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Abstract
We experimentally observe the collective excitation (called surface-mode excitation) of
Bose–Einstein condensate of23Na by ramping the external magnetic field across the high-partial
wave magnetic Feshbach resonance corresponding to vary the atomic interaction. We check the
collective surface mode excitation of|1,1⟩ state for the three d-wave and three g-wave Feshbach
resonances below 600 G and find that only two d-wave resonances present the strong excitation,
another d-wave resonance only creates a weak excitation, and all g-wave resonances do not, which
reflects the strength of these magnetic Feshbach resonances. For the collective excitation, the
excitation of surface modes along the axial weak-confinement and radial strong-confinement of
optical dipole trap shows different characteristics. We also study the lifetime of the collective
oscillation by measuring the damping rate of the oscillation amplitude, which is caused by the
mechanisms of dephasing effect and collisional relaxation. This excitation method gives us a new
tool for investigating the properties of ultracold quantum gases without changing the trap
frequencies.

1. Introduction

Ultracold atomic gases are a powerful platform for providing a unique opportunity to investigate many
interesting quantum phenomena in many-body physics [1], and especially study quantum matter in the
presence of a variety of gauge fields [2,3], which give deep insights into physics that are difficult to realize in
solid state systems [4–9]. Collective low energy excitation, which is a small deviation from static equilibrium,
has been an essential probe tool for investigating properties of an atomic gas, for example collisional and
dynamical properties [10–21], equation of state [22–29], and dynamical many-body physics in the mixture
of bosonic and fermionic atoms [30–34].

There are two kinds of collective excitation in ultracold atomic gases. One is the compression-mode
excitation, which is created by quenching or modulating the trap frequency of the magnetic or optical
trap [11,20,24–26,28,32,35–42]. The other is the surface-mode excitation where the volume of quantum
gas is not changed. This excitation can be created by perturbing the magnetic trap with far detuning
light [12,43], suddenly rotating the trapping potential [44–46], modulating the s-wave scattering length with
oscillation of the magnetic field [47,48], or quenching a series of atomic interspecies interaction withπ
radio frequency pulses [30]. Recently a surface-mode excitation method is developed by ramping the
external magnetic field across a d-wave shape resonance of41K (the shape resonance originates from the
coupling of the bound state and the scattering atomic state in a same channel, which is different from the
case of Feshbach resonance, that arises from coupling between the bound state in a closed channel and free
atomic state in the open channel) due to the atom-molecule conversion. The observed oscillation provides
indirect evidence for the molecular states in the same entrance channel of scattering atoms [49].
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In this paper, we experimentally study the surface mode excitation of Bose–Einstein condensate (BEC) of
23Na via the high-partial wave magnetic Feshbach resonance. There are three d-wave and three g-wave
Feshbach resonances below 600 G for|1,1⟩ state. We check the collective surface mode excitation by ramping
the external magnetic field across the magnetic Feshbach resonance and find that two d-wave resonances at
493 G and 536.7 G can strongly create the excitation, another d-wave resonance at 586 G creates a weak
excitation, and all g-wave resonances do not. Therefore, the strength of these magnetic Feshbach resonances
can be assigned from the excitation amplitude of the collective surface mode. According to the measurement
of the loss rate of these Feshbach resonances, we may give the clue which kind of magnetic Feshbach
resonance can create the surface mode excitation. The excitation of surface modes along the axial
weak-confinement and radial strong-confinement of optical dipole trap is studied, which present the
different excitation. The dependence of oscillation frequency and decay rate on the trap frequency is
extracted. We also observe the damping induced by the mechanism of the dephasing effect and collisional
relaxation, and study the dependence on the atom numbers. Furthermore, we employ the modulation of the
external magnetic field to create the excitation, and observe similar collective behavior.

2. Experimental results

2.1. Loss spectroscopy of Feshbach resonances
The collective excitation of BEC in experiment is shown schematically in figure1. We prepare a weakly
interactingabg = 54.54a0 (a0 is the Bohr radius), almost pure BEC of23Na atoms in the lowest internal state
|F= 1,mF = 1⟩,F is the total atomic angular momentum andmF is the projection along the quantization
axisz. The experimental apparatus and preparing sequence for creating BEC have been described in our
previous works [50,51]. We start our experiments with an atomic ensemble ofN∼ 2.5× 106 23Na in a
crossed optical trap with trapping frequencies(ωx,ωy,ωz) = 2π× (72,114,134) Hz. We apply a magnetic
field gradient for 10 ms to excite the dipole oscillation of the condensate to measure the center of mass for
determining the trapping frequency in three directions. The homogeneous external magnetic bias fieldBexp

is applied along thez axis (gravity direction) by a pair of Helmholtz coils, as shown in figure1(a). We ramp
the external magnetic field to an initial fieldBi during 30 ms and wait the additional 100 ms for the magnetic
field to stabilize. Then, by ramping the external magnetic field across the Feshbach resonance point to a
target valueBf, we observe the collective oscillation of BEC.

Here, we consider the three d-wave and three g-wave Feshbach resonances below 600 G for|1,1⟩ state,
which have been predicted and measured in the previous work [52]. First, we determine these Feshbach
resonances from the loss spectroscopy as a function of the magnetic field. We ramp the magnetic field
quicklytr = 5 ms in two different directions from a far detuning fieldBi to aBf and wait for a holding timeth
(as shown in figures1(b) and (c)), after which we switch off and release the atoms from the optical trap to
measure the residual atom number from the absorption images after a time of flight (TOF) expansion of
20 ms. The measured loss spectroscopy as shown in figures1(d)–(i) is fitted by a Gaussian curve to extract
the Feshbach resonance locationBr. The results are listed in table1, which are in agreement with the
previously measured values [52].

