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Observation of strong correlations and superconductivity in twisted-bilayer
graphene'* has stimulated tremendous interest in fundamental and applied physics®®.
Inthis system, the superposition of two twisted honeycomb lattices, generating a
moiré pattern, is the key to the observed flat electronic bands, slow electron velocity
and large density of states® 2. Extension of the twisted-bilayer system to new
configurationsis highly desired, which can provide exciting prospects to investigate
twistronics beyond bilayer graphene. Here we demonstrate a quantum simulation
of superfluid to Mott insulator transition in twisted-bilayer square lattices based on
atomic Bose-Einstein condensates loaded into spin-dependent optical lattices. The
lattices are made of two sets of laser beams thatindependently address atomsin
different spin states, which form the synthetic dimension accommodating the two
layers. The interlayer coupling is highly controllable by amicrowave field, which
enablesthe occurrence of alowest flat band and new correlated phasesin the strong

coupling limit. We directly observe the spatial moiré pattern and the momentum
diffraction, which confirm the presence of two forms of superfluid and a modified
superfluid to insulator transition in twisted-bilayer lattices. Our schemeis generic
and canbe applied to different lattice geometries and for both boson and fermion
systems. This opens up a new direction for exploring moiré physics in ultracold atoms
with highly controllable optical lattices.

New band structures in lattice systems often lead to new material
functions and discoveries. Twistronics, originating from the twisted-
bilayer-graphene as a tuneable experimental platform' 8, has attracted
broad attention in recent years and launched intensive theoretical
research. Here, overlaying two graphene layers with a small relative
angle show the rich phase diagram, such as the coexistence of uncon-
ventional superconductivity and correlated insulating phases®™*. In
recent years, many examples of twisted-bilayer are discovered with
remarkable physical properties not presentin their untwisted counter-
parts. Recently, photonic moiré lattices are explored for their capabili-
tiesinlocalizing and delocalizing light® " and engineering the photonic
dispersion of phonon polaritons®.

Ultracold atoms in optical lattices constitute an ideal platform
to simulate emerging many-body phenomena in condensed matter
physics"” ™", Different optical lattice geometries can be realized by
interfering different sets of laser beams®* . In particular, ascheme of
simulating twisted-bilayer lattice has recently been proposed using two
overlapping optical lattices?*%. Other schemes for simulating bilayer
heterostructures have also been put forward®®?’, These schemes are
based on coherent coupling between spin states of atoms, which simu-
lates interlayer tunnelling along an artificial, synthetic dimension®,

Inthis article, we demonstrate Bose-Einstein condensates (BEC) of
Rubidium-87 (*Rb) atoms loaded into a pair of twisted-bilayer optical

lattices. Two overlapping lattices V; and V, are formed by interfering
laser beams at the specific ‘tune-out’ wavelengths®*5 1, and A, with
proper polarizations such that atoms in spin state [I)= |F=1, m;=1)
and state|2) = |F=2, m; = 0) only experience the lattice potential V;
and V,, respectively (Fig.1). Here Fand m,are the angular momentum
and projection quantum numbers in the ¥Rb ground state manifold.
Each set of the laser beams forms a two-dimensional (2D) square
lattice on the horizontal xy plane and the twist of the two lattices is
realized by orienting the beams of different wavelengths with a small
relative angle 6 =5.21°. The sample is tightly confined in the vertical
zdirectionsuch thatthe sampleisin the quasi-2D regime (see Methods
for details).

Thetwo spinstates of Rb atoms constitute the synthetic dimension
thataccommodates the two twisted layers of lattices V;and V,. To pre-
cisely determine the tune-out wavelengths A, and A, of the optical lat-
tices V; and V,, we measure the diffraction of atoms by the optical
lattices. The experimental sequence starts withanalmost pure BECin
acrossed-beam dipole trap. The atoms are prepared in one of the two
spinstatesand ashort pulse of the lattice beamsis applied. The lattice
potentialinduces Bragg diffraction of atoms to high momentumstates.
After turning off the lattice beams, we image the diffracted atoms. The
wavelengths of the lattice beams are finely adjusted to the tune-out
wavelengths such that atomsinstate |1) are only diffracted by the lat-
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Fig.1|Simulation of twisted-bilayer systems based onatomsinspin-
dependentopticallattices. a, Atoms areloaded into asingle layer, 2D
pancake-like potential formed by a vertical optical lattice (green) in the
zdirection. Two sets of square optical lattices V, (purple) and V, (blue) on the
horizontal plane with asmallrelative angle 6 = 5.21° form a spin-dependent
lattice potential and confine Rb atomsinspinstate |1) (up arrows) and |2)
(down arrows) independently. A magnetic field isapplied in the xy plane along
the 45°diagonal of the V, lattice. The lattice beams for V;and V, are set with

tice potential V;and not by the potential V,as showninFig. 2. Similarly,
atomsinstate |2) only experience the potential V,, but not V;. By elim-
inating the cross-talks, we determined the tune-out wavelengthsto be
A,=790.02 and A, =788.28 nm. The lattice beams are circularly polar-
ized to produce spatial intensity modulation such that the lattice
potentials are attractive to atomsin both spin states (see Methods for
details).

