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Optical spin–orbit coupling is an important phenomenon
and has fruitful applications. Here, we investigate the
spin–orbit total angular momentum entanglement in the
optical parametric downconversion process. Four pairs of
entangled vector vortex modes are experimentally generated
directly using a dispersion- and astigmatism-compensated
single optical parametric oscillator, and for the first time,
to the best of our knowledge, the spin–orbit quantum states
are characterized on the quantum higher-order Poincaré
sphere, and the relationship of spin–orbit total angular
momentum Stokes entanglement is demonstrated. These
states have potential applications in high-dimensional quan-
tum communication and multiparameter measurement. ©
2023 Optica Publishing Group

https://doi.org/10.1364/OL.487569

The spin angular momentum (SAM) and orbital angular momen-
tum (OAM) of light are associated with the polarization and the
phase distribution of the light state, respectively. Vector vortex
(VV) fields involved in the coupling of SAM and OAM [1] are
an important field of research [2]. The fields have found many
applications in laser materials processing [3], optical metrology
[4], as well as in fundamental quantum mechanics [5] and quan-
tum information science [6,7], especially in space-based [8] or
fiber-based [9,10] quantum communication.

Squeezed and entangled optical fields are essential resources
in the continuous variable (CV) quantum optics and quan-
tum information communities. The CV quantum SAM states
are the first generated [11] and characterized by CV quan-
tum Stokes parameters on a Poincaré sphere [12,13]. Such a
graphical representation has also been extensively investigated
on the OAM Stokes operator [14]. Then, direct experimental
characterization of CV quantum OAM Stokes-operator squeez-
ing [15] and the OAM Stokes-operator entanglement [16] are
also reported. Moreover, a CV hyperentanglement of SAM and
OAM is demonstrated in the optical parametric downconversion
process [17]. Generation and accurate characterization of the
SAM and OAM quantum states are necessary for these states
to fulfill their potential in the field of quantum information
[18]. These will allow direct experimental observation of the

commutation relations in the CV regime, provide a useful tool
for studying the interaction between light and media, and serve
as additional channels in high-capacity quantum communica-
tion. Thus, the spin–orbit quantum states are more attractive
due to them containing the full angular momentum of the OAM
and SAM. Such states, involving spin–orbit coupling, may have
more widespread applications in quantum information process-
ing and material characterizations. However, the progress in
generating CV entanglement between VV modes remains in
its infancy. The CV squeezed first-order VV mode was exper-
imentally realized by exploiting the nonlinear Kerr effect in a
fiber [19], and the squeezed high-order VV modes were also
generated [20]. Barros et al. also theoretically pointed out the
possible hybrid-entanglement between spin and orbit Stokes
parameters. The direct experimental generation of CV nonclassi-
cal VV modes in the optical parametric oscillator (OPO) process
hindered by astigmatism and dispersion [21], especially the
CV quantum properties research of the spin–orbit total angular
momentum Stokes parameters, has not, to our knowledge, been
presented.

Here, we generate the continuous variable spin–orbit modes
entanglement using a type-II OPO, and characterize the higher-
order Poincaré sphere (HOPS) Stokes parameters entangle-
ment. First, the spin–orbit coupling in the optical paramet-
ric downconversion process is investigated. By compensating
the dispersion and astigmatism of the OPO, four pairs of
spin–orbit modes entanglement are simultaneously generated
and verified by measuring quadrature entanglement between
first-order HG modes. In addition, the entanglement of an arbi-
trary pair of VV modes on HOPS is demonstrated. Finally,
we expand Stokes entanglement to the higher-order Poincaré
sphere and give a characterization of the CV spin–orbit total
angular momentum Stokes entanglement. Unlike the case of
SAM or OAM Stokes entanglement [12,15], the conditional
quantum uncertainty volume of the OPO output becomes a
small spheroid. These quantum correlations can be useful to
study the quantum spin–orbit coupling interaction in various
scenarios.

