation before encoding the
key in the sign of the coordinates; in this way, the small-absolute-value coordinates can be
eliminated. The schematic diagram of multidimensional reconciliation is shown in Figure 1.
The encoding ideal is as follows: Given y ∈ Sn−1 (Sn−1 represents a sphere), define a cube
Qy centered on 0 and containing y such that the prior distribution of y in Qy is uniform.
The description of Qy can be achieved by describing the orthogonal transformation of the
transformed canonical cube. Bob randomly selects vertices U (U ∈ Sn−1) of the canonical
cube and then provides Alice with an orthogonal transformation M(y, U) that maps y to U,
satisfying M(y, U)y = U; this transformation defines cube Qy. Finally, Alice can recover
U according to x and M(y, U). The specific steps of multidimensional reconciliation are
reported below.

Step 1. For security, Alice and Bob use the method of sequential combination to form
a d-dimensional vector of d continuous variables in multidimensional reconciliation and
obtain X = (x1, x2, . . . , xd) and Y = (y1, y2, . . . , yd), where d denotes the dimension of
multidimensional reconciliation. Here, we choose d = 8 because its performance with a low
SNR is better than that of other dimensions (d = 1, 2, 4) [29]. Assuming that the quantum
channel is linear, the relationship between Alice and Bob can be expressed as

y = lx + z, (1)

and

x ∼ N (0, σ2
x), (2)

z ∼ N (0, σ2
z ). (3)

where x and y represent the d-dimensional vectors of Alice and Bob, respectively; and z
represents the noise of the quantum channel.

Step 2. In order to change the variable space from a non-uniform Gaussian distribution
to a uniform Gaussian distribution, the d-dimensional state points need to be mapped from
Euclidean space Dd to unit spherical space Sd−1. To this end, Alice and Bob normalize their
Gaussian variables x and y.

x =
x
‖x‖ , (4)

and

y =
y
‖y‖ , (5)

where

‖x‖ =
√
〈x, x〉, (6)

and

‖y‖ =
√
〈y, y〉. (7)

Step 3. Bob generates a random binary sequence (b1, b2, . . . , bd). Then, a d-dimensional
random vector u = (u1, u2, . . . , ud) can be generated as

u = [
(−1)b1

√
d

,
(−1)b2

√
d

, . . . ,
(−1)bd

√
d

]. (8)
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Step 4. Bob calculates rotation matrix M(y, u). When d = 8, there is a (non-unique)
family of 8 eight-dimensional orthogonal matrices (A1, A2, .., Ad) [17], where A1 is an 8× 8
identity matrix. Moreover, for i, j > 1, we have

{Ai, Aj} = −2δij A1, (9)

where {A, B} = AB + BA, δij is the unit impulse function. Rotation matrix M(y, u) can be
calculated from a family of d-dimensional orthogonal matrices (A1, A2, .., Ad) as

M(y, u) =
d

∑
i=1

αi(y, u)Ai, (10)

where, αi(y, u) = (Aiy | u) are the coordinates of u in basis (A1y, A2y, . . . , Ady) and
(A1y, A2y, . . . , Ady) is a set of standard orthonormal bases for multidimensional space. The
above proves that M(y, u)y = u.

Step 5. Bob calculates the syndrome using parity-check matrix H and random binary
sequence (b1, b2, . . . , b16).

Isyn = H · (b1, b2, . . . , b16), (11)

where Isyn is the syndrome and (b1, b2, . . . , b16) is a 16-bit binary string. The width of the
binary string is determined by the structure of LDPC codes.

BobAlice

Quantum 

channel

Normalization

X

M(y,u)

Classic 

channel
Decoding

d-dimensional 

random vector

Y

Normalization

y=lx+z

(x1,x2,…,xd) (y1,y2,…,yd)

Orthogonal basis 

coordinates

(u1,u2,…,ud)

Eve

Initialization

Random number 

generator

Multiplication

(b1,b2,…,bd) (b1,b2,…,b16)

(b1,b2,…,bd) Syndrome

LDPC codes

Check 

matrix H

U

Figure 1. Diagram of the multidimensional reconciliation scheme. Here, d-dimensional random
vector u is generated from a random binary sequence (b1, b2, . . . , b8). Random binary sequence
(b1, b2, . . . , b16) and parity-check matrix H are multiplied to obtain the syndrome.