Experimentally intralayer hoppings ¢; and ¢, between lattice sites
are controlled by the depth of the optical lattices V;and V,; interlayer
hopping Qg, on the other hand, is independently induced by micro-
waves (MW) that couple the two spin states. Starting with atoms in
state |1) in the dipole trap, for example, the MW spectrum shows a
single narrow peak when atoms are driven to state |2). By loading the
atoms into the twisted-bilayer optical lattices, the spectrum shows
several peaks. The peaks correspond to transitions from atomsin the
ground band of lattice V;, which we label |1, S), to different Bloch bands
of lattice V,, which welabel |2, S), |2, P), |2, D) and so on (Fig. 3a,b).
The peak locations agree with the calculated energies of the s, p and
dbandsinlattice V,. The multi-peak structure supports that atomsin
different spin states are confined in different lattices. If atoms are
loaded into aspin-independent lattice, only asingle narrow peak shows
upinthespectrum, whichbelongstothe |1, S) to |2, S) transition. This
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opposite circular polarization to generate the vector shift with the opposite
sign.b, The left panel shows a sketch of the bilayer lattices in the synthetic
dimension. The interlayer tunnelling is controlled by a microwave field. The
right panel shows asuperimposed lattice structure with the lattice constant
A/2and much larger moirélength A,,.c, Energy diagram of the two ground
Zeeman states |1) and |2) and the associated lattice beams at the tune-out
wavelengthsA,=790.02andA,=788.28 nm.

is because MW transitions between different Bloch bands are negli-
gible in spin-independent lattices. In the twisted optical lattice, the
transitions from the s band of state |1) to other bands of state |2) are
allowed. Inthe presence of the twisted-bilayer lattices, the transitions
arebroadened as the two spin states experience different trap poten-
tials, whichinduce fast dephasing. Moreover, the on-site interactions
increase in deeper lattice potential, resulting in faster decay from
high bands to lower bands and thus broader spectrallines. Our obser-
vation supports MW as a versatile and powerful tool to induce inter-
layer hopping between the two twisted layers in the synthetic (spin)
dimension.

To quantify the interlayer hopping energy, we measure the time
evolution of the population in state |2). We observe a coherent oscil-
lation at detuning 4 = -0.9 kHz, which corresponds to the transition
from |1,S) to |2, S) (Fig. 3¢c). The interlayer coupling strength can be
determined from the oscillation frequencies. In our experiment, the
coupling strength is tuneable up to 1E,, which exceeds that in typical
twisted-bilayer graphene systems. Onthe other hand, couplingtothe
pband |2, P)leadsto faster decay probably due to collisional relaxation
tothelower sband (Fig.3d). In the following, we will focus onatomsin
the twisted-bilayer optical lattices with MW-induced coupling between
the sbands of the two layers.



Lattice V, Lattice V,,
3
Atoms in
state |1> .
0
3
Y1
Atoms in
state |2> ‘
T %%
0=5.21° 0

Fig.2|Independentdiffraction of atomsin different spin states by the
twisted-bilayer optical lattices. The optical lattice potential isapplied to the
atomic BECwith ashort duration of 4 ps. Theimages show diffraction patterns
oftheatoms after 18 ms of free space expansion. At the tune-out wavelength
A,=790.02andA,=788.28 nm, atomsinstate [1) and |2), are diffracted by the
associated optical lattices V,and V,, respectively.

A key signature of atoms in the twisted-bilayer optical lattice is the
moiré lattice with a period

a
Amo = 2sin6/2’ o

which, for the lattice constant a =395 nm and twist angle 6 = 5.21°,
amountstoamoirélength A, =4.35 um. The large moiré period gives
rise to a mini-Brillouin zone in the momentum space, which is
expected to generate the flatbands and strongly correlated states' ™%
Notably, aninsitu moiré patternis also observed in one-dimensional
lattices with two lattice constants®. To identify the moiré lengthscale
inour system, we use insitu absorptionimaging to visualize the moiré
pattern (Fig. 4a-f). Here we first load the atoms in state |1) into
the lowest s band of lattice V; and then ramp up the MW field with
detuning A =-0.9 kHz to drive the transition from |1, S) to |2, S). We
then in situ image the atoms in state |2). Moiré patterns in one and
two dimensions are observed, and the moiré period is measured to
be 4.35 um consistent with expectation (Fig. 4a-f). Note that the
primary optical lattice spacing a = 395 nm is indiscernible with our
imaging optics.

We also examine the quantum state of atoms in the bilayer twisted
lattices by analysing their momentum-space distribution. After load-
ingaBECintothebilayerlattice of 4£,in the presence of resonant MW
transition, we hold for some time and then perform the time-of-flight
(TOF) measurement (Fig. 4g,h). Two sets of diffractions manifest,
which correspond to the primary lattice momentum rz/a and the much
smaller moiré momentum mi/A,,,. The high contrast of both sets of
diffraction pattern suggests that the atoms remain in the superfluid
phase with phase coherence extending beyond the moiré length scale.
In particular, the contrasts of the moiré pattern in real and momen-
tum space persist over 40 ms (Fig. 4i), from which we conclude that
the atoms maintain in the superfluid phase in the twisted-bilayer
lattices.