SAM and OAM have been extensively explored and charac-
terized in terms of the quantum Stokes operators. Likewise, we
define the Stokes operator analogs for the VV modes according
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Fig. 1. Higher-order Poincaré sphere of the first-order VV modes.
Points on the sphere are associated with a superposition of SAM and
OAM. The optical vortex and circular polarization handedness of
each pole are the same (the sphere on the right, Ŝ−l) or opposite (the
sphere on the left, Ŝ+l). The modes on the Ŝ±l

1 region are well-known
fiber modes.

to their classical representation on HOPS [22] as

Ŝl
1 = â+Hl

âHl − â+Vl
âVl ,

Ŝl
2 = â+Dl

âDl − â+Al
âAl ,

Ŝl
3 = â+Rl

âRl − â+Ll
âLl ,

(1)

where â+ and â are the creation and annihilation operators for the
various first-order VV modes. The topological charge magnitude
|l| (l = ±1,±2,±3, . . .) define the “order” of the VV modes. As
Eq. (1) shows, Ŝl

1, Ŝl
2, and Ŝl

3 represent the difference in the photon
numbers between the two VV modes, LGl

0 mode with horizontal
and vertical polarization (Hl and Vl), LGl

0 mode with diagonal
and antidiagonal polarization (Dl and Al), and LGl

0 mode with
right circular polarization and left circular polarization (Rl and
Ll), respectively. These operators follow the same algebra as
the Stokes operators. The commutation relations are [Ŝl

p, Ŝl
′

q ] =

2iδll′ Ŝl
k, where p, q, k ∈ {1, 2, 3} of cyclic permutation and l, l′ ∈

{−1,+1,−2,+2, . . .}.
As depicted in Fig. 1, the first-order VV modes are described

by two spheres. The HOPS for l = 1 characterize a VV mode
with total optical angular momentum per photon of zero,
which enables the VV modes propagation invariant under
arbitrary rotations about the z axis. This unique feature is
valuable for alignment-free communication in space-based
quantum networks. The other HOPS for l = −1 describe a
VV mode with total optical angular momentum per photon
of 2ℏ. It may find application in rotation-sensitive quantum
measurements [23].

In the type-II optical parametric downconversion process, the
OPO is capable to output high-dimensional entanglement with
three degrees of freedom (frequency, SAM, and OAM). Under
spin–orbit coupling, the output fields of VV modes are formed.
Among them, the downconverted photon pair, A and B, have
orthogonal polarization and satisfy the conservation of angular
momentum (âH±l andb̂V∓l ), and obey the conservation of energy
(â±nΩandb̂∓nΩ). Here, Ω is the free spectrum range (FSR) of the
OPO and n is the order of the frequency sideband.

Hence, the corresponding Hamiltonian of the first-order
frequency sideband in the system is expressed by

Ĥint = iℏG1(â+H+l ,+Ωb̂
+
V−l ,−Ω+â+H−l ,+Ωb̂

+
V+l ,−Ω

+ â+V−l ,+Ωb̂
+
H+l ,−Ω+â+V+l ,+Ωb̂

+
H−l ,−Ω) + H.C.,

(2)

Fig. 2. Experimental schematic of the spin–orbit modes entangle-
ment generation and measurement. (a) OPO outputs four pairs of
spin–orbit modes entanglement in the first-order frequency side-
band. (b) Measurements of spin–orbit modes entanglement are
equivalent to verify the HG entanglement. (c) Experimental layout.
KTP1 and KTP2, nonlinear crystals; DBS, dichroic beam splitter;
HWP, half-wave plate; PZT, piezoelectric transducer; PBS, polar-
ization beam splitter; BHD, balanced homodyne detection; LO,
local oscillator; SA, spectrum analyzer.

where â+ and b̂+ are photon creation operators of downconverted
photons A and B, and the parameter G1 regulates the interaction
strength. It explicitly shows a spin–orbit modes entanglement
of the system, see Fig. 2(a). Since the VV modes are com-
posed of a set of orthogonal HG modes (âH±l = (âHh ± âVv)/

√
2,

âV∓l = (âVh ± âHv)/
√

2), we can measure the spin–orbit modes
entangled light field by the complete entanglement measure-
ment of the first-order HG mode, as illustrated in Fig. 2(b),
where Hh, Hv, Vh, and Vv denote the Hermite–Gaussian (HG)
modes h(HG10) and v(HG01) for horizontal (H) and vertical (V)
polarization, respectively.

The experimental setup is shown in Fig. 2(c). The multimode
OPO is driven by the LG pump mode to generate spin–orbit
modes entanglement and is then detected by balanced homodyne
detection (BHD) with the spatial and frequency tailed local field.
The cavity consists of two crystals (3 × 3 × 5 mm) and a mirror.
The potassium titanyl phosphate (KTP1) with wedge angle of 1
degree is used for nonlinear interaction, and the middle crystal
KTP2 is used for dispersion and astigmatism compensation. We
conduct experiments under an optimal entanglement condition,
by controlling the KTP temperature independently and locking
the OPO with a 45◦ linear polarization HG45◦

10 seed beam, see
more details in Supplement 1.