3. FPGA Logic Design and Implementation of Multidimensional Reconciliation
Encoding

In the FPGA design and implementation, we used the pipeline operation to achieve
high throughput with minimal FPGA resources and theoretically analyzed the throughput
of our scheme. Then, we designed the storage mode of an eight-dimensional matrix
according to the addressing mode of the FPGA and simplified the calculations for the
orthogonal basis coordinates and matrix inversion of the eight-dimensional matrix. Finally,
the syndrome was obtained through addressing and shifting.
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3.1. Hardware Implementation Scheme

In order to implement the multidimensional reconciliation algorithm on an FPGA chip,
we used VC709 Evaluation Kit manufactured by Xilinx, which included a Virtex-7 VX690T
FPGA [30] and a user-programmable differential oscillator (range: 10 MHz–810 MHz). The
Virtex-7 FPGA had a total of 433,200 LUTs, 866,400 Flip-Flops, and 3600 DSPs, as well as
52,920 Kb BRAMs.

To efficiently implement the multidimensional reconciliation algorithm, the relation-
ship between hardware resources and throughput needs to be carefully investigated. In
view of the available storage resources and editable logical resources, we adopted two
approaches in different data processing parts, including the combination of data parallel
and time division multiplexing, and the equal-interval circulatory structure-based pipeline
operation. These methods can realize the exchange between area and speed. Because
the encoding algorithm contains a large number of eight-dimensional matrix operations
and the data are 32-bit single-precision floating-point numbers, this consumes a lot of
editable logical resources. To overcome these issues, some modules were designed to be
implemented with time division multiplexing and the circulatory structure with the same
time interval. Due to the storage mode of the FPGA being a one-dimensional array, we
converted the matrix form to fit the storage of the FPGA.

The logic design structure diagram of the multidimensional reconciliation encoding
algorithm is shown in Figure 2. Encoding-Top is the top-level module of the encoding
algorithm. BRAM-Y are eight block memory units that are configured as a true dual-
port RAM with a width of 32 and depth of 8. BRAM-Ai is a block memory unit that is
configured as a true dual-port RAM with a width of 64 and depth of 8 and is used to
store eight orthogonal matrices (A1, A2, . . . , A8). BRAM-H is a block memory unit that is
configured as a single-port RAM with a width of 18 and depth of 500,000 and is employed
to store the check matrix. DCM are four different data computing modules. Each cplt
signal marks the end of the corresponding module operation. Inv are five matrix inversion
modules with the circulatory structure operating in the same time interval.

BRAM-H DCM-4

DCM-3
Random number 

generator

DCM-2

DCM-1

C
o

n
tro

l

Inv-5

Inv-4

Inv-3

Inv-2

Inv-1

BRAM-Ai

Inverse matrix

BRAM-Y

Encoding-Top

cplt-5-1

cplt-4-1

cplt-3-1

cplt-2-1

cplt-1-1

Isyn

M(y,u)

cplt-1-2

cplt-2-2

cplt-3-2

cplt-4-2

cplt-5-2

Figure 2. FPGA design for multidimensional reconciliation encoding. The Control module switches
between different matrix inversion modules according to signal cplt-j-1 (j ∈ {1, 2, . . . , 5}) and sends
a startup flag to module Inv-j. Module Encoding-Top starts processing new data according to signal
cplt-j-2.
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3.1.1. Analysis of Data Throughput

The total throughput, Th, is a key parameter to evaluate multidimensional reconcilia-
tion encoding and can be expressed as

Th =
d

1
fs

Tn
, (12)

where fs is the system clock frequency, Tn is the number of clock cycles required by the
longest pipeline operation step, and d is the dimension of multidimensional reconciliation.
It can be seen that the total throughput is closely related to the above three parameters. At a
given clock frequency, the encoding performance is optimal when d = 8, so the throughput
is inversely proportional to Tn. Therefore, with limited hardware resources, the pipeline
task block loop should be optimized to achieve high throughput Th.

The pipeline operation divides the combinatorial logic into a series of task modules
and requires the addition of a first-level register before and after each task module. If the
task module is too small, it consumes a large number of registers; each level of registers
requires one clock cycle, so it also causes the operation time of the task module to increase.
Therefore, we should reasonably divide the pipeline structure according to the specific
throughput requirements.

3.1.2. Flexible Division of Pipeline Operation

The goal of the algorithm optimization is to achieve high throughput with minimal
FPGA resources. As mentioned above, given the clock frequency and d = 8, the number
of clock cycles, Tn, that the longest pipeline step requires is the key factor that affects
throughput. We mainly used pipeline technology and a series–parallel structure to balance
throughput and resource utilization of the FPGA. Pipeline technology cannot shorten the
processing time of a single datum, but it can effectively shorten the processing time of the
overall data. In contrast, the parallel structure can shorten the processing time of a single
datum.

