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Abstract
Discrete-modulation continuous-variable (CV) quantum key distribution has the potential for
large-scale deployment in secure quantum communication networks owing to its low
implementation complexity and compatibility with the current coherent optical
telecommunication. However, current discrete-modulation protocols require relatively large
constellation sizes to achieve a key rate comparable to that of the Gaussian modulation. Here, we
show that a high key rate comparable to the Gaussian modulation can be achieved using only ten
or so coherent states by implementing suitable key map and numerical convex optimization
techniques. Specifically, the key rate of the two-ring constellation with 12 coherent states (four
states in the inner ring and eight states in the outer ring) can reach 2.4 times of that of original
quadrature phase shift keying and 70% of the Gaussian modulation protocol at 50 km. Such an
approach can easily be applied to existing systems, making the discrete-modulation protocol an
attractive alternative for high-rate and low-cost applications in secure quantum communication
networks.

1. Introduction

Quantum key distribution (QKD) [1, 2], one of the most prominent applications of quantum information
sciences, allows two distant parties to share a common secret key, where the security is guaranteed by the
fundamental laws of quantum physics [3, 4]. Continuous-variable (CV) QKD encodes the key information
into continuous-spectrum quantum observables, such as the quadrature components of the light field, which
can offer larger key rates at metropolitan distances [5–11]. CV-QKD can employ similar components as
classical telecom systems and has received extensive attention and witnessed rapid development both
theoretically and experimentally [12–37].

At present, most CV-QKD schemes are based on the Gaussian modulation, meaning that Alice displaces
the quadratures of the sent states according to a Gaussian distribution, which reaches the channel capacity
and achieves a high key rate. However, this type of protocol imposes many requirements on modulation
devices and the error-correction procedure. Moreover, a perfect Gaussian modulation cannot be met in
realistic applications owing to the finite range and precision of practice modulators. In practice, the Gaussian
modulation is approximated by a modulation constellation with a finite number of states, and it has been
shown that at least 8100 states (90× 90 size constellation) are needed to satisfactorily simulate a Gaussian
distribution [38]. To release these stringent restrictions and simplify the protocol, researchers have proposed
discrete-modulation schemes for CV-QKD [39–45].

The discrete-modulation CV-QKD prepares a small number of coherent states to avoid the complexity of
the Gaussian modulation. M-symbol phase shift keying is a coded modulation scheme where Alice sends
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coherent states of the form |αx⟩=
∣∣αeix2π/M〉 for some α> 0. Such constellations can be generated by

rotating a coherent state in the position-momentum phase space. Another modulation scheme is the
M-symbol quadrature amplitude modulation, whereM coherent states are modulated to be distributed
equidistantly with each other in the phase space. The 4-phase-shift keying (PSK) modulation scheme, also
known as the quadrature PSK scheme, has attracted some interest owing to its relatively good performance.
However, unlike the Gaussian modulation, which can apply the proof method of Gaussian attacks’ optimality
[46–48], the discrete modulation CV-QKD is more complex in terms of the security analysis. Previous
security proofs for the 4-PSK protocol have been restricted to Gaussian attacks [49–51], which are believed to
be suboptimal for discrete modulation schemes; thus, the key rate obtained cannot be considered
secure.

Numerical techniques are attractive for obtaining reliable secret key rate bounds [52, 53]. Recently,
the security proofs for discrete-modulation CV-QKD have been established by applying
numerical-method-based convex optimization techniques [54, 55]. An analytical lower bound of the
asymptotic secret key rate was derived for arbitrary modulation schemes [56]. Experimental demonstrations
of discrete modulation CV-QKD were also reported recently [57–59]. However, current discrete-modulation
protocols require relatively large constellation sizes to achieve a key rate comparable to that of the Gaussian
modulation. Without using the Gaussian optimality proof method, the approach in [55] provides a tighter
bound and thus a higher key rate. At present, this approach is only applied to analyze the 4-PSK protocol,
which still exhibits a relatively low key rate compared with the optimal Gaussian modulation, about a quarter
of the key rate achievable for the Gaussian modulation, making it less attractive.