Theoretically, depending on the twist angle 0, the superimposed
twisted-bilayer lattice can yield either a periodic potential with
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Fig.3|Interlayer couplingin twisted-bilayer optical lattices.a, MW
spectrumof atomsin the twisted-bilayer optical lattices. Atomsinspin state

[1) aredriven by MW to spin state |2) in the presence of the lattice potential
with depthof O (nolattice), 4 and10F,. Here £, = qf/Zm =hx3.67 kHzisthe

recoil energy, g, = hk = h/Ais the recoilmomentum, mis the atomic mass of ’Rb
andAisthe wavelength of the lattice laser. The MW pulse length of 530 ps
correspondstoampulseinthe absence of the lattice potential. b, Lattice band
structure for the two spin states calculated with the lattice depth 4£,. The MW
field drives atoms from the sband of state |1), labelled as |1, S) tos,pand d
bands of state |2) with different detuning A. ¢,d, Starting with allatomsin |1, S),
populationinstate |2) is measured in the twisted-bilayer lattices at 4£, after the
MW pulse thatdrives theatomsto |2, S) with the detuning4=-0.9 kHz (c), or
to |2, Py with detuning4 =15.08 kHz (d). Fitsin c show aninterlayer coupling
frequency of Qy =2m x 893 Hzand adecay rate of1,200s ™. Linesin d are guides
totheeye.Each pointisbased onthree or more measurementsanderror bars
show thestandard deviations of the mean.

supercells that supports a delocalized ground state or aquasi-periodic
one that supports alocalized ground state in the absence of interac-
tions. In fact, only specific twist angles give rise to periodic lattice
potentials. For square lattices, the twist angles that lead to commen-
surate superlattice should satisfy 6 =2arctan(m /i), where m and n
are coprime natural number®. The twist angle 8 =5.21° used in our
work is close to the commensurate angle 8 =2arctan(1/22) = 5.205°,
andthe period of the supercellis given by 21,,, = 22a (see Methods for
details). Whereas our twist angle does not exactly match the com-
mensurate angle 8 =2 arctan(1/22) = 5.205°, the small difference can-
notbe distinguishedin afinite size sample due to repulsive interactions
(see Methods for details). In particular, the spatial moiré period
remains a clear observable in our experiment because of the finite
chemical potential of our atomic superfluid. The persistence of the
spatialand momentum periodicity of the samplein the twisted-bilayer
lattice supports the superfluid as the ground state of the system.
Compared withelectronic materials, in which the flat band isinvesti-
gated frequently near the Fermi surface, we can also explore flat-band
physicswithbosons condensed inthe lowestband. Inour system, when
interlayer coupling increases, the long-wavelength moiré potential
becomes deeper, so atoms in the lowest band are isolated at alarger
spatial scale (moiré wavelength), which flattens the ground band and
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Fig.4|Moiré pattern and superfluid ground state in twisted-bilayer optical
lattices. a,c, Moiré pattern of atoms in one-dimensional bilayer optical lattices
inthex (a) andydirections (c). b,d, Plot of the corresponding optical lattice
potentialin thex (b) andydirections (d). Note that the primary optical lattice
A/2isindiscernibleintheinsituimages.Inall experiments,an MW field is
applied tocouplethe sband of state |1) and sband of state |2). Theatomsin
state |2) are measured. The elliptical shape of the atomic cloud isinduced by a
littleasymmetric harmonic trap potential inxy plane. e,f, Experimental (e) and
theoretical (f) moiré pattern ofatomsin the presence of optical latticesin both
directions.g,h, TOF images with 18 ms from the experiment (g) and calculation
(h) show diffraction peaks associated with the primary lattice constant A/2 and
moirélengthA,,,. Theenlarged picture of the centre part of gis obtained by the
imaging system with higher magnification. i, The contrast of moiré patternin

enhances the localization of the atoms. Inthe large interlayer coupling
limit, the system can be regarded as a single layer (single-component)
experiencing a twisted optical lattice (see Methods for details).
Thessingle-layer system with a twisted optical lattice admits a flat-band
structure inthe ground band, which has also been studied experimen-
tally in photonic systems™ ™%, The easily tuned intra- and interlayer
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real space and the contrast of diffraction pattern for different hold times. Here,
thelatticedepthsare V;, = V,, =V}, = V,,=4E, (U/t=1.67, 0/t =2.07, Uis the
on-siteinteraction). Thereal-space and momentum-space distributions of
fand haretheoretically calculated by solving the mean-field ground states
accordingto the Gross-Pitaevskii equations (see Methods for details). The
contrastinthereal spaceisdefined as (Syax = Smin)/(Smax + Smin), Where S, and
Sminare the maximum and minimum atomic density of the moiré fringes. The
contrastinthe momentum spaceis defined as (P3y,, — Prin)/(Povax*+ Pmin), Where,

& = (PO o+ Pho)/2and P, are the average maximumand minimum density
ofthe diffraction pattern. Here P9, is zero-momentum component and
P}, .is the moiré component near the zero momentum. Error bars show the
standard deviation of the mean.Scalebarsa,c,e,f,10 um, g,h,100 pmandinset
ofg,20 um.

couplings in our system offer the added advantages of seeking new
quantum phases and phase transitions with cold atoms.