After carefully analyzing the calculation process of the encoding algorithm, we divided
the pipeline operation of the encoding operation into four operation steps. Pipelining was
used in the normalization of encoding and random number mapping operations, as well
as in the syndrome generation module. The module with the longest running time is the
calculation of (A1y1, A2y2, . . . , Adyd)

−1. Figure 3 shows the designed pipeline structure,
in which Data2 starts to run the first step when Data1 has finished the first step. The
circulatory structure with the same time interval is employed for the module that computes
(A1y1, A2y2, . . . , Adyd)

−1 to suppress Tn according to the required throughput.

(A1 y1, A2 y2,…,

Ad yd)

(A1 y1, A2 y2,…,

Ad yd)
-1

(y1, y2,…, yd)

(u1, u2,…, ud)
M(y,u)Data1

(A1 y1, A2 y2,…,

Ad yd)

(A1 y1, A2 y2,…,

Ad yd)
-1

(y1, y2,…, yd)

(u1, u2,…, ud)
M(y,u)Data2

(A1 y1, A2 y2,…,

Ad yd)

(A1 y1, A2 y2,…,

Ad yd)
-1

(y1, y2,…, yd)

(u1, u2,…, ud)
M(y,u)Data3

(A1 y1, A2 y2,…,

Ad yd)

(A1 y1, A2 y2,…,

Ad yd)
-1

(y1, y2,…, yd)

(u1, u2,…, ud)
M(y,u)Data4

Time

Figure 3. The pipeline structure of the encoding algorithm. The first step is to calculate (y1, y2, . . . , yd)

and (u1, u2, . . . , ud) using Y and (b1, b2, . . . , bd). The second step is to build standard orthonormal
basis (A1y1, A2y2, . . . , Adyd) for the multidimensional space. The third step is matrix inversion. The
fourth step is to map u to standard orthonormal basis (A1y1, A2y2, . . . , Adyd) and obtain M(y, u).

3.2. Eight-Dimensional Matrix Operation

Because the performance of the multidimensional reconciliation algorithm is optimal
when d = 8, we only studied the eight-dimensional matrix operation. During the operation
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process of the eight-dimensional matrix, such as addition, subtraction, multiplication,
division, root, square, and inversion [31], the bit growth of data may occur. Although
not every level of operation encounters bit growth, each bit growth instance leads to the
doubling of the maximum value of the data. This may cause data overflow if fixed-point
numbers are employed, making the results of the operation incorrect because the data are
not accurate enough. In contrast, floating-point arithmetic has a large dynamic range, and
because of its automatic scaling, the possibility of data overflow and mantissa loss can be
eliminated. We used 32-bit single-precision floating-point numbers for the calculation of all
basic units.

3.2.1. Storage of 8-Dimensional Matrices

According to the addressing mode of the FPGA, the 8× 8 matrix is extended to a one-
dimensional array of length 64. In order to read and store quickly, we need to use 8 memory
units, each with a depth of 8 and a width of 32. The first address of each memory unit
stores the first row of the 8-dimensional matrix, and so on. Therefore, each write-and-read
operation only takes 8 clock cycles.

3.2.2. Construction of Orthogonal Basis Coordinates

The orthogonal basis coordinates of u is (A1y, A2y, . . . , Ady), where (A1, A2, . . . , Ad)
is a set of orthogonal matrices that can be computed by four 2 × 2 matrices [17]. The
calculation process is reported below.

The four basis matrices are given by

K0 =

(
1 0
0 1

)
, K1 =

(
0 1
1 0

)
,

K2 =

(
0 −1
1 0

)
, K3 =

(
1 0
0 −1

)
,

and the orthogonal matrices can be calculated as

(A1, A2, . . . , A8) = {K000, K332, K320, K312, K200, K102, K123, K121}, (13)

where Ki1,...,il = Ki1 ⊗ · · · ⊗ Kil represents the tensor product.
According to the characteristic of orthogonal matrix Ai, each row of it has only one

non-zero element, and the absolute value of this element is 1. Therefore, the multiplication
of a one-dimensional vector y with a matrix Ai can be converted to finding a non-zero
element of an orthogonal matrix Ai and rearranging the y vector. In this way, we can
eliminate many multiplication and addition operations and save a lot of LUT resources.

