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Synergistic correlated states and nontrivial
topology in coupled graphene-insulator
heterostructures

Xin Lu 1, Shihao Zhang 1, Yaning Wang2, Xiang Gao3,4, Kaining Yang3,4,
ZhongqingGuo1, YuchenGao5,6, YuYe 5,6, ZhengHan 3,4& JianpengLiu 1,7

Graphene has aroused great attention due to the intriguing properties
associated with its low-energy Dirac Hamiltonian. When graphene is cou-
pled with a correlated insulating substrate, electronic states that cannot be
revealed in either individual layer may emerge in a synergistic manner.
Here, we theoretically study the correlated and topological states in
Coulomb-coupled and gate-tunable graphene-insulator heterostructures.
By electrostatically aligning the electronic bands, charge carriers trans-
ferred between graphene and the insulator can yield a long-wavelength
electronic crystal at the interface, exerting a superlattice Coulomb poten-
tial on graphene and generating topologically nontrivial subbands. This
coupling can further boost electron-electron interaction effects in gra-
phene, leading to a spontaneous bandgap formation at the Dirac point and
interaction-enhanced Fermi velocity. Reciprocally, the electronic crystal at
the interface is substantially stabilized with the help of cooperative inter-
layer Coulomb coupling. We propose a number of substrate candidates for
graphene to experimentally demonstrate these effects.

Graphene hosts two-dimensional (2D) massless Dirac electrons with
linear dispersions and nontrivial Berry phases around two inequivalent
K andK 0 valleys in the Brillouin zone (BZ)1,2. Such lineardispersions and
topological properties of Dirac cones bestow various intriguing single-
particle physical properties to graphene including the relativistic
Landau levels, the Klein tunneling effects, and the nontrivial edge
states, etc.2. Besides, low-energy Dirac fermions in graphene also
exhibit distinct e-e interaction effects3, such as the interaction-
enhanced Fermi velocity4,5, the gap opening at the charge neutrality
point6–8, and even chiral superconductivity when the Fermi level
locates at the van Hove singularity9.

Insulating transition metal oxides (TMOs) and transition metal
chalcogenides (TMCs) have also stimulated significant research inter-
ests over the past few decades due to the diverse correlated phenom-
ena discovered in these systems such as Mott insulator10, excitonic
insulator11,12, and various complex symmetry-breaking states13,14. Under
charge dopings, these insulating TMOs and/or TMCs may show
more intriguing correlated states including unconventional
superconductivity15–17 and long-wavelength charge density wave18.

An open question is what would happen if two types of distinct
interacting many-electron systems, i.e., the interacting Dirac fermions
in graphene and the correlated electrons in (slightly) charge doped
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TMO and/or TMC insulators, are integrated into a single platform.
Especially, how the mutual couplings would affect the interacting
electronic states in both systems. Inspired by recent pioneering
experiments in CrOCl-graphene19, 1T-TaS2-graphene

20, and CrI3-
graphene21 heterostructures, here we propose that such a scenario (of
interacting Dirac fermions coupled with the correlated electrons in
charge doped TMO/TMC insulators) can be realized in graphene-
insulator heterostructures with gate-tunable band alignment. In this
work, we show that, by virtue of the interlayer Coulomb coupling
between the interacting electrons in the two layers, intriguing corre-
lated physics that cannot be seen in either individual layer would
emerge in a cooperative and synergistic manner in such band-aligned
graphene-insulator heterostructures.

WhenDirac points of graphene are energetically close to the band
edge of the insulating substrate, charge carriers can be transferred
betweengraphene and the substrate under the control of gate voltages
due to quantum tunneling effects. This may yield a long-wavelength
electronic crystal (EC) at the surface of the substrate, given that the
carrier density introduced to the substrate is below a threshold value.
On the one hand, the long-wavelength EC at the surface of the sub-
strate would impose an interlayer superlattice Coulomb potential to
graphene, which would generate subbands with reduced non-
interacting Fermi velocity of the Dirac cone, thus trigger gap open-
ing at the Dirac points by e-e interactions in graphene. Meanwhile,
concomitant with the gap opening, the Fermi velocities around the
charge neutrality point (CNP) are dramatically enhanced due to e-e
interactions effects. The subbands may also possess nontrivial topo-
logical properties with non-zero valley Chern numbers that can be
controlled by superlattice constant and anisotropy. Especially, we find
a number of “magic lines” in the parameter space of superlattice’s
constant and anisotropy, at which the Fermi velocity along one
direction vanishes exactly. The subbands would acquire non-zero
Chern numbers when passing through these magic lines. On the other
hand, the gapped Dirac state at the CNP of graphene would further

stabilize the long-wavelength EC state in the substrate by pinning the
relative charge centers of the two layers in an anti-phase interlocked
pattern, in order to optimize the interlayer Coulomb interactions.

Results
Coulomb interaction effects in graphene
To describe the graphene-insulator heterostructure, we consider a
model Hamiltonian consisted of a graphene part, an insulator sub-
strate part, and the coupling between them (see Eqs. (5) and Supple-
mentaryNote 6of Supplementary Information). Aswe are interested in
the low-energy electronic properties, graphene’s band structure is
modeled by the low-energy Dirac cones around the K and K 0 valleys.
The long-wavelength EC (charge ordered) state in the substrate is
considered as a charge insulator, with the electrons being frozen in the
form of a superlattice, as schematically shown in Fig. 1a. Thus, long-
wavelength charge order of the substrate is coupled to the graphene
layer via interlayer Coulomb interactions to exert a superlattice
potential on the Dirac electrons (see Fig. 1b). If one considers that
the charge order in the substrate layer results from a Wigner-crystal-
like instability, then the value of superlattice constant Ls = 50 Å would
correspond to a carrier density ~ 7 × 1012 cm−2 transferred from gra-
phene to the insulating substrate, which is close to the upper limit for a
double-gated graphene device. Neglecting the intervalley coupling
thanks to the large superlattice constant Ls (≿50 Å), we can construct
an effective single-particle Hamiltonian for the continuum Dirac fer-
mions in graphene that are coupled with a superlattice Coulomb
potential (see Supplementary Note 1 and Supplementary Note 6 in
Supplementary Information)

Hμ
0ðrÞ= _vFk � σμ +UdðrÞ ð1Þ

where σμ are the Pauli matrices (μσx, σy) with the valley index μ = ± 1, vF
is the non-interacting Fermi velocity of graphene, and Ud(r) is the
background superlattice potential with the period Ud(r) =Ud(r + Ls).

