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Atomic Bose–Einstein condensate in twisted- 
bilayer optical lattices

Zengming Meng1,5, Liangwei Wang1,5, Wei Han1, Fangde Liu1, Kai Wen1, Chao Gao2, 
Pengjun Wang1, Cheng Chin3 & Jing Zhang1,4 ✉

Observation of strong correlations and superconductivity in twisted-bilayer 
graphene1–4 has stimulated tremendous interest in fundamental and applied physics5–8. 
In this system, the superposition of two twisted honeycomb lattices, generating a 
moiré pattern, is the key to the observed flat electronic bands, slow electron velocity 
and large density of states9–12. Extension of the twisted-bilayer system to new 
configurations is highly desired, which can provide exciting prospects to investigate 
twistronics beyond bilayer graphene. Here we demonstrate a quantum simulation  
of superfluid to Mott insulator transition in twisted-bilayer square lattices based on 
atomic Bose–Einstein condensates loaded into spin-dependent optical lattices. The 
lattices are made of two sets of laser beams that independently address atoms in 
different spin states, which form the synthetic dimension accommodating the two 
layers. The interlayer coupling is highly controllable by a microwave field, which 
enables the occurrence of a lowest flat band and new correlated phases in the strong 
coupling limit. We directly observe the spatial moiré pattern and the momentum 
diffraction, which confirm the presence of two forms of superfluid and a modified 
superfluid to insulator transition in twisted-bilayer lattices. Our scheme is generic  
and can be applied to different lattice geometries and for both boson and fermion 
systems. This opens up a new direction for exploring moiré physics in ultracold atoms 
with highly controllable optical lattices.

New band structures in lattice systems often lead to new material 
functions and discoveries. Twistronics, originating from the twisted- 
bilayer-graphene as a tuneable experimental platform1–8, has attracted 
broad attention in recent years and launched intensive theoretical 
research. Here, overlaying two graphene layers with a small relative 
angle show the rich phase diagram, such as the coexistence of uncon-
ventional superconductivity and correlated insulating phases2–4. In 
recent years, many examples of twisted-bilayer are discovered with 
remarkable physical properties not present in their untwisted counter-
parts. Recently, photonic moiré lattices are explored for their capabili-
ties in localizing and delocalizing light13–15 and engineering the photonic 
dispersion of phonon polaritons16.

Ultracold atoms in optical lattices constitute an ideal platform 
to simulate emerging many-body phenomena in condensed matter 
physics17–19. Different optical lattice geometries can be realized by 
interfering different sets of laser beams20–25. In particular, a scheme of 
simulating twisted-bilayer lattice has recently been proposed using two 
overlapping optical lattices26,27. Other schemes for simulating bilayer 
heterostructures have also been put forward28,29. These schemes are 
based on coherent coupling between spin states of atoms, which simu-
lates interlayer tunnelling along an artificial, synthetic dimension30–32.

In this article, we demonstrate Bose–Einstein condensates (BEC) of  
Rubidium-87 (87Rb) atoms loaded into a pair of twisted-bilayer optical  

lattices. Two overlapping lattices V1 and V2 are formed by interfering 
laser beams at the specific ‘tune-out’ wavelengths33–35 λ1 and λ2 with 
proper polarizations such that atoms in spin state ∣ ∣F m1� ≡ = 1, = 1�F  
and state ∣ ∣F m2� ≡ = 2, = 0�F  only experience the lattice potential V1 
and V2, respectively (Fig. 1). Here F and mF are the angular momentum 
and projection quantum numbers in the 87Rb ground state manifold. 
Each set of the laser beams forms a two-dimensional (2D) square  
lattice on the horizontal xy plane and the twist of the two lattices is 
realized by orienting the beams of different wavelengths with a small 
relative angle θ = 5.21°. The sample is tightly confined in the vertical 
z direction such that the sample is in the quasi-2D regime (see Methods 
for details).

The two spin states of 87Rb atoms constitute the synthetic dimension 
that accommodates the two twisted layers of lattices V1 and V2. To pre-
cisely determine the tune-out wavelengths λ1 and λ2 of the optical lat-
tices V1 and V2, we measure the diffraction of atoms by the optical 
lattices. The experimental sequence starts with an almost pure BEC in 
a crossed-beam dipole trap. The atoms are prepared in one of the two 
spin states and a short pulse of the lattice beams is applied. The lattice 
potential induces Bragg diffraction of atoms to high momentum states. 
After turning off the lattice beams, we image the diffracted atoms. The 
wavelengths of the lattice beams are finely adjusted to the tune-out 
wavelengths such that atoms in state ∣1⟩ are only diffracted by the lat-
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tice potential V1 and not by the potential V2 as shown in Fig. 2. Similarly, 
atoms in state 2⟩∣  only experience the potential V2, but not V1. By elim-
inating the cross-talks, we determined the tune-out wavelengths to be 
λ1 = 790.02 and λ2 = 788.28 nm. The lattice beams are circularly polar-
ized to produce spatial intensity modulation such that the lattice 
potentials are attractive to atoms in both spin states (see Methods for 
details).