For example,

A3 =



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0


,
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A3 × y =



y1
y2
y3
y4
y5
y6
y7
y8


×



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0


=



−y3
−y4
y1
y2
y7
y8
−y5
−y6


.

3.2.3. Inverse Matrix of the Eight-Dimensional Matrix

Because (A1, A2, . . . , Ad) is a group of eight orthogonal matrices, (A1y1, A2y2, . . . , Adyd)
is invertible. The calculation of M(y, u) can be written as

M(y, u) =
d

∑
i=0

αi(y, u)Ai = (A1y1, A1y1, . . . , Adyd)
−1u. (14)

For the calculation of (A1y1, A2y2, . . . , Adyd)
−1, we used the Gaussian elimination

method [32] to obtain the inverse matrix of the eight-dimensional matrix, which can
be divided into three steps: (1) finding the maximum value of each row; (2) obtaining an
upper triangular matrix using elementary row operations; (3) data normalization. Due
to the calculation of the inverse matrix consuming a lot of LUTs and DSPs, we used time
division multiplexing to balance the speed and area of the FPGA, as shown in Figure 4.
Step 1 and Step 2 perform loop execution seven times to obtain an upper triangular matrix.
Then, Step 3 performs loop execution eight times to obtain an inverse matrix. Step 1 sends
the position of the maximum value for each row to Step 2, and Step 2 sends the matrix to
Step 1 after elementary row operations.

Upper triangular 

matrix

Inverse 

matrix

Step 1

Step 2

Step 3

Figure 4. Time division multiplexing of inverse matrix. Step 1 is finding the maximum value of each
row. Step 2 is elementary row operations. Step 3 is data normalization.

In order to search for the maximum value of each row, eight comparators and an
AND door are exploited. During the calculation process, the eight data in each row are
simultaneously read from the same address. Because the comparator consumes only
87 LUTs, seven comparators are run concurrently and then the AND gate is used to decide
the maximum value in each row. In this way, the logic delay of this combination circuit is
minimized, which consists of the delay of the comparator of single-precision floating-point
numbers and the delay of an AND gate.

3.2.4. Multiplexing Structure of Matrix Inversion Module

The matrix inversion module cannot be subdivided into multi-level pipelines with
the pipeline operation due to module multiplexing and nested loops. To improve the
computation speed, we designed a circulatory structure with the same time interval, as
shown in Figure 5.

Firstly, Tn is calculated based on the target throughput. The input data control module
then assigns the input data stream to different matrix inversion modules simultaneously.
Then, Data 2 performs the matrix inversion operation after Tn clock cycles relative to Data 1,
and so on. Therefore, Data 1 and Data 6 are both calculated by Matrix inversion module 1.
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Each data stream has a corresponding matrix inversion module with a time interval of Tn.
The number of reused matrix inversion modules is Tinv

Tn
, where Tinv is the time required for

the inversion of an eight-dimensional matrix in serial operation.

Time
Matrix inversion 

module 1

Data 2

Data 3

Data 4

Data 5

Data 1 Data 6

clk 1 clk 2 clk 3 clk 4 clk 5

Matrix inversion 

module 2

Matrix inversion 

module 3

Matrix inversion 

module 4

Matrix inversion 

module 5

clk 6 clk 7 clk 8 clk 9 clk 10

Figure 5. Circulatory structure with the same time interval. clk has the clock cycle of Tn. Each Matrix
inversion module j is multiplexed.

3.3. Construction of the Syndrome

Due to the existence of channel loss and excess noise in quantum key distribution,
there is inevitably some discrepancy when the two groups of Gaussian numbers of Alice
and Bob are transformed into binary bits in the spherical space. To correct the bit errors,
Bob can send a syndrome of his bit string to Alice. Here, the syndrome can be obtained
by multiplying the check matrix with Bob’s random bit string. The check matrix of an
LDPC code [22] has very strong sparsity, that is, the “0” element accounts for most of the
check matrix and the “1” element is very sparsely distributed. Considering the sparsity
characteristic of an LDPC code, the shifting method is used to calculate the syndrome.

The storage of the entire check matrix requires a large amount of resources. In order
to save memory resources, we store the check matrix by storing the positions of non-
zero elements in each row of the matrix. The check matrix is extended in a quasi-cyclic
manner [33]. Notice that the shifting operation is implemented after quasi-cyclic expansion,
in which the non-zero element is extended to a 16 × 16 identity matrix. So, we use an
18-bit-wide memory unit to save the basis matrix and the extended matrix. The first 14 bits
(A0–A13) describe the positions of non-zero elements in the basis matrix, and the last four
bits (S0–S3) describe the shifting of the extended matrix.