To prove the existence of quadrature entanglement between
two VV modes, we measure the quadrature quantum noise of

Fig. 3. Covariance matrix of the HG modes via measurements of
the (a) amplitude and (b) phase quadrature quantum noise.

https://doi.org/10.6084/m9.figshare.22183048
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the first-order HG modes. By performing a simple basis trans-
formation from the VV modes to HG modes, it is easy to
show that X̂H±l = (X̂Hh ± X̂Vv)/

√
2, X̂V∓l = (X̂Vh ± X̂Hv)/

√
2, ŶH±l =

(ŶHh ± ŶVv)/
√

2 and ŶV∓l = (ŶVh ± ŶHv)/
√

2, where X̂ and Ŷ are the
amplitude and phase quadratures of the modes denoted by the
lower indices. According to the criterion [24,25], CV spin–orbit
modes entanglement can be witnessed if

∆
2(X̂A

H+Ω
+l
+ X̂B

V−Ω
−l
) + ∆2(ŶA

H+Ω
+l

− ŶB
V−Ω
−l
) =

1
2
(∆2(X̂A

Hh + X̂B
Vh)

+ ∆2(X̂A
Vv + X̂B

Hv) + ∆
2(ŶA

Hh − ŶB
Vh) + ∆

2(ŶA
Vv − ŶB

Hv))<2,

∆
2(X̂A

H+Ω
−l
+ X̂B

V−Ω
+l
) + ∆2(ŶA

H+Ω
−l

− ŶB
V−Ω
+l
) =

1
2
(∆2(X̂A

Hh + X̂B
Vh)

+ ∆2(X̂A
Vv + X̂B

Hv) + ∆
2(ŶA

Hh − ŶB
Vh) + ∆

2(ŶA
Vv − ŶB

Hv))<2,

∆
2(X̂A

V+Ω
−l
+ X̂B

H−Ω
+l
) + ∆2(ŶA

V+Ω
−l

− ŶB
H−Ω
+l
) =

1
2
(∆2(X̂A

Vh + X̂B
Hh)

+ ∆2(X̂A
Hv + X̂B

Vv) + ∆
2(ŶA

Vh − ŶB
Hh) + ∆

2(ŶA
Hv − ŶB

Vv))<2,

∆
2(X̂A

V+Ω
+l
+ X̂B

H−Ω
−l
) + ∆2(ŶA

V+Ω
+l

− ŶB
H−Ω
−l
) =

1
2
(∆2(X̂A

Vh + X̂B
Hh)

+ ∆2(X̂A
Hv + X̂B

Vv) + ∆
2(ŶA

Vh − ŶB
Hh) + ∆

2(ŶA
Hv − ŶB

Vv))<2.

(3)

Using the transformation, the criterion reduces to verification
between HG modes. Thus, by measuring the amplitude and
phase quadrature variances of HG modes, entanglement between
the VV modes can be witnessed.

The quadrature variances of the HG modes are ana-
lyzed using BHD with a spatially and frequency tailored
local oscillator (LO) mode. We measure 48 correlation vari-
ances in the amplitude quadrature and phase quadrature with
measurement basis ((âHh±Ω , âVv∓Ω ), (âHv±Ω , âVh∓Ω ), (âHh±Ω , âVh∓Ω ),
(âHv±Ω , âVv∓Ω ), (âHh±Ω , âvac), (âVv±Ω , âvac), (âVh±Ω , âvac), (âHv±Ω , âvac)),
see the power spectrum density data and details in Sup-
plement 1. Then, we have the covariance matrix of HG
basis (see Fig. 3), where the covariance matrix elements
are defined as Cov(x̂i, x̂j) =

⟨︁
x̂ix̂j + x̂jx̂i

⟩︁
/2 − ⟨x̂i⟩

⟨︁
x̂j
⟩︁
, subscript

i, j = Vh±Ω, Hh±Ω, Vv±Ω, Hv±Ω refer to HG modes with horizontal
(vertical) polarization at positive (negative) frequency side-
band and x = X, Y to amplitude and phase quadrature. The
correlation between the two HG modes is shown on the anti-
symmetric axis, and excess noise occurs on the symmetric axis.
It should be noted that the blue peaks (negative value) denote
anti-correlation.

