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We experimentally demonstrate strong coupling between a one-dimensional (1D) single-atom array and
a high-finesse miniature cavity. The atom array is obtained by loading single atoms into a 1D optical
tweezer array with dimensions of 1 × 11. Therefore, a deterministic number of atoms is obtained, and the
atom number is determined by imaging the atom array on a CCD camera in real time. By precisely
controlling the position and spacing of the atom array in the high finesse Fabry-Perot cavity, all the atoms
in the array are strongly coupled to the cavity simultaneously. The vacuum Rabi splitting spectra are

discriminated for deterministic atom numbers from 1 to 8, and the
ffiffiffiffi

N
p

dependence of the collective
enhancement of the coupling strength on atom number N is validated at the single-atom level.
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A strongly coupled cavity quantum electrodynamics
(QED) system is a basic physical system for studying
light-matter interactions [1], which not only is a test bed
for studying fundamental physics but also provides
powerful quantum resources for quantum information
[2–6]. Matured through single-atom control in the small
cavity mode, vacuum Rabi splitting of a single atom has
been observed [7–9], which has provided great signifi-
cance in quantum physics. As promising platforms to
realize quantum networks [10], optical cavity QED
systems have attracted intense interest. Research has been
mainly focused on the interaction between single atoms
and single photons. Many new quantum technologies
and devices, e.g., single-photon sources and blockades
[11–17], quantum interfaces [18,19], quantum logic gates
[20–23], quantum measurements [24–29], and quantum
routers [30–34], have been developed and investigated.
Significantly, the demonstration of an elementary quan-
tum network [35] between two nodes with an individual
atom in each cavity has brought a great leap forward for
quantum networks.
The multiatom cavity QED system, in which individual

atoms can be discriminated and controlled, would be more
interesting for both fundamental physics and applications.
First, the cavity photon-mediated interactions between
different atoms enrich the dynamics and complexity of
the coupling diagrams for many-body physics research
[36–38]. Moreover, in the context of the recent progress
in programmable arrays of atoms in quantum simulations
and quantum computations [39–44], the development of a
multiqubit module with optical links, which can process
quantum information locally and interface qubits between

atoms and photons, brings new perspectives for quantum
networks and distributed quantum computation [45].
However, building such a multiatom cavity QED system

is quite challenging because of the stringent requirement on
the position control of every atom to obtain steady and
uniform strong coupling to a tiny cavity mode for each
atom. To date, only two neutral atoms have been success-
fully controlled in the same mode of a Fabry-Perot (FP) or
nanophotonic cavity [45–48]. A cavity QED system with
one-dimensional (1D) atom arrays transversely integrated
with a high finesse FP cavity has also been recently
presented [49–51]. However, the atoms are not uniformly
coupled to the cavity mode. A system of 5 ions coupled to
an FP cavity has also been demonstrated [52], but not in the
strong coupling regime. In this Letter, we report strong
coupling between 1D atom arrays and a miniature FP
cavity. The atom arrays are engineered to couple to the
cavity simultaneously with a uniform coupling strength.
Strong coupling of up to 8 atoms of an 11-tweezer array is
demonstrated. Vacuum Rabi splitting can be discriminated
from 1 to 8 atoms individually, and the

ffiffiffiffi

N
p

scaling of the
collective enhancement of the coupling strength with atom
number N is validated for a deterministic number of atoms.
The experimental setup is illustrated in Fig. 1(a). The

core of the setup is a miniature optical FP cavity [a picture
can be found in Supplemental Material (SM)] [53], which
is composed of two high-reflectively coated mirrors with a
curvature radius of 100 mm. The mirrors have trans-
mittances of 4.9 and 84.9 ppm at 852 nm. The length of
the cavity is fixed at 1.27 mm to accommodate the atom
array while maintaining strong coupling for individual
atoms. The waist of the TEM00 mode and finesse of the
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cavity are 46 μm and 5.7 × 104, respectively. Thus, the
cavity QED parameters for individual cesium atoms in our
system are ðg0; κ; γÞ ¼ 2π × ð3.2; 1.0; 2.6Þ MHz, where g0
denotes the theoretical maximum coupling strength
between a cesium atom (for transition jgi≡ 6S1=2jF ¼
4; mF ¼ 4i ↔ jei≡ 6P3=2jF ¼ 5; mF ¼ 5i) and the cav-
ity TEM00 mode. κ and γ are the decay rates for the cavity
and atom, respectively. The cooperative coefficient is
C ¼ g02=2κγ ¼ 1.9, which means that our system is a
strongly coupled cavity QED system for a single atom
when the position can be controlled precisely at the
antinode of the cavity standing-wave mode.
The details of the experimental apparatus, including