Experimentally intralayer hoppings t1 and t2 between lattice sites 
are controlled by the depth of the optical lattices V1 and V2; interlayer 
hopping ΩR, on the other hand, is independently induced by micro-
waves (MW) that couple the two spin states. Starting with atoms in 
state ∣1⟩  in the dipole trap, for example, the MW spectrum shows a 
single narrow peak when atoms are driven to state 2⟩∣ . By loading the 
atoms into the twisted-bilayer optical lattices, the spectrum shows 
several peaks. The peaks correspond to transitions from atoms in the 
ground band of lattice V1, which we label ∣ S1, ⟩, to different Bloch bands 
of lattice V2, which we label ∣ S2, ⟩ , ∣ P2, ⟩ , ∣ D2, ⟩  and so on (Fig. 3a,b). 
The peak locations agree with the calculated energies of the s, p and 
d bands in lattice V2. The multi-peak structure supports that atoms in 
different spin states are confined in different lattices. If atoms are 
loaded into a spin-independent lattice, only a single narrow peak shows 
up in the spectrum, which belongs to the ∣ S1, ⟩ to S2, ⟩∣  transition. This 

is because MW transitions between different Bloch bands are negli-
gible in spin-independent lattices. In the twisted optical lattice, the 
transitions from the s band of state ∣1⟩ to other bands of state 2⟩∣  are 
allowed. In the presence of the twisted-bilayer lattices, the transitions 
are broadened as the two spin states experience different trap poten-
tials, which induce fast dephasing. Moreover, the on-site interactions 
increase in deeper lattice potential, resulting in faster decay from 
high bands to lower bands and thus broader spectral lines. Our obser-
vation supports MW as a versatile and powerful tool to induce inter-
layer hopping between the two twisted layers in the synthetic (spin) 
dimension.

To quantify the interlayer hopping energy, we measure the time 
evolution of the population in state ∣2⟩. We observe a coherent oscil-
lation at detuning Δ = −0.9 kHz, which corresponds to the transition 
from ∣ S1, ⟩  to ∣ S2, ⟩  (Fig. 3c). The interlayer coupling strength can be 
determined from the oscillation frequencies. In our experiment, the 
coupling strength is tuneable up to 1Er, which exceeds that in typical 
twisted-bilayer graphene systems. On the other hand, coupling to the 
p band ∣ P2, ⟩ leads to faster decay probably due to collisional relaxation 
to the lower s band (Fig. 3d). In the following, we will focus on atoms in 
the twisted-bilayer optical lattices with MW-induced coupling between 
the s bands of the two layers.
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Fig. 1 | Simulation of twisted-bilayer systems based on atoms in spin- 
dependent optical lattices. a, Atoms are loaded into a single layer, 2D 
pancake-like potential formed by a vertical optical lattice (green) in the  
z direction. Two sets of square optical lattices V1 (purple) and V2 (blue) on the 
horizontal plane with a small relative angle θ = 5.21° form a spin-dependent 
lattice potential and confine Rb atoms in spin state ∣1⟩ (up arrows) and ∣2⟩ 
(down arrows) independently. A magnetic field is applied in the xy plane along 
the 45° diagonal of the V2 lattice. The lattice beams for V1 and V2 are set with 

opposite circular polarization to generate the vector shift with the opposite 
sign. b, The left panel shows a sketch of the bilayer lattices in the synthetic 
dimension. The interlayer tunnelling is controlled by a microwave field. The 
right panel shows a superimposed lattice structure with the lattice constant 
λ/2 and much larger moiré length λmo. c, Energy diagram of the two ground 
Zeeman states ∣1⟩ and 2⟩∣  and the associated lattice beams at the tune-out 
wavelengths λ1 = 790.02 and λ2 = 788.28 nm.
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A key signature of atoms in the twisted-bilayer optical lattice is the 
moiré lattice with a period

λ
a

θ
=

2 sin /2
, (1)mo

which, for the lattice constant a = 395 nm and twist angle θ = 5.21°, 
amounts to a moiré length λmo = 4.35 μm. The large moiré period gives 
rise to a mini-Brillouin zone in the momentum space, which is 
expected to generate the flat bands and strongly correlated states1–12. 
Notably, an in situ moiré pattern is also observed in one-dimensional 
lattices with two lattice constants36. To identify the moiré length scale 
in our system, we use in situ absorption imaging to visualize the moiré 
pattern (Fig. 4a–f). Here we first load the atoms in state 1⟩∣  into  
the lowest s band of lattice V1 and then ramp up the MW field with 
detuning Δ = −0.9 kHz to drive the transition from S1, ⟩∣  to S2, ⟩∣ . We 
then in situ image the atoms in state 2⟩∣ . Moiré patterns in one and 
two dimensions are observed, and the moiré period is measured to 
be 4.35 μm consistent with expectation (Fig. 4a–f). Note that the 
primary optical lattice spacing a = 395 nm is indiscernible with our 
imaging optics.

We also examine the quantum state of atoms in the bilayer twisted 
lattices by analysing their momentum-space distribution. After load-
ing a BEC into the bilayer lattice of 4Er in the presence of resonant MW 
transition, we hold for some time and then perform the time-of-flight 
(TOF) measurement (Fig. 4g,h). Two sets of diffractions manifest, 
which correspond to the primary lattice momentum π/a and the much 
smaller moiré momentum π/λmo. The high contrast of both sets of 
diffraction pattern suggests that the atoms remain in the superfluid 
phase with phase coherence extending beyond the moiré length scale. 
In particular, the contrasts of the moiré pattern in real and momen-
tum space persist over 40 ms (Fig. 4i), from which we conclude that 
the atoms maintain in the superfluid phase in the twisted-bilayer  
lattices.