In this paper, we design discrete-modulation protocols with a constellation size of about ten that can
achieve a high key rate close to that of the Gaussian modulation. To this end, we first extend the 4-PSK
protocol to more signal states, eight states (8-PSK) and 12 states (12-PSK), and derive the asymptotic secure
key rate by numerical methods considering the realistic trusted noisy detection. The results show that 8-PSK
increases the key rate by about 60% compared with the original 4-PSK protocol, while the key rate makes
only a small improvement from 8-PSK to 12-PSK. This is because the performance of 8-PSK approaches the
limit of a single-ring constellation protocol, so further increasing the number of states is not more
advantageous. To enlarge the distribution range of states in phase space and further improve the
performance, we propose using the two-ring constellation scheme, where not only the phase quadrature but
also the amplitude quadrature is modulated. By applying appropriate key mapping and parameter
optimization techniques, the two-ring constellation with 12 states (four states in the inner ring and eight
states in the outer ring) achieves superior performance. Compared with the original 4-PSK protocol, the
secret key rate is increased to 2.4 times, which reaches 70% of the key rate achievable for the Gaussian
modulation. With performance close to the Gaussian modulation protocol, the presented protocol with
fewer constellation points is easier to implement with high speed, consumes less random numbers, and has
less state preparation noise (the main source for the excess noise of the CV-QKD system), making the
protocol highly attractive for practical applications.

The rest of the paper is organized as follows. In section 2, we analyze the performance of the
discrete-modulation protocol of 8-PSK and 12-PSK with a single-ring constellation. In section 3, we give the
two-ring constellation modulation and key map schemes and then investigate the dependence of the key rate
on various parameters to optimize the protocol. The results are compared with the Gaussian modulation
CV-QKD protocol under realistic trusted noisy detection. In section 4, we apply the post-selection
technology to our proposed protocol. Our conclusions are given in section 5.

2. Discrete-modulation CV-QKDwith a single-ring constellation

2.1. The protocol description
The schematic of single-ring signal constellation for discrete-modulation CV-QKD of 8-PSK and 12-PSK is
illustrated in figure 1. The process of the protocol can be described as follows.

2.1.1. State preparation, distribution and measurement
For 8-PSK, the sender, Alice, prepares the coherent state |αx⟩=

∣∣αeixπ/4〉 with x ∈ {0,1,2,3,4,5,6,7}, and
each coherent state is chosen with an equal probability px = 1/8. Similarly, for 12-PSK, Alice randomly
selects a state from the set

{
|αx⟩=

∣∣αeixπ/6〉 , x= 0, . . . ,11
}
, where α is a predetermined amplitude and can

be optimized. The prepared states are sent to the receiver, Bob, through an insecure quantum channel. After
receiving Alice’s state, Bob performs a heterodyne measurement on the state and records the measurement
outcome y ∈ C.
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Figure 1. Schematic diagram of the single-ring constellation for multiple signal states: (a) 8-PSK, (b) 12-PSK. Rj represents the
key mapping region, where Bob maps the measurement outcomes to the corresponding discretized key values. Notice that
coherent states have distribution ranges from negative infinity to positive infinity in phase space, the orange circle illustrates the
error circle of the coherent state, i.e. one standard deviation of shot noise.

2.1.2. Parameter estimation
After obtaining enough data (x, y), Alice and Bob randomly select a small part of the data for parameter
estimation. They use the remaining data to extract the keys. Alice and Bob disclose all the information of the
data selected for parameter estimation that allow them to constrain the joint state ρAB and calculate the secret
key rate. If the key rate is less than zero, they abort the protocol. Otherwise, they proceed.

2.1.3. Reverse reconciliation key map
Bob obtains his raw key string by a key map. Specifically, Bob labels each outcome y= |y|eiθ according to the
region Rj as

z=

 j, if θ ∈
[
(2j−1)π

8 , (2j+1)π
8

)
→ y ∈ Rj, 8-PSK

j, if θ ∈
[
(2j−1)π

12 , (2j+1)π
12

)
→ y ∈ Rj, 12-PSK

, (1)

where j ∈ {0, . . . ,7} for 8-PSK and j ∈ {0, . . . ,11} for 12-PSK.

2.1.4. Error correction and privacy amplification
Finally, Alice and Bob implement suitable error correction and privacy amplification procedures to extract
secret keys.