the optical cavity, the vacuum system, and the cavity
locking scheme, can be found in SM [53]. The whole
cavity system is placed inside a high-vacuum glass cell
with inner dimensions of 20 mm× 25 mm on the cross
section. The length of the cavity is actively stabilized to
the cesium transition line jgi ↔ jei (the resonant wave-
length is approximately 852.356 nm) by an auxiliary
locking laser at 851.5 nm (three free spectral ranges off
the atomic transition), whose frequency has been locked
to the cesium transition line via a transfer cavity. The
locking laser also forms a lattice with positive potentials
along the cavity axis. Because of the relatively long cavity
length, a small magneto-optical trap (MOT) can be built
directly inside the FP cavity to accumulate the atoms
emitted from the first-stage two-dimensional MOT. The
atomic ensemble has a diameter of 150 μm and an atom
number of approximately 105. The temperature is approx-
imately 15 μK after polarization gradient cooling.

The optical tweezer array is generated by strongly
focusing a 1D laser beam array with dimensions of
1 × 11 by a homemade high-numerical-aperture objective
with NA ¼ 0.4 and focal length f ¼ 28.8 mm [58]. The
laser beam array comes from the diffraction of an acousto-
optic deflector (AOD, DTSX, AA Opto Electronic) driven
by a multitone radio frequency (rf) signal. Every tweezer
has a waist radius of 1.81 μm, which ensures that only a
single atom is loaded by the light-assisted collision process
[59]. The tweezer array is projected into the cavity trans-
versely from the outside of the vacuum glass cell and the
orientation is along the cavity axis (Z axis). The optical
tweezers load single atoms directly from the precooled
cesium atom ensemble. The fluorescence of the loaded
single atoms is collected by the same objective, separated
from the trapping beam by a dichroic beam splitter cube,
and eventually imaged on an electron-multiplying CCD
(EMCCD) camera. Figure 1(b) shows an average picture of
the single atoms trapped by the tweezer array.
Figure 2(a) shows a typical histogram of the fluores-

cence from one of the tweezers recorded by the EMCCD
camera. The bimodal structure of the count distribution
indicates that each time, only one atom is loaded into one
tweezer, and the loading probability is approximately
57%. The average lifetime for the trapped individual atom
is measured to be approximately 4.8(1) s [as shown in
Fig. 2(b)] when the tweezer overlaps with the intracavity
lattice. The lifetime is limited by the heating due to the
variance of the position overlap between the optical
tweezer and the intracavity lattice. Figure 2(c) shows
the atom number distribution in all 11 optical tweezers.
From the single-atom loading probability (57%), we
expect the average atom number for all 11 tweezers to
be approximately 6.3. However, we only obtain a value of
5 from Fig. 2(c). The reason is that several tweezers on
the edge do not exactly overlap with the atomic ensemble
in the measurement. If all the tweezers overlap well with
the atomic ensemble, then the average atom number could
reach the expected result.
The challenge of the experiment is to control the position

of every atom to reach maximum and steady coupling to
the cavity. To obtain this condition, the position of each
tweezer should not only exactly overlap with an antinode of
the cavity standing-wave mode in the Z direction but also
be in the center of the mode profile in both the X and Y
directions. However, since the size of the optical tweezer is
much larger than the structure of the standing wave, the
atom cannot be confined around the small antinode region
by the optical tweezer alone. With the aid of the blue-
detuned lattices induced by the 851.5-nm locking laser the
problem can be resolved.
When the blue lattice is taken into account, the atom

trapped in the tweezer will be pushed to a node of the
lattice. The node of the lattice overlaps perfectly with the
antinode of the cavity mode at the center of the 852-nm