Theoretically, depending on the twist angle θ, the superimposed 
twisted-bilayer lattice can yield either a periodic potential with 

supercells that supports a delocalized ground state or a quasi-periodic 
one that supports a localized ground state in the absence of interac-
tions. In fact, only specific twist angles give rise to periodic lattice 
potentials. For square lattices, the twist angles that lead to commen-
surate superlattice should satisfy θ m n= 2 arctan( / ), where m  and n 
are coprime natural number13. The twist angle θ = 5.21° used in our 
work is close to the commensurate angle θ = 2 arctan(1/22) ≈ 5.205°, 
and the period of the supercell is given by 2λmo ≈ 22a (see Methods for 
details). Whereas our twist angle does not exactly match the com-
mensurate angle θ = 2 arctan(1/22) ≈  5.205°, the small difference can-
not be distinguished in a finite size sample due to repulsive interactions 
(see Methods for details). In particular, the spatial moiré period 
remains a clear observable in our experiment because of the finite 
chemical potential of our atomic superfluid. The persistence of the 
spatial and momentum periodicity of the sample in the twisted-bilayer 
lattice supports the superfluid as the ground state of the system.

Compared with electronic materials, in which the flat band is investi-
gated frequently near the Fermi surface, we can also explore flat-band 
physics with bosons condensed in the lowest band. In our system, when 
interlayer coupling increases, the long-wavelength moiré potential 
becomes deeper, so atoms in the lowest band are isolated at a larger 
spatial scale (moiré wavelength), which flattens the ground band and 
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Fig. 2 | Independent diffraction of atoms in different spin states by the 
twisted-bilayer optical lattices. The optical lattice potential is applied to the 
atomic BEC with a short duration of 4 μs. The images show diffraction patterns 
of the atoms after 18 ms of free space expansion. At the tune-out wavelength 
λ1 = 790.02 and λ2 = 788.28 nm, atoms in state 1⟩∣  and 2⟩∣ , are diffracted by the 
associated optical lattices V1 and V2, respectively.
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Fig. 3 | Interlayer coupling in twisted-bilayer optical lattices. a, MW 
spectrum of atoms in the twisted-bilayer optical lattices. Atoms in spin state  
∣1⟩ are driven by MW to spin state 2⟩∣  in the presence of the lattice potential  
with depth of 0 (no lattice), 4 and 10Er. Here E q m h= /2 = × 3.67r r

2  kHz is the  
recoil energy, qr = ħk = h/λ is the recoil momentum, m is the atomic mass of 87Rb 
and λ is the wavelength of the lattice laser. The MW pulse length of 530 μs 
corresponds to a π pulse in the absence of the lattice potential. b, Lattice band 
structure for the two spin states calculated with the lattice depth 4Er. The MW 
field drives atoms from the s band of state 1⟩∣ , labelled as ∣ S1, ⟩ to s, p and d 
bands of state 2⟩∣  with different detuning Δ. c,d, Starting with all atoms in ∣ S1, ⟩, 
population in state ∣2⟩ is measured in the twisted-bilayer lattices at 4Er after the 
MW pulse that drives the atoms to ∣ S2, ⟩ with the detuning Δ = −0.9 kHz (c), or  
to P2, ⟩∣  with detuning Δ = 15.08 kHz (d). Fits in c show an interlayer coupling 
frequency of ΩR = 2π × 893 Hz and a decay rate of 1,200 s–1. Lines in d are guides 
to the eye. Each point is based on three or more measurements and error bars 
show the standard deviations of the mean.
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enhances the localization of the atoms. In the large interlayer coupling 
limit, the system can be regarded as a single layer (single-component) 
experiencing a twisted optical lattice (see Methods for details).  
The single-layer system with a twisted optical lattice admits a flat-band 
structure in the ground band, which has also been studied experimen-
tally in photonic systems13–15. The easily tuned intra- and interlayer 

couplings in our system offer the added advantages of seeking new 
quantum phases and phase transitions with cold atoms.

By varying the depth of optical lattices and interlayer coupling, we 
find several distinct quantum phases, including superfluid (SF), super-
fluid with only short-range coherence (SF-II), Mott insulator (MI) and 
insulator (I) (Fig. 5a and Methods). These phases can be distinguished 
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1  and Pmin are the average maximum and minimum density  

of the diffraction pattern. Here P max
0  is zero-momentum component and  

P max
1  is the moiré component near the zero momentum. Error bars show the 

standard deviation of the mean. Scale bars a,c,e,f, 10 μm, g,h, 100 μm and inset  
of g, 20 μm.
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by the phase coherence and real-space density correlations. The SF-II 
phase emerges with finite interlayer coupling around the transition 
from a regular SF to an insulator. The spatial range of phase coherence 
is the key to distinguishing the two SF phases: while an SF supports 
long-range phase coherence37, the SF-II phase maintains the coherence 
only up to the moiré length scale. In addition, the SF-II phase supports 
the moiré pattern in the real space. Theoretically, SF-II is the phase with 
superfluid domains embedded in a gapped insulator, induced by the 
interlayer coupling. Finally, the insulator phases I and MI can be identi-
fied by the disappearance of spatial coherence at all scales and integer 
fillings of all the sites. Whereas the MI has uniform atom density with 
weak interlayer coupling, the I phase features a moiré pattern due to 
stronger interlayer coupling.