By varying the depth of optical lattices and interlayer coupling, we
find several distinct quantum phases, including superfluid (SF), super-
fluid with only short-range coherence (SF-II), Mott insulator (MI) and
insulator (I) (Fig. 5a and Methods). These phases can be distinguished
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Fig.5|Phasetransition for the twisted-bilayer opticallattice. a, Phase
diagram (see Methods for details), in which SF, SF-1I, Ml and I refer to superfluid,
superfluid only with short-range coherence, Mott insulator and insulator.
Thesolid curves denote the calculated phase boundaries with mean-field at
zerotemperature. The dots are experimental measurements of the phase
boundaries. The pink circles and blue squares denote the loss of the coherence
atthe moirélength scale and thelength scale of the primary lattice, respectively.
Thered diamonds denote the appearance of the moiré patternin the real-space
insituimages thatincreases theinterlayer coupling. The error barsindicate the
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experimental uncertaintiesin determining the phase transition. b, Visibility
curves for themoiré and primary lattice momentum components as a function
oflatticedepth (pathlina). A sequential loss of phase coherence appears at
the moiré momentum and the primary lattice momentum. The intermediate
regimeindicates SF-1l phase. Theinterlayer coupling frequency is Qp = 0.24E,.
¢, Visibility curves for the moiré momentum component as a function of
interlayer coupling with the lattice depth 8£, (pathllina) and 14£, (pathlllina),
respectively. Thesolidlinesinband carefitted from the experimental dataand
only guide theeye.



by the phase coherence and real-space density correlations. The SF-II
phase emerges with finite interlayer coupling around the transition
fromaregular SFtoaninsulator. The spatial range of phase coherence
is the key to distinguishing the two SF phases: while an SF supports
long-range phase coherence®, the SF-1l phase maintains the coherence
only up to the moiré length scale. Inaddition, the SF-1l phase supports
the moiré patterninthereal space. Theoretically, SF-1lis the phase with
superfluid domains embedded in a gapped insulator, induced by the
interlayer coupling. Finally, the insulator phasesand Ml can be identi-
fied by the disappearance of spatial coherence at all scales and integer
fillings of all the sites. Whereas the MI has uniform atom density with
weak interlayer coupling, the I phase features a moiré pattern due to
stronger interlayer coupling.

In the experiment, we measure the phase coherence from the
momentum-space diffraction peaks in the TOF images and directly
probe the moiré pattern by in situimaging following the measurement
method as shownin Fig. 4. The measurement of the phase boundaries
isshown in Fig. 5a. We use three independent paths to study these
phases. In path I, we fix the interlayer coupling strength at a small
value Qy = 0.24£, and increase the lattice depth. The phase transition
from SF to Ml and across SF-Il is shown in the TOF images (Fig. 5b).
Here the diffraction peaks at the moiré momenta disappear first
before the disappearance of the primary lattice. The intermediate
regime indicates the SF-1l phase in which the moiré-scale long-range
correlation is destroyed while a short-range coherence remains; at
the same time, the density correlations of moiré pattern appear in
the real space. In path II, we fix the lattice depth in the SF region and
increase the interlayer coupling. The diffraction peaks at the moiré
momenta persist with high contrasts. However, in path lll, when the
depth of optical lattices is fixed at the Ml region and the interlayer
coupling increases, the visibility at the moiré momenta presents the
threshold behaviour and emerges at Q; > 0.5E, (Fig. 5¢). These obser-
vations are qualitatively consistent with the theoretical expectation
and demonstrate that the interlayer coupling caninduce are-entrant
transition from MI to SF across SF-1l. One may understand such rich
transitions from the fact that the interplay between the interlayer
coupling and interactions tends to localize the bosons, primarily in
the moiré length scale.

Thiswork provides a preliminary physicalinsightinto the quantum
phase transition between SF and SF-11 (Ml and SF-1l or Mland I) and offers
the possibility to study the complex phases due to the presence of
quasi-disorderinduced by large interlayer coupling and stronginterac-
tion, suchas Bose glass insulator, resembling thatin disordered bosonic
systems®**°, These complex phases are worth further investigatingin
the future.

The present work focuses on the realization and the ground state
properties of atoms in the twisted-bilayer optical square lattice. Our
success inloading a superfluid into the bilayer lattice demonstrates
anew versatile platform to explore moiré physics and the associated
superfluidity in a quantum many-body system. Beyond the tune-
able twist angle, the cold atom platform offers remarkable controls
such as different lattice depths and interlayer coupling in different
layers.

Furthermore, the twisted-bilayer square lattice closely connects
to the physics of heterostructures of twisted atomically thin semi-
conductors®**2, At the same time, our experiment canin principle
be extended to multi-layer lattice in which the interlayer couplings
canbeindependently induced by MW and radio-frequencies. Replac-
ing the MW with optical Raman transitions, the interlayer coupling
can be spatial dependence, which can support topological ground
states. Finally, our optical lattice scheme can be applied to confine
fermionic atoms in bilayer hexagonal lattice, which faithfully simu-
lates electrons in a bilayer graphene, and may offer insight into the
emergence of superconductivity in the strongly correlated, flat-band
regime.
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Methods

Experimental setup
In our experiment, the ultracold ¥Rb atoms in the |F=2, m, = 2) state
are prepared in the crossed optical dipole trap*. Forced evaporation
inthe optical trap creates the BECwithup to 5 x 10°atoms. The atoms
canbetransferred to the |F=1, m; = 1) state through arapid adiabatic
passage induced by MW transition. To load the atomsinto the 2D trap,
a532 nmlaser beamis deflected by anacousto-optic deflector and then
splitinto two beamswith variable spacing adjusted by the acousto-optic
deflector. The two beams are focused onto the atoms with a150 mm
aspherical lens. These beams interfere to form a standing wave in the
vertical direction with variable separation (accordion lattice). This
separation can be varied from 12 down to 3 pm. The advantage of
variable spacing is that we can load a three-dimensional (3D) shaped
cloud into a single layer of the 2D pancakes at maximum separation
and then compress the pancake adiabatically toreach adeep 2D regime.
The maximum vertical confinement can reach more than 20 kHz and
weoptimizeitat1kHzto observe moiré pattern and superfluid of ultra-
cold atoms.