2.2. Performance analysis
The secure key rate can be calculated by the numerical method. (Refer to appendix for the key steps.)
Considering a typical phase-insensitive Gaussian channel in the context of the optical fiber communication,
the simulated statistics are given by [60]〈

F̂Q
〉
x
=
√
2ηTRe(αx) ,〈

F̂P
〉
x
=
√
2ηT Im(αx) ,〈

ŜQ
〉
x
= 2ηTRe(αx)

2
+ 1+

1

2
ηTξ+ vel,〈

ŜP
〉
x
= 2ηT Im(αx)

2
+ 1+

1

2
ηTξ+ vel, (2)

where T and ξ represent the transmittance and excess noise of the channel, respectively, and η and vel denote
the detection efficiency and electronic noise of the detector, respectively.

The probability density function for the result y of a heterodyne measurement conditioned on Alice’s
choice x is

P(y|x) = 1

π
(
1+ 1

2ηTξ+ vel
) exp[− ∣∣y−√

ηTαx

∣∣2
1+ 1

2ηTξ+ vel

]
. (3)
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Figure 2. (a) Secret key rates as a function of the coherent state amplitude α for 8-PSK and 12-PSK protocols at the transmission
distance of L= 50 km. (b) The optimal choice of α at different transmission distances for the 4-PSK, 8-PSK, and 12-PSK
protocols.

Then, according to the key mapping area, the probability that Bob obtains the discretized key value Z= z
conditioned on Alice’s choice x is

P̃( z|x) =


´∞
0 rdr

´ (2z+1)π/8
(2z−1)π/8 P

(
reiθ
∣∣x)dθ (8-PSK)

´∞
0 rdr

´ (2z+1)π/12
(2z−1)π/12 P

(
reiθ
∣∣x)dθ (12-PSK)

. (4)

To extract the optimal secret key rate and fairly compare the performance of different protocols, we first
investigate the dependence of the key rate on the coherent state amplitude α. In figure 2(a), we plot the key
rate versus the choice of α for 8-PSK and 12-PSK protocols, at a transmission distance of 50 km. Here, we
consider the realistic parameters: reconciliation efficiency β= 0.95, excess noise ξ= 0.01, detection efficiency
η= 0.552, and electronic noise vel = 0.015 [21]. The dashed line represents the result of step 1 of our
algorithm, which gives an upper bound on the key rate, and the solid line is the result after step 2, which
provides an achievable lower secure bound on the key rate. The gap between step 1 and step 2 is small, so the
obtained bound is tight. We carry out a coarse-grained search for α in the interval [0.7, 1.1] with a step size
of 0.05. Clearly, there is an optimal value of α to maximize the key rate. At 50 km, the optimal α for 8-PSK
and 12-PSK is 0.9 and 0.92, respectively. In figure 2(b), we give the optimal values of α at different
transmission distances, and the results of the 4-PSK protocol are also shown for comparison. The optimal α
(modulation variance) decreases and gradually converges to a constant when the transmission distance
increases, which is consistent with the Gaussian modulation protocol [61]. Compared with the 4-PSK
protocol, 8-PSK allows for a larger optimal value of α, thus providing a higher signal-to-noise ratio. The
difference between the optimal α for the 8-PSK and 12-PSK protocols gradually decreases with the increase
in the transmission distance and is almost indistinguishable over long distances.

In figure 3, we present the achievable key rates at different transmission distances for different
discrete-modulation protocols and the Gaussian modulation protocol. The key rate has been optimized by
adopting the optimal modulation amplitude (figure 2(b)) and variance. In addition, we have applied the
post-selection technology to the 4-PSK protocol to obtain the optimal key rate [60]. The upper solid curve is
the Pirandola–Laurenza–Ottaviani–Banchi bound, which represents the maximum secret key rate achievable
in a repeater-less and lossy channel system [62]. We can see that the 8-PSK protocol improves the key rate by
about 60% over the 4-PSK protocol. Within 10 km, the key rate can be further improved by 10%–30% if
12-PSK is employed. However, beyond 10 km, the key rate can only be increased by about 4%, which means
that the performance of 8-PSK modulation is close to saturation and adding more signal states will not make
much difference. Compared with the Gaussian-modulation protocol, the achievable key rate of the
discrete-modulation protocol is still relatively low. Taking 50 km as an example, we find that the key rates per
pulse of the 4-PSK, 8-PSK, 12-PSK, and Gaussian modulation protocols are 0.00 602, 0.00 966, 0.01 008, and
0.02 103 bits/pulse, respectively. The 4-PSK and 8-PSK protocols can reach approximately 28% and 45% of
the key rate of the Gaussian modulation.