According to the measurement results and Eq. (3), we have
proven that the OPO produces quadrature entanglement between
these VV modes. Furthermore, the entanglement can be general-
ized to an arbitrary first-order VV mode. By performing unitary
transformations (Hh ⇌ Vh and Hv ⇌ Vv) on beam “B” with
a half-wave plate, it changes the VV modes (V−l ⇌ H+l and
V+l ⇌ H−l), and Eq. (4) is the result:

∆
2(X̂A

H+Ω
+l
+ X̂B

H−Ω
+l
) + ∆2(ŶA

H+Ω
+l

− ŶB
H−Ω
+l
) = 1.04 ± 0.02<2,

∆
2(X̂A

H+Ω
−l
+ X̂B

H−Ω
−l
) + ∆2(ŶA

H+Ω
−l

− ŶB
H−Ω
−l
) = 0.99 ± 0.02<2,

∆
2(X̂A

V+Ω
−l
+ X̂B

V−Ω
−l
) + ∆2(ŶA

V+Ω
−l

− ŶB
V−Ω
−l
) = 1.15 ± 0.02<2,

∆
2(X̂A

V+Ω
+l
+ X̂B

V−Ω
+l
) + ∆2(ŶA

V−Ω
+l

− ŶB
V−Ω
+l
) = 1.13 ± 0.02<2.

(4)

The arbitrary VV mode is expressed with the four orthogonal
VV modes, âArb = k1âH+l + k2âH−l + k3âV−l + k4âV+l ,

∑︁4
i=1 k2

i = 1.
Hence, the inseparability of arbitrary VV modes in beams A and

Fig. 4. Entanglement descriptions mapped on higher-order
Poincaré sphere. (a1),(a2) Output beam A locates on Ŝ+l

1 while
beam B on Ŝ−l

1 . (a3) Noise volume of beam A before any measure-
ment of beam B, and (a4) vice versa. (a5) Conditional knowledge
of beam A given measurements of Ŝ−l

1 and Ŝ−l
2 and Ŝ−l

3 on beam
B. (b1),(b2) Output beam A locates on Ŝ−l

1 while beam B on Ŝ+l
1 .

(b3),(b4) Noise volume of beams A and B when measuring them
individually. (b5) Conditional knowledge of beam A given measure-
ments of Ŝ+l

1 and Ŝ+l
2 and Ŝ+l

3 on beam B. The dashed circles show
the SNL. If the conditional knowledge is better than the SNL, the
modes are entangled.

B is
∆

2(X̂A
Arb + X̂B

Arb) + ∆
2(ŶA

Arb − ŶB
Arb)

=1.04k2
1 + 0.99k2

2 + 1.15k2
3 + 1.13k2

4<2.
(5)

It shows CV entanglement between two arbitrary VV modes
on HOPS. The potential application is to realize the blind
state transfer of the quantum state on a HOPS, especially the
determination teleportation of a high-dimensional single pho-
ton by combining the CV high-dimensional entanglement and
discrete-variable technique, for example, the deterministic quan-
tum teleportation of a single photon with multiple degrees
[26,27].

We now proceed by characterizing the variances of the Stokes
parameters that define the position of the state on the HOPS.
The beams H+l and V+l reside in the Ŝ+l

1 region [Figs. 4(a1) and
4(a2)], whereas the beams V−l and H−l reside in the Ŝ−l

1 region
[Figs. 4(b1) and 4(b2)]. Since we take 45◦ linear polarization
HG45◦

10 as the seed beam, αH+l = αV−l =
√

2α and αH−l = αV+l = 0.
The fluctuations of HOPS Stokes operators of the two output
beams (A,B) are then given by

∆Ŝ+l
j,1 = αj,H+l∆Xj,H+l = α∆Xj

Hh + α∆Xj
Vv,

∆Ŝ+l
j,2 = αj,H+l∆Xj,V+l = α∆Xj

Vh − α∆Xj
Hv,

∆Ŝ+l
j,3 = αj,H+l∆Yj,V+l = α∆Y j

Vh − α∆Y j
Hv (j = A, B),

(6)

∆Ŝ−l
j,1 = −αj,V−l∆Xj,V−l = −α∆Xj

Vh − α∆Xj
Hv,

∆Ŝ−l
j,2 = αj,V−l∆Xj,H−l = α∆Xj

Hh − α∆Xj
Vv,

∆Ŝ−l
j,3 = αj,V−l∆Yj,H−l = α∆Y j

Hh − α∆Y j
Vv (j = B, A).