Fig. 1 | Mechanism of enhanced e-e interaction effects by virtue of charge
transfer in graphene-insulator heterostructure. a Cartoon illustration of a
monolayer graphene (black balls with sticks) supported by an insulating substrate
(green platform) with long-wavelength charge order (blue dots), with an interlayer
distance d. b Schematic of charge transfer in a band-aligned graphene-insulator
heterostructure and its effects on the Dirac dispersion. The dashed line marks the
Fermi energy EF. c Blue lines show the non-interacting band structure of graphene

coupled to a superlattice Coulomb potential with rectangular symmetry. The ani-
sotropy parameter is r = 1.2 and the superlattice constant Lx = Ls = 600 Å. The red
dashed lines represent the non-interacting Dirac cones in free-standing graphene.
The inset marks the high-symmetry points in the superlattice Brillouin zone. d The
calculated effective fine structure constant α as a function of Ls and dielectric
constant ϵr, where the dashed line marks the critical value αc ≈0.92.
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The superlattice of the EC is set to be rectangular, with anisotropy
r = Ly/Lx and Lx,y being the superlattice constant in the x, y-direction,
respectively. We denote Ls = Lx. As a result, the superlattice potential
Ud(r) would fold Dirac cones into its small Brillouin zone, forming
subbands and opening up a gap at the boundary of the supercell BZ, as
shown in Fig. 1c for a rectangular superlattice with r = 1.2 (same as that
of CrOCl atomic lattice) in valley K (μ = 1) with Ls = 600 Å. The energy
degeneracies from folding are all lifted by Ud, whose Fourier
component reads

UdðQÞ= e2

ϵ0ϵrΩ0

e�jQjd

jQj , ð2Þ

whereQ ≠0 is the reciprocal lattice vector associatedwith Ls,Ω0 = LxLy
is the area of the primitive cell of the superlattice. The Coulomb
potentialUd, screened by a dielectric constant ϵr, decays exponentially
in the reciprocal space ∼ expð�QdÞ, where d is the distance between
the substrate surface and graphene monolayer. Furthermore, the
Fermi velocities near the Dirac points of the subbands are suppressed
byUd

22 as clearly shown in Fig. 1c. Sucha continuum-model description
is adopted throughout the paper given that Ls≫ a (a = 2.46Å is
graphene’s lattice constant) is always fulfilled for low carrier density
n⪅ 1013 cm−2, with Ls ∼ 1=

ffiffiffi
n

p
for the EC state.

While it is highly desirable to open a gap at the Dirac points in
graphene for the purpose of field-effect device fabrication, the
superlattice potential of Eq. (2) alone cannot gap out Dirac points in
graphene as the system still preserves C2zT symmetry. However, the
Dirac points can be unstable against e-e Coulomb interactions (with
the spontaneous breaking of C2zT symmetry) once the Fermi velo-
city of the non-interacting band structure is suppressed below a
threshold, which can be assisted by the superlattice potential from
the long-wavelength charge order. One of the similar illustrations is
twisted bilayer graphene (TBG)23, where the Fermi velocity is strongly
suppressed around the “magic angle”, leading to moiré flat bands
exhibiting diverse correlated and topological phases24–29. Here we
further calculate the Fermi velocity of the superlattice subbands
around the Dirac point, denoted as vF(Ls, ϵr), which depends on both
the superlattice constant Ls and the background dielectric constant
ϵr. Accordingly, the effective fine structure constant α(Ls, ϵr) = e2/
(4πϵ0ϵrℏvF(Ls, ϵr)) can also be tuned by Ls and ϵr, as shown in Fig. 1d.
We see that there is a substantial region in the (Ls, ϵr) parameter space
with α(Ls, ϵr) > αc ≈0.9230, which indicates that the Dirac-semimetal
phase of graphene may no longer be stable against e-e interactions
within this regime according to previous theoretical study30.

Such a picture is not unique to rectangular superlattice, but
applies to various superlattice geometries. Treating the superlattice
potential Ud(Q) using second-order perturbation theory, the renor-
malized non-interacting effective Hamiltonian for arbitrary super-
lattice geometry can be expressed as

H0
eff ðkÞ= _vF 1�

X
jQj≠0

jUdðQÞj2
ð_vF Þ2jQj2

 !
k�

X
jQj≠0

jUdðQÞj2
ð_vF Þ2jQj2

k� 2k �Q
jQj2 Q

� � !
� σ:

ð3Þ

We see that the effective non-interacting Hamiltonian as well as the
Fermi velocity have similar dependence on Ls and ϵr (through Ud(Q))
for all lattice geometries. We have also calculated the effective fine-
structure constants α(Ls, ϵr) = e2/(4πϵ0ϵrℏvF(Ls, ϵr)) for both triangular
and square lattices (see Supplementary Figure 2), and the results are
very similar to that of rectangular lattice with r = 1.2 shown in Fig. 1d.

This motivates us to include e-e interactions in the graphene layer
in our model. Despite several theoretical predictions of gapped Dirac
states in graphene3,6–8,31, to the best of our knowledge no gap at the
CNP has been experimentally observed in suspended graphene yet32,33.
This can be attributed to interaction-enhanced Fermi velocity around

the CNP, screening of e-e interactions due to ripple-induced charge
puddles, disorder effects, etc.3,34–37. Nevertheless, analogous to TBG,
the subbands in our system with reduced non-interacting Fermi velo-
city would quench the kinetic energy and further promote the e-e
interaction effects in graphene.

Our unrestricted Hartree-Fock calculations (see Supplementary
Note 4 in Supplementary Information) confirm precisely the argument
above. As interaction effects are most prominent around the CNP, we
project the Coulomb interactions onto only a low-energy subspace
including three valence and three conduction subbands (ncut = 3) that
are closest to CNP for each valley and spin. To incorporate the influ-
ences of Coulomb interactions from the high-energy remote bands,
the renormalized Fermi velocity within the low-energy subspace can
be derived from the renormalization group (RG) approach2–4,38

v*F = vF 1 +
α0

4ϵr
log

Ec

E*
c

 !
, ð4Þ

where α0 = e2/(4πϵ0ℏvF) is the ratio between the Coulomb interaction
energy and kinetic energy, i.e., the effective fine-structure constant of
free-standing graphene, E*

c delimits the low-energy window within
which the unrestricted Hartree-Fock calculations are to be performed,
and Ec is an overall energy cut-off above which the Dirac-fermion
description to graphene is no longer valid. Unlike TBG39, other
parameters of the effective Hamiltonian (Eq. (1)) such as Ud, are
unchanged under the RG flow (see Supplementary Note 3 in
Supplementary Information).

We first study the interaction effects of graphene coupled to a
rectangular superlattice potential with r = 1.2 and 50Å ≤ Ls≤ 400Å,
corresponding to carrier density of the EC state at the surface of the
substrate 0.1 × 1012 cm−2≤ n ≤ 6.58 × 1012 cm−2 (with n=2=ðrL2s Þ), with
ϵr = 3, 4, and d = 7 Å (obtained from first principles density functional
theory calculations for one particular commensurate CrOCl-graphene
supercell (see Supplementary Note 7 in Supplementary Information)).
Here,weconsider twodifferentfilling factors: exactly at theCNP (ν =0)
and a slight hole doping (ν ≈ −0.003).When ν = 0, a gap can be opened
up due to interaction effects (see Fig. 2a, b), leading to two nearly
degenerate insulating states, one is σz-sublattice polarized and the
other is characterized by the order parameter τzσz, where τz and σz
denote the third Pauli matrix in valley and sublattice space, respec-
tively. Then, intervalley Coulomb interactions would split such
degeneracy, and the sublattice polarized insulator with zero Chern
number becomes the unique ground state (see Supplementary Note 5
in Supplementary Information). Notably, the gap decreases almost
linearly with n as shown in Fig. 2d, and eventually vanishes as n→0.
This is because the superlattice Coulomb potential exerted on gra-
phene is proportional to the carrier density of the long-wavelength
order from the substrate. Consequently, the Fermi velocity of the bare
Dirac dispersion of graphene would be less suppressed at smaller
carrier density n, which disfavors gap opening. Eventually in the limit
of n→0, with a charge ordered state of infinite lattice constant, gra-
phene would recover its non-interacting behavior as a gapless Dirac
semimetal.