FIG. 1. Scheme of the experiment. (a) Sketch of the essential
part of the experimental setup. The FP cavity is stabilized by an
851.5-nm locking beam, and another weak 852-nm probe beam
(the corresponding intracavity mean photon number hni ¼ 0.1) is
used to measure the spectrum. Inset: an illustration of the mode
patterns of the lattice (blue) and 852-nm field (red). (b) Image of
single atom arrays obtained by superimposing approximately 500
loading trials. The exposure time was set as 40 ms for every trial.
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mode where the coupling between the atom and the cavity
is maximum. The node of the lattice will gradually displace
from the antinode of the 852-nm mode and totally mis-
match with each other at the offset position with a distance
of 216.6 μm to the cavity center, where the atom decouples
to the cavity. The overlap repeats for every 423.2 μm along
the Z direction. The solid line in Fig. 2(e) presents the
theoretical prediction of the coupling strength of the atom
when it is trapped in different sites of the lattice along the
Z direction.
To verify the coupling pattern of the atom, only one

tweezer is used to load the atom and test the coupling.

The tweezer is switched on by driving the AOD with a
single tone rf signal of 79.8 MHz. The position of the
tweezer trap in the Z direction can be scanned by either a
motorized stage or the rf driving frequency applied to the
AOD. Here, it is scanned step by step by the motorized
stage. At every scanned spatial point, a single atom is
loaded into the tweezer and the atom-cavity coupling
strength is checked by measuring the vacuum Rabi
splitting spectrum. A typical spectrum is shown as the
light blue data points in Fig. 2(d). The coupling strength Ω
can be obtained by fitting the data with the theoretical
transmission spectrum [53]

T¼ κ2ðγ2þΔ2
paÞ

ðΩ2−Δ2
paþΔcaΔpaþ γκÞ2þðκΔpaþ γΔpa− γΔcaÞ2

;

ð1Þ

where Δca (Δpa) is the frequency detuning between the
cavity (probe) and atom. Ω is the coupling strength, which
equals g for a single atom. Δca can also be determined by
fitting. The relative coupling strength Ω=Ωmax, where
Ωmax is the maximum in one scan trial, versus the position
on the Z axis is shown as the blue circles in Fig. 2(e),
which agrees well with the theoretical prediction from the
overlap between the blue lattice and 852-nm cavity mode.
Thus, maximum and steady coupling can be naturally

achieved as long as the 11 tweezers are placed around the
center of the cavity where the node of the lattice and the
antinode of the 852-nm mode coincide well in space [as
shown in the inset of Fig. 1(a)]. The 11 tweezers are
switched on with the center rf frequency fixed at 79.8 MHz.
The distance between the neighboring tweezers is set as
8.52 μm by setting the spacing of the multitone rf fre-
quency as 1.16 MHz. The spatial offset of the tweezers at
the edge is �42.6 μm to the cavity center. The coupling of
the atom in the edge tweezer is 95% of the one in the center
in theory. The theoretical variance of the coupling for all
11 atoms in the tweezer array is only�2.5%. From the data
measured in Fig. 2(e) we obtain that the variance of the
measured coupling strength is within �4%.
After the Z positions of the atomic array have been