(7)

According to the definition of correlation variance,
V±(Ŝ+l

A,k, Ŝ−l
B,k) = ∆

2(Ŝ+l
A,k ± Ŝ−l

B,k)/∆
2((Ŝ+l

A,k)
coh + (Ŝ−l

B,k)
coh), there is

quantum correlation between the uncertainties of the Stokes
operators if V±<1. In our experiment, there are two out-
put cases. When output beam A locates on sphere Ŝ+l

1
while beam B on Ŝ−l

1 [Fig. 4(a)], we infer that the noise

https://doi.org/10.6084/m9.figshare.22183048
https://doi.org/10.6084/m9.figshare.22183048
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variances of beam A before any measurement of beam B
are V(Ŝ+l

A,1) = 1.36 ± 0.01, V(Ŝ+l
A,2) = 1.36 ± 0.01, and V(Ŝ+l

A,3) =

1.40 ± 0.01 [Fig. 4(a3)]. The noise levels of all the three
Stokes variables are above the shot noise limit (SNL), and vice
versa [Fig. 4(a4)], V(Ŝ−l

B,1) = 1.33 ± 0.01, V(Ŝ−l
B,2) = 1.36 ± 0.01,

V(Ŝ−l
B,3) = 1.36 ± 0.01. Implementing joint measurements of A

and B, we have V−(Ŝ+l
A,1, Ŝ−l

B,1) = 0.55 ± 0.01<1, V+(Ŝ+l
A,2, Ŝ−l

B,2) =

0.54 ± 0.01<1, and V−(Ŝ+l
A,3, Ŝ−l

B,3) = 0.54 ± 0.01<1. In other
words, after the measurement of beam B, the conditional
noise volume of beam A becomes a small ball shape
on HOPS [Fig. 4(a5)]. When output beam A locates on
sphere Ŝ−l

1 while beam B on Ŝ+l
1 [Fig. 4(b)], the noise vari-

ances of beam A before any measurement of beam B are
V(Ŝ−l

A,1) = 1.36 ± 0.01, V(Ŝ−l
A,2) = 1.40 ± 0.01, V(Ŝ−l

A,3) = 1.40 ±

0.01 (Fig. 4(b3)), and V(Ŝ+l
B,1) = 1.34 ± 0.01, V(Ŝ+l

B,2) = 1.36 ±

0.01, V(Ŝ+l
B,3) = 1.36 ± 0.01 [Fig. 4(b4)] for the beam B without

any measurement of beam A. Likewise, the relevant vari-
ances are V−(Ŝ−l

A,1, Ŝ+l
B,1) = 0.54 ± 0.01<1, V+(Ŝ−l

A,2, Ŝ+l
B,2) = 0.55 ±

0.01<1, and V−(Ŝ−l
A,3, Ŝ+l

B,3) = 0.54 ± 0.01<1. It clearly shows the
spin–orbit total angular momentum Stokes entanglement asso-
ciated with Stokes operators Ŝ+l

3 and Ŝ−l
3 , where the Ŝ±l

3 refers
to the total angular momentum including SAM and OAM. In
addition, unlike the cigar-shaped uncertainty volume of SAM or
OAM entanglement, the three-dimensional operators (Ŝ±l

1 , Ŝ±l
2 ,

and Ŝ±l
3 ) can be simultaneously below the SNL [Figs. 4(a5) and

4(b5)]. This type of entanglement is more useful for simulta-
neous measurements in three dimensions and loading of more
information.

In conclusion, we experimentally generate CV spin–orbit
modes entanglement with a type-II OPO and characterize the
HOPS Stokes parameters entanglement. The spin–orbit total
angular momentum Stokes entanglement is demonstrated. By
performing a unitary transformations on one beam of the entan-
gled pair, arbitrary spin–orbit modes entanglement on HOPS
can be realized. Benefiting from its classic characteristics, the
spin–orbit modes can be used to study the angular momentum
transfer between two DoFs [28] and practical optical manip-
ulations [29]. In addition, the spin–orbit modes entanglement
cannot only be used for quantum communication based on free
space and optical fibers, it can also be used for Bell-inequality
tests from continuous variable and to realize super-resolution
imaging in stimulated emission depletion (STED) microscopy
beyond the quantum limit [30] based on VV mode squeezing. In
addition, it is promising to generate novel kinds of cluster states
for quantum computation protocols. The hidden potential of CV
spin–orbit modes entanglement remains to be explored.
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