The twisted-bilayer optical lattices are created by two sets of 2D

square lattice V; and V,. A twisted angle of 8 =5.21°is set between the
cosf -—sinf

sind cosd |- The

optical lattices V; and V, are derived from two continuous-wave
Ti:sapphire single frequency lasers (M Squared lasers SolsTiS and
Coherent MBR-110), respectively. Two lattice beams V;,.and V;, of V, are
frequency-shifted +80 and +95 MHz by two single-pass acousto-optic
modulators, respectively. The same applies to the two lattice beams
V. and V,, of lattice V,. The four lattice beams are coupled into
polarization-maintaining single-mode fibres to improve the stability
of the beam pointing and achieve better beam-profile quality. After
thefibres, eachlattice beamis focused by alens and retroreflected by
aconcave mirror. To generate the vector light shift, we use the same
circular polarization for two lattice beams to produce spatial intensity
modulation. In the experiment, we can determine and calibrate this
angle by measuring the intersection angle between two lasersand the
moiré period from the insituimages. The estimated uncertainty of the
two methods is about 0.05°.

We use the MW field to couple the two spin states for manipulating
theinterlayer coupling. The 6.8 GHz MW signal is amplifiedbyal0 W
solid state amplifier (Kuhne Electronic, KU PA 640720-10A). We place
acirculator on the output of the amplifier to reduce reflected power
coming back to the amplifier. The MW is emitted out to the atoms
by a sawed-off waveguide, which is placed outside the high vacuum
glass cell. We use MW cables to transfer MW from the amplifier to the
waveguide. With this MW power amplifier, we can reach the maximum
interlayer coupling strength of about 1.0E.. Itis feasible toincrease the
interlayer coupling strength to about several £, by using an available
higher power amplifier.

Ourimage system consists of an objective withanumerical aperture
of 0.69, working distance of 11 mm and effective focal length of 18 mm.
A 900 mm lens after the objective leads to a magnification of x50 for
in situ imaging with an EMCCD (Andor iXon Ultra 897). We also use a
200 mm (400 mm) lens after the objective leads to a magnification
of x11 (22) for the TOF absorption imaging with 18 ms. The atoms are
detected by state-selective absorptive imaging. As we choose two
ground hyperfine Zeemanstates of ¥Rb |F= 2, m = 0) of the F=2,and
|F=1, mg=1) of the F=1hyperfine manifold as the two internal spin
states, we can fully resolve the populationin eachindividual state. For
|F=2, my = 0)state,a50 pslongimaging pulse of resonantlight on the
F=2- F’=3 D, cycling transition is used to detect the |2) atoms. To
detectthe |F=1, m=1)state,aresonantlightpulseonthe F=2-> F'=3
cycling transitionis first used to remove the |2) atoms and thena 50 ps
long imaging pulse of resonant light onthe F=2 > F’=3 is applied at

two lattice potentials, namely, V,(r) = Vi(Sr), S=

thesametimewitharepumplight (resonantlight F=1-> F’=2)todetect
the |1) atoms.

When studying the superfluid to Ml transition, we use the standard
method of interference pattern contrast (visibility) to show this
transition®**. We first load the atomsin state |1) into the lowest sband
oflattice V; by ramping up V; and V, simultaneously with 30 ms, and
then ramp up the MW field with 10 ms to drive the transition from
|1, 8) to]2,S). The atoms are detected by state-selective absorptive
imaging with TOF of 18 ms after switching off all lattices and trapping
light. In experiment, we first check that BEC is still kept (Extended
DataFig.1) asramp up thelattice V; (or V/,) to the higher lattice depth
than 24F, and then ramp down again, which makes sure to perform
the phase transition from SF to Ml successfully for the lattice V1 (or V2).
Whenaddingtheinterlayer coupling between two spin states, and at
the same time a quasi-disorder is introduced, there are two more
mechanics to make the system not completely reversible. One is the
finite coherent time between two spin states. When the system is
prepared initially in the spin down, the system will become the spin
mixture after the interlayer coupling is ramped back down. We define
this process asirreversibility. The other is that adiabaticity is broken
down by a quasi-period or disordered lattice, which induces not to
completely remain in the zero-momentum state after ramping the
lattices back down.

Tune-out wavelength for twisted-bilayer optical lattices

The a.c. Stark shift, or light shift, is a light-induced change of energy
level. For alkali-metal atoms, the total a.c. Stark shift can be expressed
in the irreducible components (including scalar, vector and tensor
components) of the polarizability*:

AU=AU(F, mg; w)
= a(O)(w)_'_a(l)(w)(é‘ek.eB)% (2)

3cos’p—13m2 - F(F+1)

+a@w)
atwy FQF-1)

where Fis the total atomic angular momentum, m.is the magnetic
quantum number, w is the laser frequency, /is the laser field intensity,
islightellipticity, e, and egare unit vectors along the light wave vector
and magnetic field quantization axis, respectively, and ¢ is the intersec-
tionangle between thelinearly polarized component of light field and
€. This formula comes from the perturbation expansion. Note that
therange of values of light ellipticity is § € [-1, 1], = +1denotesleftand
right circular polarization.a®(w), 2 (w), a®(w) are the scalar, vector
and tensor polarizability, respectively. Scalar shiftis spinindependent.
Vector shift acts like an effective magnetic field to generate the linear
Zeeman splitting (light shift proportional to m,), which depends on
theellipticity of thelight and the intersection angle between the laser
beam wave vector and magnetic field quantization axis ez. So, there
are two methods to control the vector shift: rotating bias magnetic
field and changing light polarization. The tensor part is derived from
the linearly polarized light and acts as an effective d.c. electric
field.