Current results show that the Gaussian modulation scheme provides an optimal theoretical secure key
rate, and there exists an optimal modulation variance given the transmission distance. Notice that the 4-PSK
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Figure 3. Achievable secret key rate versus the transmission distance for different protocols. The modulation amplitude and
variance have been optimized. Other parameters are set to β= 0.95, ξ= 0.01, η= 0.552, and vel = 0.015.

scheme only approximates to a Gaussian modulation scheme at a small modulation variance that is lower
than the optimal value of the Gaussian modulation. Under the premise of good Gaussian approximation of
the state distribution in phase space, the n-PSK scheme with a large n can increase the effective modulation
variance (corresponding to the optimal values of α) to a certain extent. Therefore, the optimal values of α of
8-PSK and 12-PSK are larger than that of 4-PSK (figure 2(b)), and the performance of the 12-PSK and 8-PSK
is better than that of the 4-PSK protocol (figure 3).

The performance of the n-PSK scheme with a larger n is always better than that of the n-PSK scheme
with a lower n owing to the higher fidelity between its state distribution in phase space and the Gaussian
distribution. However, to maintain good Gaussian approximation for the state distribution, we must impose
an upper bound for the effective modulation variance even if n tends to infinity. Therefore, the difference
between the optimal α of the 8-PSK and 12-PSK protocols is much smaller than that of the 4-PSK and 8-PSK
protocols (figure 2(b)), and the performance of 8-PSK modulation is close to that of 12-PSK and tends to
saturation (figure 3). However, the optimal modulation variance decreases when the transmission distance
increases so that the difference between the optimal α and the key rate for the 8-PSK and 12-PSK protocols
gradually decreases with the increase in the transmission distance.

3. Discrete-modulation CV-QKDwith a two-ring constellation

To break the limitation of the n-PSK protocol, we propose employing the multiple-symbol amplitude and
PSK. Here, we show the two-ring constellation modulation and key mapping method with 12 signal states. In
this case, the state distribution range can be further enlarged, and the Gaussian approximation is well
maintained. This results in an increase in both the modulation variance and secret key rate.

As shown in figure 4, different from the single-ring PSK protocol, in the designed two-ring constellation,
the states are prepared with two different amplitudes α1 and α2. The four states in the inner ring are
expressed as

{
|αx⟩=

∣∣α1eixπ/2
〉}

x=0,...,3
, where each of the states is chosen according to an equal probability

p1. The eight states in the outer ring take the form of
{
|αx⟩=

∣∣α2ei(x−4)π/4
〉}

x=4,...,11
, each of which is

chosen with an equal probability p2, which satisfies p1 + 2p2 = 1/4. Alice transmits the randomly selected
state αx to Bob and records the sequence of the state sent. Upon receiving the state, Bob performs heterodyne
detection and obtains the measurement outcome y. According to the region Rj, Bob maps his outcome
y= |y|eiθ to the discretized raw keys as follows:

z=

 j, if θ ∈
[
(2j−1)π

4 , (2j+1)π
4

)
, |y| ∈ [0,αc)

{
Rj

}
0⩽j⩽3

j, if θ ∈
[
(2j−9)π

8 , (2j−7)π
8

)
, |y| ∈ [αc,∞)

{
Rj

}
4⩽j⩽11

, (5)

where αc is the amplitude corresponding to the boundary between the inner and outer regions.
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Figure 4. Schematic diagram of the proposed two-ring constellation structure with 12 signal states. (a) State modulation at Alice’s
side, (b) Key map in terms of Bob’s measurement outcome.

As described above, the primary differences between the two-ring constellation and single-ring
constellation protocols are the signal states preparation and key map. The different signal states preparation
of Alice gives different Bob’s observation results, which are used to constrain the joint state ρAB. The key map
is reflected in the region operators Rj. The Rj in the photon-number basis for the two-ring constellation
modulation is expressed as

⟨m|Rj |n⟩=


Cm,n

i[ei(m−n)(2j−1)π/4−ei(m−n)(2j+1)π/4]
m−n

´ αc

0 f(r)dr 0⩽ j⩽ 3

Cm,n
i[ei(m−n)(2j−9)π/8−ei(m−n)(2j−7)π/8]

m−n

´∞
αc

f(r)dr 4⩽ j⩽ 11
. (6)

Whenm= n, we have

⟨n|Rj |n⟩=

{ π
2 Cn

´ αc

0 f(r)dr 0⩽ j⩽ 3

π
4 Cn

´∞
αc

f(r)dr 4⩽ j⩽ 11
. (7)

The region operator Rj is included in the postprocessing map G, which is part of the objective function of
the present optimization problem. By employing the region operator, the secure key rates can be calculated.