In the experiment, we measure the phase coherence from the 
momentum-space diffraction peaks in the TOF images and directly 
probe the moiré pattern by in situ imaging following the measurement 
method as shown in Fig. 4. The measurement of the phase boundaries 
is shown in Fig. 5a. We use three independent paths to study these 
phases. In path I, we fix the interlayer coupling strength at a small 
value ΩR = 0.24Er and increase the lattice depth. The phase transition 
from SF to MI and across SF-II is shown in the TOF images (Fig. 5b). 
Here the diffraction peaks at the moiré momenta disappear first 
before the disappearance of the primary lattice. The intermediate 
regime indicates the SF-II phase in which the moiré-scale long-range 
correlation is destroyed while a short-range coherence remains; at 
the same time, the density correlations of moiré pattern appear in 
the real space. In path II, we fix the lattice depth in the SF region and 
increase the interlayer coupling. The diffraction peaks at the moiré 
momenta persist with high contrasts. However, in path III, when the 
depth of optical lattices is fixed at the MI region and the interlayer 
coupling increases, the visibility at the moiré momenta presents the 
threshold behaviour and emerges at ΩR > 0.5Er (Fig. 5c). These obser-
vations are qualitatively consistent with the theoretical expectation 
and demonstrate that the interlayer coupling can induce a re-entrant 
transition from MI to SF across SF-II. One may understand such rich 
transitions from the fact that the interplay between the interlayer 
coupling and interactions tends to localize the bosons, primarily in 
the moiré length scale.

This work provides a preliminary physical insight into the quantum 
phase transition between SF and SF-II (MI and SF-II or MI and I) and offers 
the possibility to study the complex phases due to the presence of 
quasi-disorder induced by large interlayer coupling and strong interac-
tion, such as Bose glass insulator, resembling that in disordered bosonic 
systems38–40. These complex phases are worth further investigating in 
the future.

The present work focuses on the realization and the ground state 
properties of atoms in the twisted-bilayer optical square lattice. Our 
success in loading a superfluid into the bilayer lattice demonstrates 
a new versatile platform to explore moiré physics and the associated 
superfluidity in a quantum many-body system. Beyond the tune-
able twist angle, the cold atom platform offers remarkable controls  
such as different lattice depths and interlayer coupling in different 
layers.

Furthermore, the twisted-bilayer square lattice closely connects 
to the physics of heterostructures of twisted atomically thin semi-
conductors8,41,42. At the same time, our experiment can in principle 
be extended to multi-layer lattice in which the interlayer couplings 
can be independently induced by MW and radio-frequencies. Replac-
ing the MW with optical Raman transitions, the interlayer coupling 
can be spatial dependence, which can support topological ground 
states. Finally, our optical lattice scheme can be applied to confine 
fermionic atoms in bilayer hexagonal lattice, which faithfully simu-
lates electrons in a bilayer graphene, and may offer insight into the 
emergence of superconductivity in the strongly correlated, flat-band  
regime.
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Methods

Experimental setup
In our experiment, the ultracold 87Rb atoms in the ∣F m= 2, = 2⟩F  state 
are prepared in the crossed optical dipole trap43. Forced evaporation 
in the optical trap creates the BEC with up to 5 × 105 atoms. The atoms 
can be transferred to the F m= 1, = 1⟩F∣  state through a rapid adiabatic 
passage induced by MW transition. To load the atoms into the 2D trap, 
a 532 nm laser beam is deflected by an acousto-optic deflector and then 
split into two beams with variable spacing adjusted by the acousto-optic 
deflector. The two beams are focused onto the atoms with a 150 mm 
aspherical lens. These beams interfere to form a standing wave in the 
vertical direction with variable separation (accordion lattice). This 
separation can be varied from 12 down to 3 μm. The advantage of 
variable spacing is that we can load a three-dimensional (3D) shaped 
cloud into a single layer of the 2D pancakes at maximum separation 
and then compress the pancake adiabatically to reach a deep 2D regime. 
The maximum vertical confinement can reach more than 20 kHz and 
we optimize it at 1 kHz to observe moiré pattern and superfluid of ultra-
cold atoms.

The twisted-bilayer optical lattices are created by two sets of 2D 
square lattice V1 and V2. A twisted angle of θ = 5.21° is set between the 

two lattice potentials, namely, V2(r) = V1(Sr), S
θ θ

θ θ=
cos −sin
sin cos








. The 

optical lattices V1 and V2 are derived from two continuous-wave 
Ti:sapphire single frequency lasers (M Squared lasers SolsTiS and 
Coherent MBR-110), respectively. Two lattice beams V1x and V1y of V1 are 
frequency-shifted +80 and +95 MHz by two single-pass acousto-optic 
modulators, respectively. The same applies to the two lattice beams 
V2x and V2y of lattice V2. The four lattice beams are coupled into 
polarization-maintaining single-mode fibres to improve the stability 
of the beam pointing and achieve better beam-profile quality. After 
the fibres, each lattice beam is focused by a lens and retroreflected by 
a concave mirror. To generate the vector light shift, we use the same 
circular polarization for two lattice beams to produce spatial intensity 
modulation. In the experiment, we can determine and calibrate this 
angle by measuring the intersection angle between two lasers and the 
moiré period from the in situ images. The estimated uncertainty of the 
two methods is about 0.05°.