To verify our theory, we have also experimentally measured the
gaps at CNP in graphene-CrOCl heterostructure at different nominal
carrier densities using the same high-quality device reported in ref. 19.
The details for the measurement set up and the device configuration
arepresented in SupplementaryNote 8of Supplementary Information.
The measured gaps also decrease linearly with ntot, from 7.7 meV with
ntot = 3.4 × 1012 cm−2, to 5.8 meV with ntot = 0.5 × 1012 cm−2 (see Supple-
mentary Figure 20), consistent with the trend from theoretical calcu-
lations, as shown in Fig. 2e. Nevertheless, when ntot→0, such a linear
dependence of the gap on ntot may no longer be valid. This is because
in Eq. (2), the interlayer Coulombpotential only applies to the situation
of a single valley to accommodate charge carriers in the substrate. In
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reality, there may be additional valley degeneracy in the substrate,
which is crucial for the evolution of gap as ntot→0. Although the valley
degeneracy of the substrate does not change our results qualitatively,
the theoretically calculated gap vs. ntot fits to the experimental data of
CrOCl-graphene heterostructure more precisely at low density once
including the two-fold valley degeneracy of CrOCl (see Table 1). The
details are given in Supplementary Note 5 in Supplementary
Information.

We note that the electronic crystal at the surface of the substrate
is expected to persist even if the carrier density exceeds the threshold
valuedue to the extra energygain from interlayerCoulombcoupling in
such coupled system, which will be discussed in detail in the subsec-
tion “Cooperative coupling between graphene and substrate” below.
Strain is also inevitable in such graphene-insulator heterostructures,
which would give rise to pseudo-magnetic fields coupled to the Dirac
electrons5,40,41, thus further enhance the e-e interaction effects in
graphene.

The single-particle excitation spectrum is also significantly
altered by Coulomb interactions within the low-energy window, as
shown in Fig. 2b and c with fillings ν = 0 and ν = − 0.003, respec-
tively. We note that although the superlattice potential Ud sup-
presses Fermi velocity in graphene (see Fig. 1c), e-e interactions can
compensate such effects. The Fermi velocity is not only enhanced
by the Coulomb potentials from the remote energy bands (Eq. (4)),
but also further boosted by e-e interactions within the low energy

Fig. 2 | Gap opening and enhanced Fermi velocity in graphene coupled with a
superlattice Coulomb potential. a Calculated Hartree-Fock single-particle exci-
tation spectrum of graphene coupled to a superlattice Coulomb potential as a
function of dimensionless reduced momenta (kxLx, kyLy), with the filling set at
charge neutrality point. A gap Δ is opened at the Dirac point. b and c show by blue
solid lines the Hartree-Fock band structures of Ls = 50 Å and ϵr = 3.0, with the filling
factor ν =0 in (b) and ν = −0.003 in (c). The red dashed lines represent the non-
interacting Dirac cones. The insets zoom in energy close to the Dirac points. Zero

energies in (b) and (c) are defined as the chemical potentials for ν =0 and
ν = −0.003, respectively. d The calculated gaps at charge neutrality point (filled
stars) and the interaction-enhanced Fermi velocities at slight hole dopings
ν = −0.003 (hollow diamonds) as a function of the substrate’s carrier density n.
e The thermal activation gap Δ measured on the devices in ref. 19 for different
nominal dopings ntot. f Distribution of Berry curvature ΩB of the highest valence
subband of K valley for r = 1.2 and Ls = 50 Å, which gives zero valley Chern number.

Table 1 | Candidate substrate materials for the graphene-
insulator heterostructure systems

Materials ϵr ECBM EVBM m*/m0 gv rs

AgScP2S6 (bi) 3.67 0.07 eV −1.89 eV 3.94 6 683.4

AgScP2Se6 (bi) 4.06 0.15 eV −1.37 eV 2.63 6 412.8

IrBr3 (bi) 6.53 0.23 eV −1.43 eV 8.08 2 262.7

IrI3 (bi) 7.59 0.33 eV −0.95 eV 1.76 2 49.1

YI3 (tri) 3.45 0.53 eV −2.1 eV 2.12 1 65.3

YBr3 (tri) 6.78 0.68 eV −3.15 eV 2.76 1 43.3

ReSe2 (bi) 6.38 0.32 eV −0.83 eV 1.82 2 60.7

ScOCl (bi) 5.27 0.21 eV −4.04 eV 3.29 1 66.2

PbO (bi) 8.47 2.02 eV −0.03 eV 11.89 4 595.8

CrI3 (bi) 3.00 −0.32 eV −1.58 eV 2.02 2 142.8

CrOCl (bi) 3–4 −0.13 eV −3.26 eV 1.31 2 55.7–74.2

WS2 (tri,quad) 3.63 0–0.08 eV −1.01 – −0.97 eV 1.16 6 201–203

WSe2 (tri,quad) 4.07 0.27–0.47 eV −0.65 – −0.52 eV 0.53 6 87.4

MoSe2 (bi,
tri, quad)

7.29 −0.01–0.31 eV −0.97 – −0.86 eV 0.73–0.77 6 66–70

MoTe2 (bi,
tri, quad)

6.75 0.31–0.42 eV −0.54 – −0.47 eV 0.7–0.75 6 68–73

The dielectric constants ϵr64–66, conduction band minimum position (ECBM), valence band max-
imumposition (EVBM), the corresponding effectivemassm* at the band edge that is closer to the
Dirac point (set to zero) in energy, and the dimensionless Wigner-Seitz radius
rs =gvm

*=
ffiffiffiffiffiffi
πn

p
ϵrm0a

0
B (a0B is the Bohr radius and m0 is the bare electron mass, gv is the valley

degeneracy) estimated under a small doping concentration n = 1012 cm−2, are presented. Here bi
and tri stand for bilayer and trilayer systems, respectively.
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window E*
c ∼ncut_vF2π=Ls . Eventually, the Fermi velocity can be

magnified up to more than twice of the non-interacting value of
free-standing graphene (vF) at slight hole doping ν = − 0.003, as
shown in Fig. 2d. This explains the recent experiment in gate-
controlled graphene-CrOCl heterostructure, in which the Fermi
velocity around CNP is significantly enhanced compared to non-
interacting value at slight carrier doping, such that robust quantum
Hall effect can be observed under tiny vertical magnetic fields
(~0.1 T) and at high temperatures19. We note that the EC statemay be
stabilized by vertical magnetic fields even when the carrier density
in the substrate exceeds the zero-field threshold value42,43, which in
turn boosts the low-field, high-temperature quantum Hall effect in
the graphene layer due to the scenario discussed above.