For the first excited state of alkali-metal atoms, the fine structure
interaction induces the spectral lines of the D1 (5%S,, > 5°P,,) and D2
(5%S,,, > 5°P;),) lines. The coefficients of the scalar, vector and tensor
shifts of the ground states 5S,,, of Rb atoms in equation (2) are given by
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wherel}, isthe decay rate of the excited state for D, line, w, = %wm + §w02
is the effective frequency, 6, = w - wp;, 6p, = w — wp, is the frequency
detuning of the laser. Therefore, according to equation (3) we only
consider the scalar and vector shiftin this work. We use tune-out wave-
length for spin-dependent optical lattice, in which a.c. Stark shifts
cancel. Two internal spin states have different tune-out wavelengths
when the contributions of both the scalar and vector shifts are
included™.

We choose two ground hyperfine Zeeman states of “Rb |[F=2, me = 0)
ofthe F=2,and|F=1, m =1) of the F=1hyperfine manifold as the two
internal spinstates. A bias magnetic field with 10 Gauss is applied along
the 45° diagonal line of the square lattice V,. We scan the wavelength
of the optical lattice beams to determine the tune-out wavelength
precisely, as shown in Extended Data Fig. 2. The tune-out wavelength
for |1,1) stateisdetermined at 788.28 nmwith o_circular polarization
asshownin Extended DataFig.2c, which balances the contribution of
the scalar and vector shift. Thus, we choose this wavelength for the
lattice V,. Note that the tune-out wavelength for |1, 1) state is sensitive
totheintersectionangle between the laser beam wave vector and mag-
netic field quantization axis, which requires a careful alignment of the
bias magnetic field. The spin state |2, 0) only experiences the square
lattice V, with the red-detuninga.c. stark shift (whichis only from sca-
lar shift), as shownin Extended Data Fig. 2d,f; by contrast, the spin state
|1, 1) experiences no shift.

Ontheother hand, thereis only the contribution of the scalar shift for
thespinstate |2, 0); the tune-out wavelength for |2, 0) stateis 790.02 nm
as shown in Extended Data Fig. 2a, which is well known and studied
experimentally***. We choose this tune-out wavelength 0of 790.02 nm
witho, circular polarization as the wavelength of thelattice V,. Thus, the
spinstate |1,1) experiences the square lattice V; with the red-detuned
a.c.starkshift. By contrast, the spinstate |2, 0) sees zerolight shift. Note
that the tune-out wavelength for |2, 0) state is insensitive to the
intersection angle between the laser beam wave vector and magnetic
field quantization axis. The spin state |1, 1), however, has a different lat-
ticedepthintwo orthogonal directions of the lattice V;, respectively,and
feels the lattice V; with the red-detuning a.c. stark shift (which is only
fromvector shift at the wavelength of 790.02 nm) as shownin Extended
DataFig.2b,e.

Amoiré superlattice can be generated by a small differenceinlattice
constantor orientation. Because two different wavelengths are used for
twisted-bilayer latticesin this work, thereis alarge-period superlattice
with AA=179 um, much larger than the size of atomic cloud. There-
fore, we canadjust theretroreflected concave mirror toload atomsinto
thelower potential well of the long-period superlattice and neglect the
influence on the measurement of moiré pattern. In the future, we can
correct this effect of two different wavelengths by using a slight angle
lattice beam for V, to ensure the same lattice constant for two lattice
potentials.

Band structures and flat band

Forsquarelattices, the commensurate angles @ satisfy tan(6/2) = m /n,
where m and 71 are coprime natural number. An equivalent condition
iscosf= a/c and smO b/c, which can be defined by Pythagorean
triples (@? +b°=c? where(a,b,c) N are posntlve integers)®. The
relationship between (m,71) and (@, b, ¢) is (i + ifn)* = (@ + ib) when
(m + 1) € odd and (7 + if7)? = 2(@ + ib) when (71 + i) € even. For the
commensurate optical lattice, the period of its supercell (sc) is
givenby A, =ma/sin(6/2)=2mA,when(m +n) € oddand A,. = ma/
sin(/2) =2mA,,, when (m + i) € even.