To maximize the secure key rate of the two-ring constellation scheme with 12 states, we should optimize
four relevant parameters: the modulation amplitudes α1, α2, the choice probability p1, and the boundary of
the inner and outer regions αc. The dependence of the key rate on these parameters is shown in figure 5. To
reduce the computing time of the optimization process, we perform the coarse-grained global optimization
for the four parameters. First, the large search ranges and step sizes are used to obtain the rough intervals
into which the optimal values fall. Then, we adopt smaller search step sizes to obtain the near-optimal
estimated values of the parameters, which result in the near-optimal secure key rates.

For the transmission distance of 50 km, the optimal choices of the parameters are α1 = 0.7, α2 = 1.6,
αc = 0.85, p1 = 7/48 and p2 = 5/96. In this case, we achieve a key rate of 0.014 59 bits/pulse, which is 50%
higher than that of the 8-PSK protocol and 140% higher than that of the 4-PSK protocol. By varying the
constellation geometry from the single-ring PSK structure to the two-ring constellation structure, we
effectively overcome the limitation of the states distribution range in phase space and significantly improve
the performance of the 4-PSK discrete-modulation protocol.

In figure 6, we give the optimal choice of parameters α1, α2, αc and p1 at different transmission distances.
The cutoff value of photon number Nc is selected from the interval [12, 22] according to the modulation
amplitudes. Similarly to the n-PSK protocol in figure 2, both the optimal coherent state amplitudes α1 and
α2 decrease as the transmission distance increases. We can see that the optimal αc is closer to α1 and that p1 is
greater than p2, resulting in an approximate Gaussian distribution in phase space. With the increase in the
transmission distance, the probability p1 increases correspondingly. Next, we employ the optimal parameter
values to obtain the optimal key rate and analyze the performance of the protocol.

In figure 7, we give the simulation results of the two-ring constellation with 12 states and compare it with
the previous PSK protocols and Gaussian modulation protocol. We observe that the key rate of the two-ring
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Figure 5. Secure key rate versus the choices of α1, α2, αc, and p1. The simulation parameters are β= 0.95, ξ= 0.01, η= 0.552,
vel = 0.015, and L= 50km. (a) The optimal α1 is obtained via a coarse-grained search in the interval [0.5, 0.9] with a step size of
0.05. The other parameters are set to α2 = 1.6, αc = 0.85, and p1 = 7/48. (b) The value of α2 is changed with a step size of 0.05
in the interval [1.45, 1.85]. The other parameters are set to α1 = 0.7, αc = 0.85, p1 = 7/48. (c) The value of αc is changed with a
step size of 0.05 in the interval [0.75, 1.1]. The other parameters are set to α1 = 0.7, α2 = 1.6, p1 = 7/48. (d) The value of p1 is
searched in the interval [4/48, 11/48] with a step size of 1/48. The other parameters are set to α1 = 0.7, α2 = 1.6, and αc = 0.85.

Figure 6. The optimal choice of parameters α1, α2, αc and p1 at different transmission distances for a two-ring constellation
protocol with 12 signal states.
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Figure 7. Achievable secret key rate versus the transmission distance for different protocols. Other parameters are set to β= 0.95,
ξ= 0.01, η= 0.552, and vel = 0.015.

Figure 8. Ratio of the key rate of various discrete-modulation protocols to the Gaussian modulation protocol. TRC represents the
two-ring constellation protocol, and GM represents the Gaussian modulation protocol.

constellation with 12 states is significantly higher than that of the 4, 8, and 12-PSK protocols. As shown in
figure 8, the performance of the two-ring protocol with eight states (four states in the inner ring and four
states in the outer ring) is superior to that of 8-PSK and better than that of 12-PSK at transmission distances
longer than 25 km. For long-distance transmission distances above 50 km, the two-ring constellation with 12
states can exceed 70% of the key rate of the Gaussian modulation protocol. The gap of the key rates between
the two-ring constellation protocol and Gaussian modulation protocol decreases gradually with the increase
in the transmission distance. Notice that two-ring constellation with 12 states requires only 1-bit
discretization for the amplitude of the light field and 3-bit discretization for the phase of the light field. This
proves that the concise two-ring constellation with 12 states can exhibit superior performance, which is
extremely close to that of the Gaussian modulation protocol.