Although it has been theoretically proposed that the magnetic
proximity effect together with spin-orbit coupling could in principle
give rise to topologically nontrivial states in graphene44, it seems to be
irrelevant to the graphene-insulator heterostructures considered in
the present study. For example, in CrOCl-graphene device, no mag-
netic hysteresis has been observed in graphene, and the measured
Landau level degeneracy is still compatible with that of spin-valley
degenerate Dirac cones19. Most saliently, the gap opening and the
robust quantum Hall effect persist up to temperatures far above the
Néel temperature of CrOCl (~14 K)19. Similarly, the magnetic proximity
coupling was also reported to be negligible for CrI3-graphene
heterostructure21. Therefore, compared to the power-law decaying
interlayer Coulomb coupling, the exponentially decaying magnetic
proximity coupling may not play an important role in such charge-
transfer graphene-insulator heterostructures.

The essential results discussed above, i.e., the gap opening at CNP
and the concomitant drastic enhancement of Fermi velocity, remain
valid for different types of the background superlattices. Specifically,
we have also performed calculations for the case of triangular super-
lattices, which lead to qualitatively the same conclusions, as presented
in Supplementary Note 5 of Supplementary Information.

Topological properties
Different from magic-angle TBG45–49, the low-energy subbands for
graphene coupled to a rectangular superlattice potential Ud(r) with
small anisotropy (r ~ 1) turn out to be topologically trivial with a com-
pensating Berry-curvature distribution, leading to zeroChern number.
This remains true even in the gapped Dirac state after including e-e

interactions, as shown in Fig. 2f. The trivial band topology is somehow
anticipatedbecause the superlatticepotential is non-chiral in the sense
that it is coupled equally to the two sublattice of graphene, which does
not have any pseudo-gauge-field structure such as that in TBG49,50.

Hence, it is unexpected that changing the anisotropy r and the
lattice size Ls of the superlattice potential Ud can make the subbands
topological. For example, keeping Lx = 50 Å but with r = 3.0, both the
highest valence band and the lowest conduction band acquire non-
zero valley Chern numbers Cv = ± 1 (after adding an infinitesimal C2z-
breaking staggered sublattice potential). As shown in Fig. 3a, besides
the four high-symmetry points, it appears another two hot spots with
concentrated Berry curvatures (annotated by green circles) along the
line connecting Γs and Xs. This additional contribution breaks the bal-
ance between positive and negative contribution of Berry curvature to
Chern number, leading to non-zero valley Chern number. Such con-
tribution stems from another accidental crossing point between the
low-energy valence and conduction bands along the kx-direction
through changing merely the anisotropy parameter r, as shown in
Fig. 3c by red dot within green circle.

While increasing r from unity (with fixed Ls), the Fermi velocity
in the x-direction of the valence band around the Dirac point, vx, is
gradually reduced, as shown in Fig. 3e. As the same origin of Klein
tunneling effects, the spinor structure of graphene’s wavefunction
forces the Fermi velocity in the y-direction to be intact22. Further
tuning r at some point would totally flatten vx. In Fig. 3e, we mark
by white dashed lines “the magic lines” on which vx of the valence
band closest to Dirac points vanishes exactly. The magic lines
always come in pair as an effect of chiral (particle-hole) symmetry
breaking induced by the superlattice potential. As particle-hole
symmetry is broken in the energy spectrum, when vx vanishes in
the valence band, the counterpart in the conduction band remains
finite. The valence subband around the Dirac point has to curve
upwards to create an accidental band crossing point, after that vx
of the valence band becomes zero again. Therefore, a band
crossing would be germinated at the Dirac point, and then move
away along the kx-direction with larger r. On the one hand, the
band crossingmoving away from Γs is of accidental nature, which is
generally avoided unless the lattice parameters are at some fine-
tuned values. On the other hand, the Dirac point at Γs remains
stable as protected by C2zT symmetry. If the Dirac point is gapped,
say, by a tiny staggered sublattice potential, the low-energy

Fig. 3 | Nontrivial topologicalproperties controlled by the superlattice’s lattice
constant and anisotropy. a, b The distribution of Berry curvature ΩB in the
r = 3 superlattice’s Brillouin zone (BZ) of the lowest valence band (VB) and con-
duction band (CB) in valley K for Ls = 50 and 600 Å, respectively. Their corre-
sponding valley Chern number Cv is also given at the top of each panel. c, d The
non-interacting band structure of the r = 3 superlattice with Ls = 50 and 600 Å. The
green and orange circles in (a) and (b) indicate spots in the BZ with highly

concentrated Berry curvatures, which cause the topological transitions. These
spots are generated by band inversion points circled in (c) and (d) using the same
colors as in (a) and (b). e Color map of Fermi velocity in the x-direction vx of the
valence band for ϵr = 3. The color coding indicates vx/vF. Herewe vary Lx from 50 to
600Å and anisotropyparameter r from 1 to6. Thewhite dashed line, i.e., the “magic
lines”, mark the position in parameter space where vx vanishes.
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subbands become topological with non-zero valley Chern num-
bers. In particular, with the increase of r at fixed Ls, the absolute
value of valley Chern number of the valence subband (closest to
Dirac points) increases by 1 whenever one pair of the magic lines
are passed through. The positions of thesemagic lines also depend
on the background dielectric constant ϵr since larger ϵr corre-
sponds to weaker Fermi-velocity renormalization effect, which
would shift the magic lines to larger r values. In Supplementary
Information, we provide animated figure (Supplementary Figure 4)
and videos (Supplementary Movies 1–6) demonstrating the evo-
lution of the band structures and Berry curvatures with increasing
r at fixed Ls. Such topologically nontrivial subbands with highly
anisotropic Fermi velocities may provide an alternative platform
to realize topological quantum matter.

We note that the anisotropic charge ordered superlattices may
be realized in two ways. First, one can design a spatially modulated
electrostatic potential, which has been realized in monolayer gra-
phene by inserting a patterned dielectric superlattice between the
gate and the sample51. Then, the anisotropy of the superlattice can
be artificially tuned by the dielectric patterning in the substrate.
Second, for some given carrier density, the Fermi surface of the
conduction (or valence) band of the substrate may be (partially)
nested, which may lead to a charge density wave (CDW) state with
the nesting wavevector. For example, for CrOCl, the Fermi surfaces
under different Fermi energies (above the conduction band mini-
mum) are given in Supplementary Figure 15c. Clearly, under some
proper fillings, the Fermi surfaces are nested or partially nested,
which may give rise to CDW states with anisotropic superlattices.
We note that topologically nontrivial flat bands have also been
proposed to exist in Bernal bilayer graphene coupled with a back-
ground superlattice potential52.