We use the MW field to couple the two spin states for manipulating 
the interlayer coupling. The 6.8 GHz MW signal is amplified by a 10 W 
solid state amplifier (Kuhne Electronic, KU PA 640720-10A). We place 
a circulator on the output of the amplifier to reduce reflected power 
coming back to the amplifier. The MW is emitted out to the atoms 
by a sawed-off waveguide, which is placed outside the high vacuum 
glass cell. We use MW cables to transfer MW from the amplifier to the 
waveguide. With this MW power amplifier, we can reach the maximum 
interlayer coupling strength of about 1.0Er. It is feasible to increase the 
interlayer coupling strength to about several Er by using an available 
higher power amplifier.

Our image system consists of an objective with a numerical aperture 
of 0.69, working distance of 11 mm and effective focal length of 18 mm. 
A 900 mm lens after the objective leads to a magnification of ×50 for 
in situ imaging with an EMCCD (Andor iXon Ultra 897). We also use a 
200 mm (400 mm) lens after the objective leads to a magnification  
of ×11 (22) for the TOF absorption imaging with 18 ms. The atoms are 
detected by state-selective absorptive imaging. As we choose two 
ground hyperfine Zeeman states of 87Rb ∣F m= 2, = 0⟩F  of the F = 2, and 
F m| = 1, = 1⟩F  of the F = 1 hyperfine manifold as the two internal spin 
states, we can fully resolve the population in each individual state. For 

F m= 2, = 0⟩F∣  state, a 50 μs long imaging pulse of resonant light on the 
F F= 2 → ′ = 3 D2 cycling transition is used to detect the ∣2⟩  atoms. To 
detect the ∣F m= 1, = 1⟩F  state, a resonant light pulse on the F F= 2 → ′ = 3 
cycling transition is first used to remove the 2⟩∣  atoms and then a 50 μs 
long imaging pulse of resonant light on the F F= 2 → ′ = 3 is applied at 

the same time with a repump light (resonant light F F= 1 → ′ = 2) to detect 
the ∣1⟩ atoms.

When studying the superfluid to MI transition, we use the standard 
method of interference pattern contrast (visibility) to show this  
transition37,44. We first load the atoms in state ∣1⟩ into the lowest s band 
of lattice V1 by ramping up V1 and V2 simultaneously with 30 ms, and 
then ramp up the MW field with 10 ms to drive the transition from 

S1, ⟩∣  to ∣ S2, ⟩. The atoms are detected by state-selective absorptive 
imaging with TOF of 18 ms after switching off all lattices and trapping 
light. In experiment, we first check that BEC is still kept (Extended 
Data Fig. 1) as ramp up the lattice V1 (or V2) to the higher lattice depth 
than 24Er and then ramp down again, which makes sure to perform 
the phase transition from SF to MI successfully for the lattice V1 (or V2).  
When adding the interlayer coupling between two spin states, and at 
the same time a quasi-disorder is introduced, there are two more 
mechanics to make the system not completely reversible. One is the 
finite coherent time between two spin states. When the system is 
prepared initially in the spin down, the system will become the spin 
mixture after the interlayer coupling is ramped back down. We define 
this process as irreversibility. The other is that adiabaticity is broken 
down by a quasi-period or disordered lattice, which induces not to 
completely remain in the zero-momentum state after ramping the 
lattices back down.

Tune-out wavelength for twisted-bilayer optical lattices
The a.c. Stark shift, or light shift, is a light-induced change of energy 
level. For alkali-metal atoms, the total a.c. Stark shift can be expressed 
in the irreducible components (including scalar, vector and tensor 
components) of the polarizability45:
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where F is the total atomic angular momentum, mF is the magnetic 
quantum number, ω is the laser frequency, I is the laser field intensity, 
ξ is light ellipticity, ek and Be  are unit vectors along the light wave vector 
and magnetic field quantization axis, respectively, and ϕ is the intersec-
tion angle between the linearly polarized component of light field and 
eB. This formula comes from the perturbation expansion. Note that 
the range of values of light ellipticity is ξ ∈ [−1, 1], ξ = ±1 denotes left and 
right circular polarization. α ω α ω α ω( ), ( ), ( )(0) (1) (2)  are the scalar, vector 
and tensor polarizability, respectively. Scalar shift is spin independent. 
Vector shift acts like an effective magnetic field to generate the linear 
Zeeman splitting (light shift proportional to mF), which depends on 
the ellipticity of the light and the intersection angle between the laser 
beam wave vector and magnetic field quantization axis eB. So, there 
are two methods to control the vector shift: rotating bias magnetic 
field and changing light polarization. The tensor part is derived from 
the linearly polarized light and acts as an effective d.c. electric  
field.