Here, we choose the band structure of the commensurate optical
lattice with the commensurate angle 8 =2 arctan(1/22) as an approxi-
mation of the experimental case. If getting a better approximation of
band structure for the experimental case, we can choose the larger
supercell to calculate the energy band structure, whose commensurate
angle is closer to the experimental case. The band structure E(k) of

the commensurate optical lattice can be obtained by solving the
stationary Schrodinger equation, HW = EW, with the Bloch function,

Y(r) = exp”‘"u(r). Here the Hamiltonian His given as
n_, A
~ am" Tty @
) 0 Lv2 + V. _A ’
R 2m 2 2

u(r) is a periodic function with the same periodicity as the coupled
lattice. The spin-dependent square optical lattice with a twist angle
6 canbe described by the potentials

Vi=V, sinz(kxcosg —kysingJ + sinz[kycosg +kxsingj ,
2 2 2 2
6 7] 6 %] ©)
_ .2 o 0 .2 o _ .0
V= V{sm [kxcos2 +kysm2) +sin (kycos 2 kxsmzﬂ,

where k=2m/A is the wave number of lasers for the lattice and V,,
describes the lattice depth. In numerics, we first discretize the unit
supercell of area-/Ca x /Ca in real space (C is the largest value in the
Pythagorean triple) into [/ x [ grids, and then diagonalize the effective
Hamiltonianfor u(r). Asshownin Extended Data Fig. 3, the band struc-
ture approaches the flat band whenincreasing the interlayer coupling.

Asour system allows for flexible control of the interlayer couplings,
theflatbandinthe lowest energy band can berealized. The Hamiltonian
equation (4) can be formally diagonalized as

Her O
H= - 6
0 H eff ( )
where
Hew=hothy, )
2 2
withhg=-2-92+ V” Y andhy = |0 + 1 4 7 Inthelargeinterlayer

coupling limit, Qp > VO, A, the Iow energy band structure is encoded
in the effective Hamiltonian H . in the lower-right block, which can
be further approximated as

R o VitV (K- Vy+A)?
. - - 8
Her==5m¥ * 2 8o, ®
orinarougher way
i} n_, WV
Heffz‘ﬂvz’f%‘ﬁk' ©)

The approximated effective Hamiltonians correspond to some effec-
tive latticesfora smgle layer (single- component) system separately,
=1 Vz (VISLA) for equation (8),and V=12 1 "2 for equation (9),
with certam global energy shift. Specifically, equatlon (9)indicatesthat
the systembecomes the single layer (single-component) experiencing
atwisted optical lattice.

Whenincreasing the interlayer coupling into the strong region, the
long-wavelength moiré potential becomes deeper, so atomsin the low-
estbandareisolated onalarger spatial scale (moiré wavelength), which
enhances the wave function localization and contributes to the crea-
tion of a flat band. The single-layer system with a twisted optical lattice
(approximationat the stronginterlayer couplinglimit) admitsaflat-band
structure in the lowest band, which has been studied experimentally
in photonic system®™, The moiré flat bands have several advantages.



First, the flat bands quench kinetic energy scales (wave function locali-
zation), thereby drastically enhance therole of interactions and amplify
the effects of interactions. Second, the moiré superlattice leads to the
emergence of minibands within a reduced Brillouin zone. The small
Brillouin zone means that low atomic densities are sufficient for full
filling or depletion of the superlattice bands, which is easily controlled
inan experiment.

Theoretical calculation of the modified superfluid to insulator
transition

Inthe mean-field approximation, the system for the superfluid phase
canbe well described by the coupled Gross-Pitaevskii (GP) equations

i —”—zv2+lmw2(x2+y2)+v+rzg 912 +ngy, 9,1
ot 2m 27 1 u ¥ 1 ¥
Y, + Ry,
oy 1 2 - (10)
0%, |_ht o 15 2 2 2 2
’fl?—[‘ﬁv +§me(X +y2)+ Vot ng, 191”7 +ngy, 19, }

¥, + hyy,

where the MW detuning is A = 0 and the wave function is normalized
as Y, [|y)*dr = N, with Nthe total atom number. The strong confinement
along the z axis gives rise to the quasi-2D interaction strengths repre-
sented by a reduction coefficient n multiplied by g; = 4wh*a,/m, where
n'=./h/mw, defines the characteristic length along the zaxis and a;
is the 3D s-wave scattering length. In the experiment, the trapping
frequency w, = 2m x 1 kHz, and the scattering length for the ¥Rb atoms
is about a;~100a; with a, the Bohr radius. This indicates that even
though the system is thermodynamically 2D, the collisions still keep
their 3D character with ™' » a;. Considering the similarity in scattering
lengths a;, a,,and a;, for the ¥Rb atoms, in the calculation we focus on
the SU(2) symmetric interaction with g=g;, = g,, = g1,. Inaddition to
theintercomponentatomicinteraction, the two components are also
coupled by a MW pulse, which causes Rabi oscillations with the
frequency Q.

By using theimaginary time evolution method, one can solve the GP
equations numerically for the ground states in the harmonic trap.
Theoretically, the non-commensurate twist angle 8 = 5.21° should be
alocalized single particle ground state whereas the commensu-
rate angle §=2arctan 2—12 givesrise to extended ground states in the
absence of interactions. Experimentally, the interatomic interaction
isdominant, and always leads to extended many-body states with the
aperiodic and periodic bilayer lattices becoming almost indistin-
guishable.

The phase transition from superfluid to Ml can be well described
by the Bose-Hubbard model in the tight-binding approximation. For
simplicity we consider the interlayer coupling as a quasi-periodically
perturbed potential, which leads to a site-dependent energy offset

M;= Mg [sin*(i,tcos@ + i mrsind) + sin’(i rcos@ - i,msind)], (1)
where the subindex i, and i, label the position of the ith site in the
two-dimensional space. The tight-binding Hamiltonian for one layer
thenis given by

H=-tY b,-Tbj+%Zﬁ,-(ﬁ,-—1)+Z(M,-—ﬂ)ﬁi, (12)

(i)

where the first term describes the nearest-neighbour tunnelling with
b'and bbeingthe creation and annihilation operators, and the second
term represents the on-site interaction. The hopping amplitude tis
considered to be site-independent for weak ir}}zerlayer coupling and
can be estimated by =~ E, (Vo/E,)**e 2¥0/5) " The local repulsion

U depends on the depth of the optical lattice, and is given by
U= .J8/mkaE, (Vy/E,)>* (ref.*). The chemical potential u controls the
average number of atoms in the moiré lattice.