Furthermore, we find that changing Ls is also able to control the
valley Chern number of the subbands. For example, with r = 3 and
Ls = 600 Å, as shown in Fig. 3b, while the highest valence band
remains topological with non-zero valley Chern number 1 for valley
K with the two aforementioned crossing points (green circles)
merely moving to Xs, the lowest conduction band turns out to be
topologically trivial. This is due to two additional band crossing
points (orange circles) close to the Ys-Ss line between the lowest and
the second lowest conduction bands, as annotated by red dots in an
orange circle in Fig. 3d.

The nontrivial topology must arise from the intrinsic Berry
phases of the Dirac cones. Such topologically nontrivial bands are
particularly surprising for our system, since the Dirac fermions are
subjected to a trivial superlattice potential, which couples identi-
cally with two sublattices of graphene. Nevertheless, the nontrivial
subband topology is highly tunable by changing the superlattice’s
size and anisotropy (see Supplementary Note 2 in Supplementary
Information).

Cooperative coupling between graphene and substrate
In the previous calculations, a charge ordered superlattice in the
substrate is presumed, which exerts a classical superlattice Coulomb
potential to graphene. However, this assumption should be re-
examined. Moreover, besides the effects from the substrate to gra-
phene, the feedback effects from graphene to the substrate should be
discussed as well. Therefore, in this section, we study the coupled
bilayer systemas awhole, and treat the electrons in graphene layer and
the substrate layer on equal footing. In particular, we model the car-
riers transferred to the substrate as 2D electron gas with long-range e-e
Coulomb interactions. Electrons in the substrate and in graphene
interact with each other via long-range Coulomb potential, whose
Fourier component of wavevector q reads e2 expð�jqjdÞ=ð2ϵ0ϵr jqjÞ.
Thus, the total Hamiltonian for the Coulomb-coupled graphene-

insulator heterostructure system includes:

H0
gr =

X
k,μ,α,α0 ,σ

_vFk � σμ
� �

α,α0 ĉ
y
σμαðkÞ ĉσμα0 ðkÞ, ð5aÞ

H0
sub =

X
k,σ

_2k2

2m* + ECBM

 !
d̂
y
σðkÞ d̂σðkÞ, ð5bÞ

Hintra
gr =

1
2S

X
σ,σ0

μ,μ0

X
α,α0

k,k0,q

V intðqÞ ĉyσμαðk+qÞ ĉyσ0μ0α0 ðk0 � qÞ ĉσ 0μ0α0 ðk0Þ ĉσμαðkÞ,

ð5cÞ

Hintra
sub =

1
2S

X
k,k0 ,q

X
σ,σ 0

V intðqÞ d̂
y
σðk+qÞ d̂y

σ0 ðk0 � qÞ d̂σ0 ðk0Þ d̂σ ðkÞ, ð5dÞ

Hgr�sub =
1
S

X
μ,α,σ,σ 0

X
k,k0,q

e2 e�jqjd

2ϵ0ϵr jqj
ĉyσμαðkÞ d̂

y
σ0 ðk0Þ d̂σ0 ðk0 � qÞ ĉσμαðk+qÞ: ð5eÞ

On the graphene side, Eq. (5a) is the familiar Dirac Hamiltonian
describing thenon-interacting low-energyphysics of graphene. The e-e
Coulomb interactionswithingraphene are describedby Eq. (5c), where
the dominant intravalley long-range Coulomb interactions are con-
sidered and Vint(q) is in the form of double-gate screened Coulomb
potential (see Eq. (9)). Here, ĉσμαðkÞ and ĉyσμαðkÞ denote annihilation
and creation operators for the low-energy Dirac electrons with
wavevector k, valley μ, spin σ, and sublattice α. Note that S refers to
the total surface area of the coupled system, and the atomic
wavevectors k,k0,q are expanded around the Dirac points. On the
substrate side,without lossof generality,we suppose that the chemical
potential is close to the conduction band minimum (CBM) with its
energy ECBM, and the energy dispersion of the low-energy electrons
around CBM can be modeled by a parabolic band as for 2D free
electron gas with effective mass m*. Other electrons in the deep
valence bands are supposed to be integrated into the static dielectric
screening constant thanks to a large gap of the substrate. Therefore,
the non-interacting Hamiltonian Eq. (5b) for electrons in the substrate
can be written in the plane wave basis with creation and annihilation
operators fd̂y

σðkÞ,d̂σðkÞg, where k is the plane wave wavevector
expanded around the CBM, and σ denotes spin. The e-e Coulomb
interactions within substrate (Eq. (5d)) is taken to be the long-range
Coulomb interaction with the same double-gate screened form of
Vint(q). The coupling between graphene and substrate is only via the
long-range Coulomb potential, which is captured by Eq. (5e). The
prefactor e2 expð�jqjdÞ=ð2ϵ0ϵr jqjÞ in front of the field operators in Eq.
(5e) is nothing but the 2D Fourier transform of 3D Coulomb potential.
Interlayer hoppings can be neglected given that the interlayer distance
d≿ 5Å in such heterostructures (e.g., d ≈ 7Å in graphene-CrOCl
heterostructure from first principles calculations), thus the exponen-
tially decaying interlayer hopping amplitude is much weaker than the
power-law-decaying interlayer Coulomb interaction. This is further
confirmed by directly calculating the orbital projected band structures
of a commensurate supercell of CrOCl-graphene heterostructure
based on density functional theory. It turns out that the Dirac cone
in such heterostructure supercell stems almost 100% from carbon pz
orbitals of graphene (see Supplementary Note 7 of Supplementary
Information), which clearly indicates the absence of interlayer
hybridization (hopping).

We use distinct letters to denote the ladder operators for
electrons in graphene (ĉ,ĉy) and substrate (d̂,d̂

y
). This implies in a
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notational manner the approximation of distinguishable electrons. In
other words, the many-body wavefunction of the coupled bilayer
system (denoted as Ψj i) can be written a separable fashion, namely a
direct product of graphene’s and substrate’s part, i.e.,

Ψj i= Ψj ic � Ψj id ð6Þ

In a mean-field treatment, the corresponding many-body wavefunc-
tion would thus be a direct product of two Slater determinants, Ψj ic
and Ψj id for the graphene layer and the substrate layer, respectively.
This is reminiscent of the Born-Oppenheimer approximation for
electrons and ions. Technically, this means that order parameters
∼ hĉyd̂i ðhd̂y