8
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Figure 9. The key mapping for the 8-PSK protocol when post-selection is considered.

4. Post-selection

Post-selection is useful to improve the key rate of the four state protocols [60]. It also reduces the amount of
data for post-processing. Then, we apply the post-selection technology to our proposed protocol. In figure 9,
taking the 8-PSK as an example, we illustrate the concept of post-selection. There is a cutoff area at the center
of the phase space, which is defined by a circle with the radius∆.The data inside the circle are discarded, and
the data outside the circle are retained. Hence, the key mapping results of Bob become

z=

{
j, if θ ∈

[
(2j−1)π

8 , (2j+1)π
8

)
and |y|⩾∆

⊥, otherwise
, (8)

where∆ is the post-selection parameter.⊥means that the data should be discarded.
The sifting factor is defined as ppass =

∑
x,z

P̃(x) P̃( z|x), where

P̃( z|x) =
ˆ ∞

∆

rdr

ˆ (2z+1)π/8

(2z−1)π/8
P
(
reiθ
∣∣x)dθ, (9)

P̃(x) is the probability that Alice chooses to send the state αx.
The key rate can be potentially improved by discarding extremely noisy data, where Eve has more

advantages on determining the key than Alice and Bob. We consider a simple post-selection scheme that
removes measurement results close to ordinate origin. Technically, this is realized by adding an additional
symbol (⊥) to the key map, which is assigned whenever a signal lies within the discarded area. The
post-selection is introduced by modifying the key map procedure. Mathematically, the key map is included
in the post-processing map G. By a simple modification of the postprocessing map G and taking the sifting
probability ppass and the information leakage in the error-correction phase δEC into account, we can calculate
the key rate during post-selection. For the 8-PSK and 12-PSK protocols, our security proof technique allows
us to consider post-selection with∆> 0. In this case, it can reduce the length of the raw key and simplify the
error correction as well as higher key rate.

In figure 10(a), we plot the key rate versus the post-selection parameter∆ for the 8-PSK and 12-PSK
protocols at the distance L= 50 km. We observe that there exists an optimal post-selection parameter to
maximize the key rate. The optimal post-selection parameter value for the 8-PSK and 12-PSK protocols is
∆= 0.55. Compared with the original protocol without post-selection, the key rate is increased by 8% for

9
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Figure 10. (a) Secure key rate versus the post-selection parameter for the 8-PSK and 12-PSK protocols at the transmission
distance of 50 km. The modulation amplitude is set to α= 0.9 for the 8-PSK protocol and α= 0.92 for the 12-PSK protocol.
(b) Secure key rate versus post-selection parameter for the two-ring constellation protocol at 50 km, where the parameter value is
set to α1 = 0.7, α2 = 1.6, αc = 0.85 and p1 = 7/48. The optimal post-selection parameter is obtained via a coarse-grained search
for α0 in the interval [0, 0.7] for (a) and [0, 0.4] for (b) with a step size of 0.05. Other parameters for simulations are set to
β= 0.95, ξ= 0.01, η= 0.552, and vel = 0.015.

both 8-PSK and 12-PSK protocols. By inserting∆= 0.55 into equation (9), we can obtain the value of the
sifting factor ppass = 0.75, which means that the amount of data used for post-processing is reduced by 25%.

With a similar procedure, we search for the optimal post-selection parameter for the two-ring
constellation protocol with 12 states, as shown in figure 10(b). The result suggests that the optimal value is
∆= 0. Therefore, we do not need to post-select the data for the two-ring constellation scheme along the
radial direction. The possible reason for this result is to approximate the Gaussian modulation in the phase
space, where the states are modulated according to the Gaussian distribution and have a large probability in
the center of the phase space. Note that the angular post-selection may be useful, and other post-selection
strategies should be developed, which we will leave for future work.