For the first excited state of alkali-metal atoms, the fine structure 
interaction induces the spectral lines of the D1 (52S1/2 → 52P1/2) and D2 
(52S1/2 → 52P3/2) lines. The coefficients of the scalar, vector and tensor 
shifts of the ground states 52S1/2 of 87Rb atoms in equation (2) are given by
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where ΓD 2

 is the decay rate of the excited state for D2 line, ω ω ω= +D D0
1
3 1

2
3 2 

is the effective frequency, δ ω ω= −D D11
, δ ω ω= −D D 22

 is the frequency 
detuning of the laser. Therefore, according to equation (3) we only 
consider the scalar and vector shift in this work. We use tune-out wave-
length for spin-dependent optical lattice, in which a.c. Stark shifts 
cancel. Two internal spin states have different tune-out wavelengths 
when the contributions of both the scalar and vector shifts are 
included35.

We choose two ground hyperfine Zeeman states of 87Rb F m= 2, = 0⟩F∣  
of the F = 2, and F m| = 1, = 1F  of the F = 1 hyperfine manifold as the two 
internal spin states. A bias magnetic field with 10 Gauss is applied along 
the 45° diagonal line of the square lattice V2. We scan the wavelength 
of the optical lattice beams to determine the tune-out wavelength 
precisely, as shown in Extended Data Fig. 2. The tune-out wavelength 
for ∣1, 1⟩ state is determined at 788.28 nm with σ− circular polarization 
as shown in Extended Data Fig. 2c, which balances the contribution of 
the scalar and vector shift. Thus, we choose this wavelength for the 
lattice V2. Note that the tune-out wavelength for ∣1, 1⟩ state is sensitive 
to the intersection angle between the laser beam wave vector and mag-
netic field quantization axis, which requires a careful alignment of the 
bias magnetic field. The spin state ∣2, 0⟩ only experiences the square 
lattice V2 with the red-detuning a.c. stark shift (which is only from sca-
lar shift), as shown in Extended Data Fig. 2d,f; by contrast, the spin state 
∣1, 1⟩ experiences no shift.

On the other hand, there is only the contribution of the scalar shift for 
the spin state ∣2, 0⟩; the tune-out wavelength for 2, 0⟩∣  state is 790.02 nm 
as shown in Extended Data Fig. 2a, which is well known and studied 
experimentally34,35. We choose this tune-out wavelength of 790.02 nm 
with σ+ circular polarization as the wavelength of the lattice V1. Thus, the 
spin state 1, 1⟩∣  experiences the square lattice V1 with the red-detuned 
a.c. stark shift. By contrast, the spin state 2, 0⟩∣  sees zero light shift. Note 
that the tune-out wavelength for 2, 0⟩∣  state is insensitive to the 
intersection angle between the laser beam wave vector and magnetic 
field quantization axis. The spin state 1, 1⟩∣ , however, has a different lat-
tice depth in two orthogonal directions of the lattice V1, respectively, and 
feels the lattice V1 with the red-detuning a.c. stark shift (which is only 
from vector shift at the wavelength of 790.02 nm) as shown in Extended 
Data Fig. 2b,e.

A moiré superlattice can be generated by a small difference in lattice 
constant or orientation. Because two different wavelengths are used for 
twisted-bilayer lattices in this work, there is a large-period superlattice 
with Δλ = 179 μm, much larger than the size of atomic cloud. There-
fore, we can adjust the retroreflected concave mirror to load atoms into  
the lower potential well of the long-period superlattice and neglect the 
influence on the measurement of moiré pattern. In the future, we can 
correct this effect of two different wavelengths by using a slight angle 
lattice beam for V2 to ensure the same lattice constant for two lattice  
potentials.

Band structures and flat band
For square lattices, the commensurate angles θ satisfy θ m ntan( /2) = / , 
where m  and n are coprime natural number. An equivalent condition 
is θ a ccos = /  and θ b csin = / , which can be defined by Pythagorean 
triples (a b c+ =2 2 2, where a b c N( , , ) ∈  are positive integers)13. The 
relationship between (m ,n) and a b c( , , ) is m in a ib( + ) = ( + )2  when 
m n( + ) ∈ odd and m in a ib( + ) = 2( + )2  when m n( + ) ∈ even. For the 

commensurate optical lattice, the period of its supercell (sc) is  
given by λ m a θ= /sin( /2)=sc m λ2 mo when m n( + ) ∈ odd and λ m a= /sc  

θ m λsin( /2) = 2 mo when m n( + ) ∈ even.
Here, we choose the band structure of the commensurate optical 

lattice with the commensurate angle θ = 2 arctan(1/22) as an approxi-
mation of the experimental case. If getting a better approximation of 
band structure for the experimental case, we can choose the larger 
supercell to calculate the energy band structure, whose commensurate 
angle is closer to the experimental case. The band structure E(k) of  

the commensurate optical lattice can be obtained by solving the  
stationary Schrödinger equation, HΨ = EΨ, with the Bloch function, 

r rk ruΨ( ) = exp ( )i ⋅ . Here the Hamiltonian H is given as
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u(r) is a periodic function with the same periodicity as the coupled 
lattice. The spin-dependent square optical lattice with a twist angle  
θ can be described by the potentials
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where k = 2π/λ is the wave number of lasers for the lattice and V0 
describes the lattice depth. In numerics, we first discretize the unit 
supercell of area ca ca×  in real space (c  is the largest value in the 
Pythagorean triple) into l × l grids, and then diagonalize the effective 
Hamiltonian for u(r). As shown in Extended Data Fig. 3, the band struc-
ture approaches the flat band when increasing the interlayer coupling.