It is clearly shown from the loss spectroscopy that the atom loss rate is very lower for three g-wave
resonances. Therefore, it needs a long holding timeth = 500 ms and 5 s at the final magnetic fieldBf for
measuring the loss spectroscopy. One of the d-wave resonances at 586.09 G also has a low atom loss rate with
the holding timeth = 200 ms. However, two d-wave resonances at 493.65 G and 536.43 G have the larger
atom loss rate with the holding timeth < 30 ms. Due to the larger atom loss rate, we observe the asymmetry
of the lineshape in the loss spectroscopy by means of the different ramping directions for the two d-wave
resonances at 493.65 G and 536.43 G. The fast control of the magnetic field is needed when the Feshbach
resonance with a large atom loss rate is measured. The dynamics of the magnetic field due to the fast control
may induce the asymmetry in the lineshape.

2.2. The excited surface mode of BEC
Now we check the collective surface mode excitation by ramping the external magnetic field across the
magnetic Feshbach resonance for the six Feshbach resonances below 600 G. WhenBf is not ramped across
the Feshbach resonance positionBr, there is not any size and atom number changes. Once theBf is ramped
across the Feshbach resonance, the collective oscillation is excited, while the atom number is decreased due to
the three-body loss. We find two d-wave resonances at 493.65 G and 536.43 G can create the large excitation
as shown in figures2(a) and (b), the other d-wave resonance at 586.09 G may create a weak excitation as
shown in figure2(c), and three g-wave resonances cannot. For the collective surface mode excitation, we
observe the sudden change of the atoms cloud width when ramping the magnetic field across the Feshbach
resonance. At the same time, the sudden atoms loss is also observed, as shown in figure2. For each point in
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Figure 2. The size inx direction after TOF and remaining atom number of BEC as the function of the final magnetic field. Case 1
and Case 2 correspond to the downward and upward ramping direction respectively. The d-wave Feshbach resonances at 493.65 G
(a), 536.43 G (b), and 586.09 G (c) are measured. The Feshbach resonance positionsBr are indicated by vertical dashed lines.
Here,th = 0 ms.

Figure 3. (a) Time evolution of the size of BEC after the excitation of the surface mode in a optical trap with trapping frequencies
(ωx,ωy,ωz) = 2π× (80,136,136) Hz. Solid lines are fitting curves based on damped sinusoidal equation (1). The extracted
oscillation frequenciesω (b) and damping ratesk (c) as a function of the trapping frequencyωx.

The theoretical analytical expression for the excited oscillation frequency of the lowest-lying quadrupole
mode [ 53]

ωQ = ωr
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where Pi,j = P/(4ui0ru
j
0x) and u0r and u0x are the equilibrium half-widths in the radial and axial directions,

the aspect ratioλ= ωx/ωr and ωx and ωr are the axial and radial trapping frequencies, the interaction
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Figure 5. Time evolution of the size of BEC after the excitation of the surface mode for the different initial atom number with
(a) 3.42× 105 (blue diamond), (b) 9.95× 105 (yellow triangle), (c) 2× 106 (red circle), respectively. The solid lines show fitting
curves from equation (1). (d) Normalized oscillation frequencyω/ωH and amplitudesA/AH as a function of the initial atom
number Ni.

Figure 6. The excitation of surface mode through a high-frequency modulation of external magnetic field. (a) The external
magnetic field is ramped to a valueB0 below the Feshbach resonanceBr and the modulation of the magnetic field with frequency
10 kHz is used for a duration 20 ms to excite the surface mode. (b) Collective oscillation of the size as a function of hold timeth.
Solid curves corresponding to fit. (c) The images with 25 ms TOF display the expanded atom cloud with the different hold time
labeled in curve (b) with the arrows. The field of view is 771µm × 771 µm for all images.

modulation frequency near
√

2ωz,ωz is the axial trapping frequency of an elongated optical trap. Here we
modulate the magnetic field across the resonance pointBr with the modulation frequency much larger than
the optical trapping frequency.

3. Conclusion

In summary, we have experimentally observed a novel collective surface mode of23Na BEC, which is excited
by sweeping the external magnetic field across d-wave Feshbach resonance, corresponding to vary the atomic
interaction. We check this collective excitation near the six magnetic Feshbach resonances below 600 G, and
find only two d-wave resonances could be used to excite and the others cannot. Therefore, the excitation
amplitude of the collective mode reflects the strength of these magnetic Feshbach resonances. The excited
oscillation in the momentum space by means of TOF absorption imaging is studied in detail. An almost pure
single-frequency oscillation is excited in the axial weak confinement of the optical dipole trap. In contrast,
multi-frequency oscillations are excited in the radial strong-confinement. We observed the damping of the
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oscillation amplitude induced by the mechanisms of dephasing effect and the collisional relaxation. We also
investigated the dependence of the surface mode on the atom number of BEC. A different scheme of the fast
oscillating external magnetic field was used to excite this collective mode, and a similar surface mode was also
observed. These excitation methods may give us more choices without changing the trap frequencies for
investigating the properties of ultracold quantum gases. Especially these methods can be used to excite only
one component in a mixture of multi-component ultracold atomic gases, and keep the other components
unexcited.
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