ĉiÞ are not allowed in our treatment. A finite value of
hĉyd̂i ðhd̂y

ĉiÞ suggests the emergence of another phase, an interlayer
excitonic condensate in such coupled bilayer system. However, we
note that such interlayer exciton has to be driven by intervalley
Coulomb scattering between the K=K 0 valley of graphene and
(presumingly) Γ valley of substrate’s electrons, with the amplitude
∼ e2 expð�jKjdÞ=ð2ϵ0ϵr jKjÞ being several orders ofmagnitudes smaller
than the intravalley one in our problem. Thus, it is completely
legitimate to neglect the interlayer particle-hole exchange in our
problem, and the separable wavefunction ansatz Eq. (6) is very well
justified. Then, we solve the full interacting Hamiltonian Eqs. (5) under
the separable wavefunction ansatz Eq. (6), and the workflow is
presented in “Methods” section. Nevertheless, the interlayer excitonic
insulator state consisted of Dirac electrons (holes) and quadratically
dispersive holes (electrons) is possible in valley-matched graphene-
insulator heterostructures, such as those consisted of graphene and
transition metal dichalcogenides with the band extrema at K and K 0

points. We leave this for future study.
To explore how the interlayer Coulomb coupling would affect

the electronic crystal state of the substrate, we first consider the
situation as a reference that the substrate is decoupled from gra-
phene. The energy difference between the spin polarized EC state
and Fermi-liquid (FL) state (condensation energy) as a function of the
carrier density n is given by quantum Monte Carlo calculations in
refs. 53,54, as shown by the green line in Fig. 4c, where an effective
mass m* = 1.3, a background dielectric constant ϵr = 4, and valley
degeneracy of 2 are considered in order to mimic the conduction
band minimum of CrOCl. The condensation energy reaches zero

when n ≈ 4.5 × 1012 cm−2 (corresponding to critical Wigner-Seitz
radius r*s≈32:9), suggesting the transition from the EC to the FL
state. More details are given in “Methods” section.

We further include the interlayer Coulomb coupling between the
substrate and graphene (setting the chemical potential at the CNP of
graphene), which can be treated using perturbation theory given that
the interlayer Coulomb energy is always much smaller than the sum of
the intralayer Coulomb energy and kinetic energy within the relevant
parameter regime (see Supplementary Figure 12). Specifically, with the
separable wavefunction ansatz (Eq. (6)), the ground-state charge
densities for the graphene layer and the EC layer are separately
obtained from unrestricted Hartree-Fock calculations, which are fur-
ther used to estimate the interlayer Coulomb energy. More details
about the perturbative treatment of interlayer Coulomb interactions
are presented in Supplementary Note 6 of Supplementary
Information.

We find that the condensation energy (per electron) of the EC is
substantially enhanced in amplitude after including the interlayer
interactions, as shownby the orangediamonds in Fig. 4. As a result, the
EC-FL transition is postponed to a much higher density
n ≈ 16 × 1012 cm−2 (corresponding to critical Wigner-Seitz radius
r*s≈17:3). This is because the energy of the coupled bilayer can be
further lowered by pinning the charge centers (marked as light blue
stars in Fig. 4a, b) of the two layers in an anti-phase interlockedpattern,
in order to optimize the repulsive interlayer Coulomb energy. The
extra energy gain from such interlocking of charge centers compen-
sates the energy cost of the EC state when n≿ 4.5 × 1012 cm−2, thus
substantially stabilizes the EC state.

On the one hand, since the condensation energy of the free 2D
electron gas in the decoupled substrate is estimated using the model
that accurately fits to quantumMonte Carlo data53, the estimate of the
critical density for the decoupled substrate is expected to be accurate.
On the other hand, in the case of substrate coupled with graphene
layer, although the interlayer Coulomb energy is estimated with
Hartree-Fock approximation, the qualitative conclusion (that the EC
state gets stabilized by a cooperative interlayer Coulomb coupling) is
expected to be valid even in a beyond-mean-field treatment. This is
because under the separable wavefunction ansatz, the interlayer
Coulombenergy in the EC state is always negative (compared to that of
FL state) under anoptimal choice of relative charge centers,which thus

Fig. 4 | Stabilizing effect of electronic crystal by interlocking of the charge
modulations in coupled graphene-insulator heterostructures. Charge density
modulations n(r) in real space afterminimizing interlayer Coulomb interactions for
a gapped Dirac state in graphene, and b electronic-crystal state in the substrate,
which forms triangular superlattice. The blue stars annotate a maximum and a
minimumofdensity in each state. The dashed lines connect two stars located at the
same in-plane coordinate. c Condensation energy (per electron) of the electronic

crystal state Econd vs. the carrier densityn in the substrate. The green line represents
the condensation energy of the decoupled system using the quantumMonte Carlo
data, and the orange lines shows that of the coupled bilayer system, which is
significantly stabilized by interlayer Coulomb coupling. The critical rs for Wigner-
crystal transitions are also indicated in the coupled and decoupled cases,
respectively.
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always stabilizes the EC state even if the intralayer interactions are
treated using beyond-mean-field approaches.

We note that the stabilizing effect of EC is not unique to band-
aligned graphene-insulator heterostructures considered in this work.
In principle, it only requires the presence of another state exhibiting
non-uniform charge distribution atop of the EC, such that the inter-
layer Coulomb energy gain would compensate for any energy cost of
the long-wavelength charge modulations in the two layers. For exam-
ple, remarkably robust EC state has been observed in a bilayer system
consisting of two monolayer MoSe2 separated by hexagonal boron
nitride55, which was also argued to be stabilized by the interlocking of
the EC states in the two layers.

Materials realization
The scenario discussed above is not only closely related to CrOCl-
graphene and CrI3-graphene heterostructures19,21, but can also be
extended to various band-aligned graphene-insulator hetero-
structures. As along as the conduction band minimum (CBM) or
valencebandmaximum (VBM)of the substrate is energetically close to
the Dirac points of graphene, charges could be easily transferred
between graphene and the substrate’s surface by gate voltages. Fur-
thermore, it ismore likely to form long-wavelengthordered state at the
surface of the substrate (with slight carrier doping) if the material has
large effectivemasses at theCBMorVBM.Meanwhile, an insulatorwith
relatively small dielectric constant would have weaker screening
effects to e-e interactions, which also favors long-wavelength ordered
state at small carrier doping.

Following these guiding principles, we have performed high-
throughput first principles calculations based on density func-
tional theory for various insulating van der Waals materials.
Eventually, we find twelve suitable candidate materials (including
CrOCl and CrI3), whose CBM and VBM energy positions, dielectric
constants (ϵr), effective masses at the band edges, and the corre-
sponding Wigner-Seitz radii (rs) are listed in Table 1. Clearly, the
Wigner-Seitz radii of these materials at the band edges (estimated
under slight doping concentration n = 1012 cm−2) are all above the
threshold of forming a Wigner-crystal state (rs ≿ 31)53. In addition,
the energy bands of these insulating substrate materials can be
easily shifted using vertical displacement fields (see Supplemen-
tary Note 7 in Supplementary Information), such that charge
transfer between graphene and the substrate can be controlled by
non-disruptive gate voltages. We have also considered hetero-
structures consisted of graphene and TMDs. Besides trilayer (or
thicker) WS2 as already listed in Table 1, we further nominate WSe2
(trilayer or thicker), MoSe2 (bilayer or thicker), and MoTe2 (bilayer
or thicker) as possible candidate substrates to realize the effects
discussed above. More details are given in Supplementary Note 7
of Supplementary Information.