5. Conclusions

The two-ring constellation schemes are proposed to significantly improve the performance of the
discrete-modulation CV-QKD protocol. The asymptotic secure key rate in the trusted detector noise scenario
is obtained by applying convex optimization techniques without the Gaussian optimality proof method. Our
results show that 8-PSK can increase the key rate by about 60% over conventional the 4-PSK protocol;
however, adding the 8-PSK to 12-PSK does not significantly improve the key rate. Interestingly, by allocating
12 coherent states to a two-ring constellation that enlarges the distribution range of coherent states in phase
space, we can obtain an achieved key rate that is 140% higher than that of the 4-PSK protocol. This key rate
reaches about 70% of that of the Gaussian modulation protocol for transmission distances above 50 km. Our
results confirm that the discrete-modulation protocol with ten or so appropriate constellation points and
optimal modulation parameters can approach the key rate of the Gaussian modulation protocol. Thus, the
proposed discrete modulation protocol has promising applications in high-rate and low-cost secure
quantum communication networks.

In our current work, we employ numerical methods to estimate the secure key rate, which is
computationally challenging. As the constellation size increases, this process is more time-consuming. It is
desirable to find better algorithms or derive analytical solutions for the optimization problem. We observe
that the key rate of our protocol is not very close to the Gaussian modulation protocol at the short-distance
transmission. It is desirable to improve the key rate at short distances by extending the current state
constellations or employing other new constellation design schemes [63]. In addition, our current work is
restricted to the asymptotic scenario. Extending our security analysis to include the impact of finite size is an
important future task [64–68]. The future work will also include finding better data post-selection strategies
to improve the key rate [69, 70].
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Appendix. Secret key rate

For convenience of the security analysis, we consider the equivalent entanglement-based (EB) scheme. Here,
we explore the numerical security proof method presented in [55, 60] to obtain the secure key rate. In the EB
scheme, Alice initially prepares the bipartite state

|ψ⟩AA ′ =
∑
x

√
px|x⟩A|αx⟩A ′ , (A.1)

where |x⟩ is an orthonormal basis for register A. Alice keeps A and sends register A ′ to Bob. To establish the
equivalence between the EB scheme and the original prepare-and-measure scheme, Alice applies a local
projective measurement on register A, which can be described by a POVMMA =

{
MA

x = |x⟩⟨x|
}
. When we

obtain a measurement outcome x with probability px, the state sent to Bob is effectively collapsed to |αx⟩.
After the quantum channel transmission, the joint state shared by Alice and Bob is

ρAB = (idA ⊗EA ′→B)(|ψ⟩⟨ψ|AA ′) , (A.2)

where idA is the identity channel acting on A, and EA ′→B describes the quantum channel, which is a
completely positive and trace-preserving map. Bob uses his POVM Gy on register B to perform realistic
trusted noisy detection.

With the reverse reconciliation, the asymptotic secret key rate against collective attacks is expressed as
[55]

K∞ = min
ρAB∈S

D(G (ρAB)∥Z [G (ρAB)])− ppassδEC, (A.3)

where D(ρ∥σ) = Tr(ρlog2ρ)−Tr(ρlog2σ) is the quantum relative entropy; G describes a completely
positive and trace nonincreasing map for postprocessing steps; Z denotes a pinching quantum channel that
reads out the result of key map; S represents the set of available density operators compatible with
experimental observations; ppass is the sifting probability of data for key generation; δEC stands for the leaked
information of the per-signal pulse during the error correction phase and can be computed as follows:

δEC = H(Z)−βI(X;Z)

= (1−β)H(Z)+βH(Z|X) , (A.4)

where β is the reconciliation efficiency. X and Z represent the raw key string of Alice and Bob, respectively.
To compute the expected secret key rate, we make it a key point to find the minimum value of

D(G (ρAB)∥Z [G (ρAB)]), which is a convex optimization problem matching some constraints and is
expressed as [60]

minimize D(G (ρAB)∥Z [G (ρAB)])

subject to

Tr
[
ρAB
(
|x⟩⟨x|A ⊗ F̂Q

)]
= px

〈
F̂Q
〉
x

Tr
[
ρAB
(
|x⟩⟨x|A ⊗ F̂P

)]
= px

〈
F̂P
〉
x

Tr
[
ρAB

(
|x⟩⟨x|A ⊗ ŜQ

)]
= px

〈
ŜQ
〉
x

Tr
[
ρAB

(
|x⟩⟨x|A ⊗ ŜP

)]
= px

〈
ŜP
〉
x

Tr [ρAB] = 1

ρAB ⩾ 0

, (A.5)
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where F̂Q and F̂P (ŜQ and ŜP) represent the first-moment (second-moment) observables of quadrature
operators q̂ and p̂, respectively. In addition, notice that Eve cannot access Alice’s system, so there is an
additional constraint