As our system allows for flexible control of the interlayer couplings, 
the flat band in the lowest energy band can be realized. The Hamiltonian 
equation (4) can be formally diagonalized as
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. In the large interlayer 
coupling limit, ΩR ≫ V0, Δ, the low-energy band structure is encoded 
in the effective Hamiltonian H eff

−  in the lower-right block, which can 
be further approximated as
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The approximated effective Hamiltonians correspond to some effec-
tive lattices for a single-layer (single-component) system, separately, 

V = −
V V V V+

2
( − + Δ)

8Ω
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2

R
 for equation (8), and V =

V V+
2

1 2  for equation (9), 
with certain global energy shift. Specifically, equation (9) indicates that 
the system becomes the single layer (single-component) experiencing 
a twisted optical lattice.

When increasing the interlayer coupling into the strong region, the 
long-wavelength moiré potential becomes deeper, so atoms in the low-
est band are isolated on a larger spatial scale (moiré wavelength), which 
enhances the wave function localization and contributes to the crea-
tion of a flat band. The single-layer system with a twisted optical lattice 
(approximation at the strong interlayer coupling limit) admits a flat-band 
structure in the lowest band, which has been studied experimentally 
in photonic system13–15. The moiré flat bands have several advantages. 



First, the flat bands quench kinetic energy scales (wave function locali-
zation), thereby drastically enhance the role of interactions and amplify 
the effects of interactions. Second, the moiré superlattice leads to the 
emergence of minibands within a reduced Brillouin zone. The small 
Brillouin zone means that low atomic densities are sufficient for full 
filling or depletion of the superlattice bands, which is easily controlled 
in an experiment.

Theoretical calculation of the modified superfluid to insulator 
transition
In the mean-field approximation, the system for the superfluid phase 
can be well described by the coupled Gross–Pitaevskii (GP) equations
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where the MW detuning is Δ = 0 and the wave function is normalized 
as ∑i  ∫∣ψi∣2dr = N, with N the total atom number. The strong confinement 
along the z axis gives rise to the quasi-2D interaction strengths repre-
sented by a reduction coefficient η multiplied by gij = 4πħ2aij/m, where 
η h mω= / z

−1  defines the characteristic length along the z axis and aij 
is the 3D s-wave scattering length. In the experiment, the trapping 
frequency ωz ≅ 2π × 1 kHz, and the scattering length for the 87Rb atoms 
is about aij ≅ 100aB with aB the Bohr radius. This indicates that even 
though the system is thermodynamically 2D, the collisions still keep 
their 3D character with η−1 ≫ aij. Considering the similarity in scattering 
lengths a11, a22 and a12 for the 87Rb atoms, in the calculation we focus on 
the SU(2) symmetric interaction with g = g11 = g22 = g12. In addition to 
the intercomponent atomic interaction, the two components are also 
coupled by a MW pulse, which causes Rabi oscillations with the  
frequency ΩR.

By using the imaginary time evolution method, one can solve the GP 
equations numerically for the ground states in the harmonic trap. 
Theoretically, the non-commensurate twist angle θ = 5.21° should be 
a localized single particle ground state whereas the commensu-
rate angle θ = 2 arctan 1

22
 gives rise to extended ground states in the 

absence of interactions. Experimentally, the interatomic interaction 
is dominant, and always leads to extended many-body states with the 
aperiodic and periodic bilayer lattices becoming almost indistin-
guishable.

The phase transition from superfluid to MI can be well described 
by the Bose–Hubbard model in the tight-binding approximation. For 
simplicity we consider the interlayer coupling as a quasi-periodically 
perturbed potential, which leads to a site-dependent energy offset

M M i π θ i π θ i π θ i π θ= [sin ( cos + sin ) + sin ( cos − sin )] , (11)i x y y xR
2 2

where the subindex ix and iy label the position of the ith site in the 
two-dimensional space. The tight-binding Hamiltonian for one layer 
then is given by
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where the first term describes the nearest-neighbour tunnelling with 
b† and b being the creation and annihilation operators, and the second 
term represents the on-site interaction. The hopping amplitude t is 
considered to be site-independent for weak interlayer coupling and 
can be estimated by t E V E= ( / ) eπ

V E4
r 0 r

3/4 −2 ( / )0 r
1/2

. The local repulsion 

U depends on the depth of the optical lattice, and is given by 
U π ka E V E= 8/ ( / )s r 0 r

3/4 (ref. 46). The chemical potential μ controls the 
average number of atoms in the moiré lattice.