Discussion
In summary, we have studied the synergistic correlated electronic
states emerging from coupled graphene-insulator heterostructures
with gate-tunable band alignment. Based on comprehensive theore-
tical studies, we have shown that the gate-tunable carrier dopingmay
yield a long-wavelength electronic crystal at the surface of the sub-
strate driven by e-e interactions within the substrate, which in turn
exerts a superlattice Coulomb potential to the Dirac electrons in
graphene layer. This would substantially change the low-energy
spectrum of graphene, where a gapped Dirac state concomitant with
drastically enhanced Fermi velocity would emerge as e-e interaction
effects. These theoretical results are quantitatively supported by our
transport measurements in graphene-CrOCl heterostructure.
Besides, the Dirac subbands in graphene can be endowed with non-
trivial topological properties by virtue of the interlayer Coulomb
coupling with the long-wavelength electronic crystal underneath.

Reciprocally, the electronic crystal in the substrate can be sub-
stantially stabilized by virtue of a cooperative interlayer Coulomb
coupling with the gapped Dirac state of graphene. We have further
performed high-throughput first principles calculations, and sug-
gested a number of promising insulating materials as candidate
substrates for graphene to realize such effects.

However, the understanding of such coupled bilayer corre-
lated electronic systems is still at a preliminary stage, and the
study is far from being complete. First, the long-wavelength
electronic crystal cannot be the only possible candidate ground
state. Other correlated states such as magnetic or even super-
conducting states may also occur in the charge doped insulating
substrate, e.g., in the case of high-temperature cuprate
superconductor15,16 and monolayer 1T’-WTe2

17. This may give rise
to diverse quantum states of matter in graphene due to interfacial
proximity couplings with Dirac fermions. Moreover, so far we have
only considered the ground state properties of such coupled
bilayer correlated electronic systems. What is more intriguing is
the collective excitations of the electronic crystal and their cou-
plings with Dirac electrons in graphene. Around the quantum
melting point of the electronic crystal, strong quantum fluctua-
tions would be coupled with Dirac fermions with graphene via
interlayer Coulomb interactions, which may give rise to unique
quantum critical properties. Therefore, our work may stimulate
further exploration of the intriguing physics in such a platform for
correlated and topological electrons.

Methods
Hartree-Fock approximations assisted by renormalization
group approach
When graphene is coupled to a superlattice potential, the Cou-
lomb interactions are suitably expressed in the subband eigen-
function basis, on which we have performed the Hartree-Fock
calculations. Since interaction effects are most prominent around
the CNP, we project the Coulomb interactions onto only a low-
energy window including three valence and three conduction
subbands that are closest to the Dirac point per valley per spin.
We use a mesh of 18 × 18 k-points to sample the mini Brillouin
zone of the superlattice.

To incorporate the influences of Coulomb interactions from the
high-energy remote bands, we rescale the Fermi velocity within the
low-energy window of the effective Hamiltonian using Eq. (4). The
other parameters of the non-interacting effective Hamiltonian are
unchanged under the RG treatment since their corrections are of
higher order, thus can be neglected. In other words, we find the fol-
lowing RG equations for Fermi velocity vF and leading superlattice
potential Ud with respect to energy cutoff Ec

d vF
d log Ec

= � e2

16πϵ0ϵr
, ð7Þ

d UdðQÞ
d log Ec

=0: ð8Þ

The detailed derivations of the RG equations are presented in Sup-
plementary Note 3 of Supplementary Information.

We also neglect on-site Hubbard interactions and intervalley
coupling in e-e Coulomb interactions, which turn out to be one or two
order(s) of magnitude weaker than the dominant intravalley long-
range Coulomb interactions in such graphene-based superlattice
systems56. To model the screening effects to the e-e Coulomb inter-
actions from the dielectric environment, we introduce the double gate
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screening form of Vint, whose Fourier transform is expressed as

V intðqÞ=
e2 tanhðqdsÞ
2Ω0ϵrϵ0q

, ð9Þ

where Ω0 is the area of the superlattice’s primitive cell, ϵr is a back-
ground dielectric constant and the thickness between two gates is
ds = 400Å. Then, we initialize the Hartree-Fock loop with the initial
conditions in the form of various different order parameters and
obtain the converged ground state self-consistently (see Supplemen-
tary Note 4 of Supplementary Information).

When we consider electrons in graphene and substrate on equal
footing in Eqs. (5), the routineofHartree-Fock calculations is exactly the
same. However, we need to first consider solely the substrate side. After
performing unrestricted Hartree-Fock calculations, we use the ground-
state charge density of EC in the substrate as input for constructing the
superlattice potential. Explicitly, we need to replace Eq. (2) by

UdðQÞ= e2

2ϵ0 ϵr Ω0

e�jQjd ρdðQÞ
jQj : ð10Þ

where ρd(Q) is the Fourier component of the charge density in the
substrate. More details can be found in Supplementary Note 6 of
Supplementary Information.

Workflow to solve the coupled bilayer Hamiltonian Eqs. (5)
We solve the Hamiltonian of the coupled bilayer system described by
Eqs. (5) in the following workflow:

• First, we start our calculations by considering solely the sub-
strate Hamiltonian Eqs. (5b) and (5d). We considered the case of
triangular superlattice, which is the actual ground state for the
EC of 2D electron gas. In particular, the total energy of the tri-
angular EC can described by a fitting model given in ref. 53:

EWC =
c1
rs

+
c3=2

r3=2s

+
c2
r2s

+
c5=2

r5=2s

+
c3
r3s

ð11Þ

where c1 = − 1.106103, c3/2 = 0.814, c2 = 0.113743, c5/2 = − 1.184994,
and c3 = 3.097610. Theseparameters aredeterminedby fitting to
quantumMonte Carlo data. The total energy for the Fermi-liquid
state of 2D electron gas is given by the following model54:

EFL = E
HF
FL + Ec

FL ð12aÞ

EHF
FL =

1
2r2s

� 4
ffiffiffi
2

p

3πrs
ð12bÞ

Ec
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x
+C ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 2a2x +a3
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+D arctan
x +a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 � a2

2
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ð12cÞ

where x =
ffiffiffiffi
rs

p
and

A=
2 a1 + 2a2

� �
2a1a2 � a3 � a2

1

ð13aÞ

B=
1
a1

� 1
a1 + 2a2

ð13bÞ

C =
a1 � 2a2

a3
+

1
a1 + 2a2

ð13cÞ

D=
F � a2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 � a2

2

q ð13dÞ

F = 1 + 2a2 � a1

� � 1
a1 + 2a2

� 2a2

a3

� �
ð13eÞ

withwith a0 = −0.1925, a1 = 7.3218, a2 = 0.16008, and a3 = 3.1698.
These parameters for the FL state are also determined by fitting
to quantum Monte Carlo data54. The energies are given in Har-
tree atomic units. Then, one can extract the condensation
energy for the isolated 2D electron gas in the substrate EWC − EFL,
with the accuracy comparable to quantum Monte Carlo
calculations.