TrB [ρAB] = ρA =
n∑

i,j=0

√
pipj
〈
αj|αi

〉
|i⟩⟨ j|A, (A.6)

where n takes 7 or 11 for 8-PSK or 12-PSK, respectively.
The post-processing map G and pinching quantum channel Z can be written as [60]

G (σ) = KσK†,

K=
n∑

z=0

|z⟩R ⊗ IA ⊗
(√

Rz

)
B
,

Z (σ) =
n∑

j=0

(
|j⟩⟨j|R ⊗ IAB

)
σ
(
|j⟩⟨j|R ⊗ IAB

)
. (A.7)

To numerically minimize the objective function, the available ρAB must be a finite dimension. The dimension
of Alice’s system is determined by the number of different signal states that she prepares, which is finite.
However, Bob’s state is in an infinite dimensional Hilbert space. This can be circumvented by applying the
photon-number cutoff assumption. When the chosen photon number cutoff parameter Nc is large enough,
this assumption is reasonable. Here, we set an appropriate parameter value of Nc such that the probability of
the photon number of the received signal state being larger than Nc is less than 0.1%, and a larger Nc

produces no meaningful improvement in the key rate. Then, the region operators Rj in the photon-number
basis can be expressed as (taking the 12-PSK as an example)

⟨m|Rj |n⟩=
ˆ ∞

0
rdr

ˆ (2j+1)π/12

(2j−1)π/12
dθ ⟨m|Greiθ |n⟩

=

{
Cm,n

i[ei(m−n)(2j−1)π/12−ei(m−n)(2j+1)π/12]
m−n

´∞
0 f(r)dr for m ̸= n

π
6 Cn

´∞
0 f(r)dr for m= n

, (A.8)

where Cm,n =
[
π−1η(m−n)/2−1

]
(m!/n!)1/2

[
nmd (1+ nd)

−(n+1)
]
and Cn = (πη)

−1×
[
nnd (1+ nd)

−(n+1)
]
. nd

is the total noise introduced by each realistic homodyne detector relative to the signal input and defined as
nd = (1− η+ vel)/η. The function f(r) has form

f(r) = exp

[
− r2

η (1+ nd)

]
L(n−m)
m

[
− r2

ηnd (1+ nd)

]
rn−m+1, (A.9)

where L(j)k (x) is the generalized Laguerre polynomial of degree k with a parameter j in the variable x.
Similarly, the matrix expressions of the first-moment observables F̂Q, F̂P and second-moment

observables ŜQ, ŜP can be obtained [60].
A tight lower bound on the key rate can be achieved using a two-step procedure developed in [53]. At the

first step, the Frank–Wolfe algorithm is used to approximately minimize the convex function, thus obtaining
an upper bound on the key rate. At the second step, we convert this upper bound to a reliable lower bound by
taking the numerical imprecision into account. Using the two-step procedure and defining
f(ρ) = D(G (ρ)∥Z [G (ρ)]), we have

min
ρ∈S

f(ρ)⩾ fϵ (ρ1)−Tr
(
ρT1∇fϵ (ρ1)

)
+ f max

d − ζϵ, (A.10)

12



New J. Phys. 25 (2023) 023019 P Wang et al

where ρ1 is the suboptimal state obtained in the first step. ε is the perturbation parameter, and
fϵ (ρ1) := D(Gϵ (ρ1)∥Z [Gϵ (ρ1)]). ζϵ = 2ϵ(d ′ − 1) log2

d ′

ϵ(d ′−1) , where d
′ is the dimension of G (ρ). The

gradient∇fϵ (ρ1) is given by

[∇fϵ (ρ1)]
T
= G†

ϵ (log2Gϵ (ρ1))−G†
ϵ (log2Z [Gϵ (ρ1)]) . (A.11)

f max
d is the dual function and is written as

f max
d =max

(⃗v,⃗s)

(
⃗̃γ · v⃗− ϵ ′

nc∑
i=1

si

)
subject to

− s⃗⩽ v⃗⩽ s⃗
nc∑
i=1

viΓ̃
T
i ⩽∇fϵ (ρ1)

(⃗v,⃗ s) ∈ (Rnc,Rnc)

, (A.12)

where Γi and γi refer to both sides of the equality constraint, respectively, with the form Tr(Γiρ) = γi. nc
represents the number of all constraints. ϵ ′ is the security parameter related to the numerical imprecision.
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