For the multiplication of the basis matrix and the input random bit string, the position
of the non-zero elements of the basis matrix is used as the address to read the bit string,
and the drifting value of the non-zero element is used to shift the bit string. The multiple
shifted bit strings are accumulated to obtain the product of a row of the check matrix and
the random bit string, that is, the syndrome, as shown in Figure 6. If the address of the Nth
non-zero element is smaller than the address of the (N−1)th non-zero element, that means
that we start to compute the next syndrome, which is the product of the next row of the
check matrix and the random bit string. This saves a lot of DSPs and LUTs and increases
the running rate, because a lot of multiplication and addition operations are omitted.
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Figure 6. Calculation procedure of the syndrome for a 2× 4 base matrix. Hbase and Hexpa denote
the base matrix and the matrix extended in a quasi-cyclic manner. str1, str2, str3, and str4 denote
independent random bit strings.

4. Results and Discussions

In this section, we show the implementation results of multidimensional reconciliation
encoding on an FPGA chip (Xilinx Virtex-7 FPGA). The feasibility of the encoding algorithm
was validated. When the pipeline step takes longer than Tn, we can use a modified ping-
pong operation to multiplex the step. In this case, throughput Th (as shown in (11)) becomes

Th =
nd
1
fs

Tn
, (15)

where n is the number for multiplexing. According to all the relevant parameters [15], the
practical secret key rate of a CV-QKD system is given by

Kprac = α(1− FER)(
n
N
)(βIAB − χBE − ∆(n)), (16)

where α = PPout/PPin; PPout and PPin represent the post-processing output and input
rates, respectively; FER is the frame error rate; n is the number of data used to distill the
secret key; N is the number of sifted data after quantum transmission and measurement;
IAB is the mutual information between Alice and Bob; χBE is the Holevo bound; and ∆(n)
is the finite-size offset factor. Notice that PPout depends on Th and satisfies PPout <= Th;
therefore, coding throughput Th affects the secret key rate of the CV-QKD system through
α. The consumed resources and throughput for different multiplexing structures are shown
in Figure 7.

We can see that the data throughput and hard resources consumed increased with
the number of multiplexing. A throughput of 0.98 Msymbols/s was achieved without
multiplexing. The throughput increased to 4.88 M symbols/s when the number of multi-
plexing was five. The resource consumption of LUTs was the highest, whereas the resource
consumption of DSPs was the lowest.

The throughput results of the multidimensional reconciliation encoding algorithm on
an FPGA and a CPU are shown in Table 1. The model of the CPU was MXC-6301D(EA),
running with the C programming language. It is evident that the FPGA-based encoding
algorithm dramatically improved the data processing speed in comparison to the CPU-
based encoding algorithm, which had a throughput of only 0.063 M per second.
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Figure 7. Resource consumption and data throughput for different multiplexing structures.

Table 1. Comparison of the throughput of the multidimensional reconciliation encoding algorithm
between an FPGA and a CPU.

Computing Platform Throughout (M symbols/s)

FPGA (Xilinx Virtex-7) 4.88
CPU (MXC-6301D(EA)) 0.063

Our proposed algorithm for obtaining the syndrome can be adapted to systems with
different parity-check matrices. The simulated results on an FPGA are shown in Table 2.
Three check matrices with two different rates (0.02 and 0.1) and two different code lengths
(160,000 and 500,000) were used to calculate the syndrome. For a fixed code rate, the time
taken was directly proportional to the code length. For a fixed code length, the time taken
was slightly longer when the code rate was higher.

Table 2. Time taken for constructing the syndrome using different code rates and code lengths.

Rate Length Time (s)

0.1 160,000 0.00452
0.1 500,000 0.00904

0.02 500,000 0.00801

5. Conclusions

In this paper, we propose and demonstrate an FPGA-based multidimensional reconcil-
iation encoding algorithm with variable data throughput that is suitable for applications
in the real-time data post-processing of CVQKD systems. The syndrome construction
algorithm consumes very little BRAMs and LUTs of the FPGA and can adapt to parity-
check matrices with different code rates and code lengths. It is noted that the achieved data
throughput is still limited. In our current algorithm, we find that matrix inversion consumes
lots of hardware resources, which hinders the further improvement of throughput. In the
future, we will improve the matrix inversion algorithm to make it compatible with pipeline
operations; combined with higher system clock speed of the FPGA, a multidimensional
reconciliation encoding algorithm with much higher throughput is possible.
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