The mean-field phase diagram (Fig. 5a) can be mapped by using the
Gutzwiller method, which expands the local state |¢,) atsite i in the
Fock basis**%. When the interlayer coupling M, =0, the system is
reduced to the standard Bose-Hubbard model®, which includes two
phases, the superfluid phase and the Ml phase***’, While the superfluid
phase is identified by the superfluid order parameter (5,») #0andan
arbitrary filling of the atoms on the site, the Ml phase emerges withan
integer number of atoms per site with (5,) = 0. When the interlayer
coupling M, # 0, the persistent coherence of the moiré and primary
lattice length scale as well as density distribution in real space can be
used todistinguish the phases, which is determined by the order param-
eter (h;) and the filling of the atoms on the site n as shown in Extended
Data Fig. 4. The chemical potential z/U=1is considered in this
calculation.

Phase diagram with zero temperature and the homogeneous system
ispredicted theoretically as shown in Extended DataFig. 4a, in which
four phases of superfluid (SF), superfluid Il (SF-1I), Ml and insulator (I)
areincluded. The SF-ll phase is a state with superfluid domains embed-
dedinagappedinsulate state, whichis caused by interlayer coupling.
So, the SF-1 phase can be identified by checking the disappearance of
the moiré-scale long-range correlation with vanishing moiré lattice
momentum but the short-range coherence with residual primary lat-
tice momentum remains. At the same time, the SF-1l phase supports
the moiré patterninthereal space. As Mlis anincompressible insula-
tor for integer filling factor with a gap Ufor particle-hole excitations
induced by the on-site interaction U, the moiré patternin the real space
appearsonly whentheinterlayer coupling strengthis larger than Uto
break this gap. Therefore, the | phase supports the moiré pattern in
thereal space and no spatial coherence at all scales, whichapproaches
the Ml phase without the moiré patterninthereal spacein the limit of
weak interlayer coupling. Here, the phase transition between the SF
to the Ml phase should have an intermediate phase SF-II. Obviously,
the coherenceislost almost simultaneously inall length scales at the
critical point at very weak interlayer coupling only for zero tem-
perature as shown in Fig. 5a. By contrast, at finite temperature, the
thermodynamic quantities behave smoothly near the critical point
and more long-range moiré coherence is lost before the short-range
primary lattice length. Therefore, there exists an SF-MI critical regime,
which seems likely to be athermodynamic phase and is not predicted
theoretically at zero temperature. The SF-Ml critical regime has the
same coherence as SF-ll without the moiré-scale long-range correla-
tion but with the short-range coherence. However, the SF-MI criti-
cal regime does not support the moiré pattern in real space that is
distinguished from SF-II. In fact, the insulator phase presents spe-
cial characteristics due to the strong interaction and quasi-disorder
induced by the larger interlayer coupling, similar to a Bose glass
insulator from the model of a disordered strongly interacting
bosonic system3$4°,
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Extended DataFig.2|Determination of tune-out wavelengths.a-b, The states |[F=1, m=1) and |[F=2, m;=0).e, Theoretical light shift of V,,, V,,for |1,1)
lattice depth V,,(blue) and V,, (red) as a function of wavelength A for the two and |2, 0).f, Theoretical lattice depth of V,,, V,, for |1,1) and |2, 0). The bias
different hyperfine states |[F=1, my=1) and |F=2, m=0). Theanglesbetween magnetic field of 10 Gaussis applied along the 45° diagonal line of the square
Vi Viyand Byare 39.79°and 50.21° respectively. c-d, The potential depth V,, lattice V,.

(blue) and V,, (red) as a function of wavelength A for the two different hyperfine
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Extended DataFig.3|Bandstructure of the twisted-bilayer opticallattices.  withouttheinterlayer couplinginthe formof the superlattice minibands
The twistangle of the commensurate optical lattice is 6 = 2arctan (1/22), whose within the same reduced Brillouin zone. d,e and fare the enlargement of the
bandstructureisregarded as an approximation of the experimental case lowestbands ofa,b, and ¢, respectively.g,handiare the further enlargement of
0=5.21°.a,band cshow the band structures for the interlayer coupling thelowestbands ofd,eandf, respectively. Here, the MW detuningisA =0,

strength Qy = OF,, 0.1E,and 1£, respectively. aalso gives the band structure Vo=4E,and E, corresponds to the energy of the lowest band.
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Extended DataFig. 4 | Characteristics of the different phases. a, Phase
diagram, where SF, SF-1I, MI, and I refer to superfluid, superfluid only with
short-range coherence, Mott insulator, and insulator. b, Table shows the
features of the different phases. ¢, Plots of the order parameter(l}i) andthe

filling of the atoms on thessite n for the different phases. Parameters (V/E,,
QOg/E,) are (10,0.6), (15,0.6), (23,0.3) and (23,1.1) for the plots from left to right
respectively. The chemical potential u/U=1is considered.
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