• Second, with the help of the separable wavefunction ansatz Eq.
(6), we further calculate the ground-state charge density of the
EC state in the substrate under Hartree-Fock approximations.
Although the Wigner crystal condensation energy would be
significantly overestimatedwith suchmean-field approximation,
the ground-state charge density can still be properly described
by the unrestricted Hartree-Fock treatment57. Then, one can
integrate out the charge degrees of freedom of the substrate so
that the charge density modulation characterized by the Fourier
components of the charge density {ρd(Q)} (Q denotes the
reciprocal vector of the superlattice) can be used as an input for
the superlattice potentialUd(Q), as shown in Eq. (10). Compared
to Eq. (2), this superlattice potential is more realistic and self-
contained in ourmodel. Equation (10) would be recovered to Eq.
(2) by setting ρd(Q) = 2 for any reciprocal vector Q, which is
equivalent to say that two (spin degenerate) charges per
primitive supercell are localized in real space in a Dirac-δ-
function form.

• Third, we perform RG-assisted unrestricted HF calculations for
the interacting Dirac electrons in graphene as explained in
“Methods”. If the chemical potential is at the CNP of graphene, a
gap opening will be triggered by e-e interactions within the
graphene layer as discussed previously.

• From the above procedures, we would separately obtain con-
verged HF ground states, Ψj id for the substrate, and Ψj ic for
graphene, respectively. From the ground-state wavefunctions
Ψj id and Ψj ic, one can extract the corresponding ground-state
charge density modulations {ρd(Q)} and {ρc(Q)}, based on which
the interlayerCoulombenergy (the expectation valueof Eq. (5e))
can be calculated. More details are given in Supplementary
Note 6 of Supplementary Information.
However, the ground states are obtained so far by minimizing
(mostly) the intralayer parts of the full Hamiltonian, the interlayer
Coulomb interaction Eq. (5e) is not optimized yet. We note that
the intralayer kinetic energy and intralayer Coulomb interaction
energy forboth graphene and the substrate areunchangedunder
constant lateral shifts of the charge centers, thus the ground
state Ψj id � Ψj ic obtained so far is massively degenerate up to
global and relative shifts of the bilayer charge centers. Such
degeneracy would be partially lifted by the interlayer Coulomb
energy 〈Hgr-sub〉. Obviously, 〈Hgr-sub〉 is invariant under the global
shift of the charge centers of the bilayer system, but it varies with
respect to a relative charge-center shift. Therefore, by virtue of
perturbation theory, optimizing the interlayer Coulomb energy
amounts to find the optimal relative shift vector between the
charge centers of the two layers within the degenerate ground-
state manifold obtained in the previous procedures. Such
perturbative treatment of Hgr-sub is justified given that the
interlayer Coulomb energy is always weaker than the sum of
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the kinetic energy and the intralayer Coulomb energy within
relevant parameter regime, as shown in Supplementary Figure 12.
For example, the interlayer Coulomb energy ~ 20meV for typical
parameters Ls = 50 Å and ϵr = 4, while the intralayer Coulomb
energy ~ 60meV. More details for the perturbative calculation of
interlayer Coulomb energy can be found in Supplementary
Note 6 of Supplementary Information.

• Finally, we gather all the contributions from Eq. (5) to find out
the total energy of the coupled bilayer system staying in a gap-
ped Dirac state (at the CNP) for graphene and a long-wavelength
EC state for the substrate. By comparing it with that of a non-
interacting Dirac state for graphene and a 2D Fermi-liquid state
for the substrate, we can then find out if the gapped graphene
interplays with the long-wavelength charge-ordered substrate in
a cooperative or competitive manner.
It turns out that the bilayer system tends to cooperate with each
other such that both the gapped Dirac state (at the CNP) of
graphene and the long-wavelength charge ordered state in the
substrate are substantially stabilized by the interlayer Coulomb
coupling. The results are presented in Figs. 2 and 4 of the
main text.

Density functional theory calculations
The first principles calculations are performed with the projector
augmented-wave method within the density functional theory58, as
implemented in the Vienna ab initio simulation package software59.
The crystal structure is fully optimized until the energy difference
between two successive steps is smaller than 10−6eV and theHellmann-
Feynman force on each atom is less than 0.01 eV ⋅Å. The generalized
gradient approximation by Perdew, Burke, and Ernzerhof is taken as
the exchange-correlation potential60. As Cr is a transition metal ele-
ment with localized 3d orbitals, we use the on-site Hubbard parameter
U = 5.48 eV for theCr 3dorbitals in theCrOCl bilayer andU = 3 eV forCr
3d orbitals in the CrI3 bilayer. The so-called fully localized limit of the
spin-polarized GGA+U functional is adopted as suggested by Liech-
tenstein and coworkers61, and the non-spherical contributions from
the gradient corrections are taken into consideration. The “DFT+D2”
typeof vdWcorrectionhasbeen adopted for allmultilayer calculations
to properly describe the interlayer interactions62.

Our high-throughput filtering of the proper insulating sub-
strate materials for graphene starts from the 2D materials com-
putational database63. We only focus at those with bulk van der
Waals structures which have been previously synthesized in
laboratory. This ensures that it is experimentally feasible to
exfoliate few layers from their bulk sample and then stack them on
graphene to form heterostructures.

Experimental measurements of the gaps in graphene-CrOCl
heterostructure
By designing a dual-gated structure, we used few-layered CrOCl as a
bottom dielectric while few-layered hexagonal boron nitride (h-BN)
was served as top gate dielectric. The top and bottom gate voltages
can then be converted into doping and displacement fields for further
data analysis. Graphene, h-BN, and CrOCl flakes are mechanically
exfoliated from high-quality bulk crystals. The vertical assembly of
few-layered hBN, monolayer graphene, and few-layered CrOCl were
made using the polymer-assisted dry-transfer method. Electron beam
lithography was done using a Zeiss Sigma 300 SEM with a Raith Elphy
Quantum graphic writer. Top and bottom gates as well as contacting
electrodes were fabricated with an e-beam evaporator, with typical
thicknesses of Ti/Au ~ 5/50 nm. Electrical transport measurements of
the devices were performed using an Oxford TeslaTron 1.5 K system.
Gate voltages on the as-prepared multi-terminal devices were fed by a
Keithley 2400 source meter. Channel resistances were recorded in
4-probe configurations using low frequency (13.33 Hz) lock-in

technique with Stanford SR830 amplifiers. The gate dependencies of
channel resistances were measured at various temperatures for the
extraction of thermal gaps. More details about the device configura-
tion, measurement set-up, and sample quality can be found in Sup-
plementary Note 8 of Supplementary Information.

Data availability
The data that support the findings of this study are available at https://
figshare.com/projects/MonoGr-CrOCl/174702.

Code availability
The codes that support this study are available from the correspond-
ing author upon request.
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