The mean-field phase diagram (Fig. 5a) can be mapped by using the 
Gutzwiller method, which expands the local state ∣ψ ⟩i  at site i in the 
Fock basis47,48. When the interlayer coupling Mi = 0, the system is 
reduced to the standard Bose–Hubbard model38, which includes two 
phases, the superfluid phase and the MI phase44,49. While the superfluid 
phase is identified by the superfluid order parameter b⟨ ˆ⟩ ≠ 0i  and an 
arbitrary filling of the atoms on the site, the MI phase emerges with an 
integer number of atoms per site with b⟨ ˆ⟩ = 0i . When the interlayer 
coupling Mi ≠ 0, the persistent coherence of the moiré and primary 
lattice length scale as well as density distribution in real space can be 
used to distinguish the phases, which is determined by the order param-
eter b⟨ ˆ⟩i  and the filling of the atoms on the site n as shown in Extended 
Data Fig.  4. The chemical potential μ/U = 1 is considered in this  
calculation.

Phase diagram with zero temperature and the homogeneous system 
is predicted theoretically as shown in Extended Data Fig. 4a, in which 
four phases of superfluid (SF), superfluid II (SF-II), MI and insulator (I) 
are included. The SF-II phase is a state with superfluid domains embed-
ded in a gapped insulate state, which is caused by interlayer coupling. 
So, the SF-II phase can be identified by checking the disappearance of 
the moiré-scale long-range correlation with vanishing moiré lattice 
momentum but the short-range coherence with residual primary lat-
tice momentum remains. At the same time, the SF-II phase supports 
the moiré pattern in the real space. As MI is an incompressible insula-
tor for integer filling factor with a gap U for particle-hole excitations 
induced by the on-site interaction U, the moiré pattern in the real space 
appears only when the interlayer coupling strength is larger than U to 
break this gap. Therefore, the I phase supports the moiré pattern in 
the real space and no spatial coherence at all scales, which approaches 
the MI phase without the moiré pattern in the real space in the limit of 
weak interlayer coupling. Here, the phase transition between the SF 
to the MI phase should have an intermediate phase SF-II. Obviously, 
the coherence is lost almost simultaneously in all length scales at the  
critical point at very weak interlayer coupling only for zero tem-
perature as shown in Fig. 5a. By contrast, at finite temperature, the 
thermodynamic quantities behave smoothly near the critical point 
and more long-range moiré coherence is lost before the short-range 
primary lattice length. Therefore, there exists an SF-MI critical regime, 
which seems likely to be a thermodynamic phase and is not predicted 
theoretically at zero temperature. The SF-MI critical regime has the 
same coherence as SF-II without the moiré-scale long-range correla-
tion but with the short-range coherence. However, the SF-MI criti-
cal regime does not support the moiré pattern in real space that is 
distinguished from SF-II. In fact, the insulator phase presents spe-
cial characteristics due to the strong interaction and quasi-disorder 
induced by the larger interlayer coupling, similar to a Bose glass 
insulator from the model of a disordered strongly interacting  
bosonic system38–40.
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ing authors upon reasonable request. 
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Extended Data Fig. 1 | Coherence in the SF-MI transition. a, The initial BEC  
in 2D pancake-like potential. b, Absorption image after atoms are released 
abruptly from an optical lattice potential V1 (or V2) with a potential depth 24Er. 

c, Absorption image when the lattice is ramped up to the lattice depth 24Er and 
then ramp down to zero. The images are obtained after 18 ms free space 
expansion.
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Extended Data Fig. 2 | Determination of tune-out wavelengths. a–b, The 
lattice depth V1x (blue) and V1y (red) as a function of wavelength λ for the two 
different hyperfine states F m= 1, = 1⟩F∣  and F m= 2, = 0⟩F∣ . The angles between 
V1x, V1y and B0 are 39.79° and 50.21° respectively. c–d, The potential depth V2x 
(blue) and V2y (red) as a function of wavelength λ for the two different hyperfine 

states F m= 1, = 1⟩F∣  and F m= 2, = 0⟩F∣ . e, Theoretical light shift of V1x, V1y for 1, 1⟩∣  
and ∣2, 0⟩. f, Theoretical lattice depth of V2x, V2y for ∣1, 1⟩ and 2, 0⟩∣ . The bias 
magnetic field of 10 Gauss is applied along the 45° diagonal line of the square 
lattice V2.



Extended Data Fig. 3 | Band structure of the twisted-bilayer optical lattices. 
The twist angle of the commensurate optical lattice is θ = 2arctan(1/22), whose 
band structure is regarded as an approximation of the experimental case 
θ = 5.21°. a, b and c show the band structures for the interlayer coupling 
strength ΩR = 0Er, 0.1Er and 1Er respectively. a also gives the band structure 

without the interlayer coupling in the form of the superlattice minibands 
within the same reduced Brillouin zone. d,e and f are the enlargement of the 
lowest bands of a,b, and c, respectively. g,h and i are the further enlargement of 
the lowest bands of d,e and f, respectively. Here, the MW detuning is Δ = 0, 
V0= 4Er and E0 corresponds to the energy of the lowest band.
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Extended Data Fig. 4 | Characteristics of the different phases. a, Phase 
diagram, where SF, SF-II, MI, and I refer to superfluid, superfluid only with 
short-range coherence, Mott insulator, and insulator. b, Table shows the 
features of the different phases. c, Plots of the order parameter b⟨ ˆ ⟩i  and the 

filling of the atoms on the site n for the different phases. Parameters (V/Er, 
ΩR/Er) are (10,0.6), (15,0.6), (23,0.3) and (23,1.1) for the plots from left to right 
respectively. The chemical potential μ/U = 1 is considered.
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