optimized at the maximum coupling spots, the positions in
the X and Y directions are also scanned with all eleven
tweezers on. The measured coupling coefficients versus the
X and Y positions are displayed in Fig. 2(f), where the
results follow a Gaussian mode profile well. The fitting of
the results by Gaussian functions gives mode waists in the
X and Y directions of 48.0(2.8) and 45.7ð1.7Þ μm, respec-
tively, which are in good agreement with those calculated
from the geometry of the FP cavity. Therefore, by setting
the positions in the X and Y directions to the maximum
coupling spots, we can eventually optimize and realize
strong coupling between deterministic atom arrays and the
FP cavity.
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FIG. 2. (a) Typical histogram of the electron counts of the
fluorescence from the No. 6 optical tweezer in Fig. 1(b) on the
EMCCD camera for 5000 trials of atom loading. The red line is
the fitting with a bimodal Gaussian function. (b) Atom retention
versus atom holding time. The exponential fitting gives a
characteristic atom lifetime of 4.8(1) s. (c) Probability of the
number of single atoms loaded into all 11 optical tweezers. The
probabilities are counted for 500 trials of atom loading, giving an
average atom number of approximately 5. (d) Typical spectra
during optimization. The light blue circles represent the exper-
imental data with one tweezer on. The coupling strength Ω is
determined by fitting with Eq. (1). The spectrum of the empty
cavity is also shown for comparison (black circles). (e) Optimi-
zation of the position of the atom on the Z axis. The main figure
shows the variance of the coupling strength in the position range
from −42.6 to 42.6 μm (shaded area of the inset figure), in which
the optical tweezer arrays are placed. The inset shows the
variance of coupling strength in a larger range. The black solid
line is the theoretical coupling strength between the cavity and
atom when the atom is trapped in different nodes of the intra-
cavity lattice. The light blue circles are the measured atom-cavity
coupling versus the atom position with only one tweezer on.
(f) Dependence of the atom-cavity coupling on the X and Y axis
positions. All eleven tweezers are used for these measurements.
The fittings by Gaussian functions give mode waists of 48.0(2.8)
and 45.7ð2.8Þ μm along the X and Y axes, respectively.
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In principle, our cavity QED system can realize strong
coupling between the FP cavity and atoms with a
deterministic number less than 11. Here, we demonstrate
coupling between the cavity and atom arrays with atom
numbers from 1 to 8. The measured vacuum Rabi spectra
in the transmission and images of the atom arrays are
depicted in Fig. 3. The atom number is exactly determined
from the EMCCD image and the coupling strength Ω is
extracted by fitting with Eq. (1). The measured vacuum
Rabi splitting of a single atom is 2g ¼ 2π × 5.52ð8Þ MHz,
which is approximately 87% of the maximum theoretical
value of 2π × 6.32 MHz. The difference mainly comes
from the imperfect state initialization efficiency (∼91%).
The average due to residual motion of the atom will also
produce a smaller g. The unequal height of the two normal
splitting peaks in Fig. 3 mainly comes from the uneven
Δca in different tweezers. Since we leave all the tweezers
on with a shallow trap depth (∼0.1 mK) during the
measurement, the light shifts of atoms in different tweez-
ers are uneven due to the small variance in the trap shapes
and intensities. The Δca values extracted from the data

fitting are within the range of 0–0.4 MHz for all the
subfigures.
The extracted vacuum Rabi splitting ΩN versus atom

number N is displayed in Fig. 4. The single-atom coupling
strength g can also be deduced from ΩN by g ¼ ΩN=

ffiffiffiffi

N
p

.
We obtained eight values of g corresponding to atom
numbers from 1 to 8. The variance in g is within �2%

of the average value 2π × 2.74 MHz. The single-atom
coupling strength can also be obtained by fitting the data
with g0 ¼ ΩN=

ffiffiffiffi

N
p

, which gives g0 ¼ 2π × 2.73ð1Þ MHz,
and it is almost the same as the averaged value.
Collective enhancement of light-matter interactions by

using multiple single atoms is a basic principle in quantum
physics. The dependence of the collective enhancement on
the atom number has been proven through Rydberg exci-
tation of atoms [60,61] and single qubits in superconducting
circuits [62]. Here, this fundamental relation can be tested
by using deterministic atom numbers with discrimination
at the real single-atom level in our cavity QED system. As
displayed in Fig. 4, the theoretical collective enhancement
relationΩN ¼ g

ffiffiffiffi

N
p

is shown as the red line with the single-
atom coupling strength g ¼ 2π × 2.74 MHz.We see that the
scaling of experimental data with the atom number agrees
very well with the theory, which validates the principle of
collective enhancement.
In summary, we have developed a new cavity QED

system in which well-controlled 1D atom arrays are strongly
coupled to a miniature FP cavity. Vacuum Rabi splittings
with a deterministic number of atoms are observed; thus, the
principle of collective enhancement of light-matter inter-
actions with multiple atoms is experimentally tested and
validated with single atoms. The system provides a versatile
platform to study light-matter interactions, quantum net-
works with nodes containing multiple atomic qubits [63],
and many-body physics with interactions mediated by
photons [36–38,64].
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FIG. 3. Vacuum Rabi splitting with a deterministic atom
number from N ¼ 1 to N ¼ 8. The single shot images of the
trapped atoms are shown as the inset picture, which are used to
precisely count the atom number. The experimental data (black
circles) are fitted (red lines) by Eq. (1) to determine ΩN .

FIG. 4. Dependence of the collective coupling strength on the
atom number. The solid red line is the theoretical result for the
collective enhancement relation ΩN ¼ g

ffiffiffiffi

N
p

with the measured
single atom coupling strength g ¼ 2π × 2.74 MHz.
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