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Abstract: Quantum random numbers play a crucial role in diverse applications, including
cryptography, simulation, and artificial intelligence. In contrast to predictable algorithm-based
pseudo-random numbers, quantum physics provides new avenues for generating theoretically true
random numbers by exploiting the inherent uncertainty contained in quantum phenomena. Here,
we propose and demonstrate a quantum random number generator (QRNG) using a prepared
broadband squeezed state of light, where the randomness of the generated numbers entirely
originates from the quantum noise introduced by squeezing operation rather than vacuum noise.
The relationship between entropy rate and squeezing level is analyzed. Furthermore, we employ
a source-independent quantum random number protocol to enhance the security of the random
number generator.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Random numbers have a wide range of applications in fields such as cryptography, modeling
and simulation, statistical sampling, artificial intelligence, machine learning, network security,
and hardware testing. The currently employed random numbers are algorithm-based pseudo-
random numbers, which are characterized by predictability. Alternatively, random numbers
can be generated through classical physical processes, including electronic noise and thermal
noise. However, due to the deterministic nature of classical physics, these random numbers are
theoretically predictable. On the other hand, exploiting the intrinsic uncertainty of quantum
phenomena, quantum physics offers a unique avenue for generating true random numbers [1,2].

Extensive research has delved into numerous protocols and quantum systems to advance the
field of quantum random number generators (QRNGs) [3–13]. These investigations involve
device-independent QRNGs with extreme security [14–17] and those achieving ultra-high rates
[18–20]. Quantum systems employed for generating random numbers include photon bits
[21,22], continuous-variable (CV) quantum state of light [23–27], laser phase noise [20,28,29],
spontaneous raman scattering [30], quantum tunneling diode [31,32] and others [33–35]. In these
quantum systems, QRNGs based on the quadratures of the vacuum state and coherent state are
extensively studied [24–26,36,37], primarily due to the high-speed measurement capability and
economical devices. Intriguingly, there are QRNGs based on natural light [38–40], and some are
specifically designed for integration into mobile phones [41]. These QRNGs can be classified into
three types according to the security of the exploited protocol: trusted-device [12,18,19,24,37],
semi-device-independent [42–51] and device-independent QRNGs [15–17,52]. The recent
on-chip integrated QRNG has also achieved remarkable achievements [29,36,53]. These studies
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on random number generation collectively constitute several major research directions and reach
the forefront in terms of security, speed, and miniaturization in the field of current quantum
random numbers.

In this work, we propose a QRNG whose randomness entirely originates from the quantum
noise introduced by quantum squeezing operation. In fact, a squeezed state is more quantum
compared to the vacuum state. Despite using the same measurement method for the vacuum
and squeezed states, we establish the vacuum noise level as the threshold and solely regard
pure quantum noise exceeding this level as the source of randomness for this quantum random
number generator as depicted in Fig. 1. A broadband squeezed state of light, prepared through
a short optical parametric amplifier (OPA), is the foundation for generating quantum random
numbers. Based on a source-independent (SI) quantum random number protocol and balanced
homodyne detection, we implement the QRNG system and achieve a generation rate of up to
92.8 Mbps, in which we assume the noise process is stationary and source emitting independent
and identically distributed quantum states. The amount of the targeted randomness decreases
when the decoherence effect of the squeezed state is enhanced, leading to a decrease in the rate
of quantum random number generation.

2. Theory and protocol

Squeezed states of light are produced in nonlinear processes, in which pairs of correlated photons
of the same frequency can be generated. The squeezing operator describing the time evolution of
the light field in the process is Ŝ(ξ) = e

ξ
2 â†2− ξ∗

2 â2 , and the squeezed state |ξ⟩ can be represented
as [54]

Ŝ|0⟩ = 1√
cosh r

∞∑︂
n=0

√︁
(2n)!
2nn!

tanh rn |2n⟩, (1)

where ξ = |ξ | eiθ , r ∈ R is called the squeezing parameter and θ is the squeezing angle. In
comparison to the vacuum and coherent states, the squeezed vacuum state is a superposition
of only even Fock states, endowing it with stronger non-classical properties. For the proposed
QRNG, the targeted randomness solely stems from quantum noise introduced by quantum
squeezing operations. Consequently, we do not consider the randomness inherent in vacuum
noise within this context.

In general QRNGs based on balanced homodyne detection, the measurement results of
quadrature amplitude Q̂ and quadrature phase P̂ are typically discretized with an oscilloscope
or analog-to-digital converter (ADC) during data collection. The effect of measurement
discretization needs to be considered. A coarse-grained version of the operator P̂ is obtained
by introducing a partition Pδp = {Ik

δp}+∞k=−∞ for the positive operator value measure (POVM){︂
P̂k
δp

}︂
with elements P̂k

δp =
∫ (k+1)δp
kδp dp|p⟩⟨p|, where the elements Ik

δp consist of half-open
intervals defined as Ik

δp = (kδp, (k + 1) δp], and δp represents the measurement precision and
k ∈ N. The same applies to the discretized measurement of quadrature Q̂. The discretization
process distributes the measurement outcomes among individual result bins. By encoding these
bins, the measured results can be transformed into raw quantum random bits.

To enhance the security of the QRNG, we employ the SI quantum random number protocol
and the obtained squeezing level to estimate the amount of secure quantum randomness within
the anti-squeezed quantum noise [55]. Derived from the well-known Heisenberg uncertainty
principle

△P · △Q ≥ 1
2
|⟨[P, Q]⟩| , (2)

the entropic uncertainty principle [56]

H(P) + H(Q) ≥ log2 c0 (3)
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stands as the foundational theory of this SI quantum random number protocol, where H(·)
represents von Neumann entropy and the term c0 quantifies the complementarity of the observables.
Consider a system with a partition stateωABC. Under the conditions of discretization measurement
mentioned above, the uncertainty relationship described by the conditional max-entropy and
conditional min-entropy is given by [57]

Hmin(Pδp |C) + Hmax(Qδq |B) ≥ − log2 c(δq, δp), (4)

where Hmin(Pδp |C) and Hmax(Qδq |B) are the conditional quantum min- and max-entropy,
respectively. The complementarity c(δq, δp) can be expressed in terms of the 0th radial prolate
spheroidal wave function of the first kind S(1)0 as

c(δq, δp) = 1
2π
δqδpS(1)0 (1,

δqδp
4

)2, (5)

taking into account the POVMs
{︂
P̂k
δp

}︂
and

{︂
Q̂k

δq

}︂
. Here δp and δq represent the measurement

precision of quadratures P̂ and Q̂ in phase space using an actual digital device. Typically, δp and
δq are set as equal, denoted by δ.

For the partition state ωABC, we assume that system C is held by Eve, and the system B
coincides with A in the quantum random number scheme. Equation (4) is further represented as

Hmin(Pδp |E)≥ − log2 c(δq, δp) − Hmax(Qδq)
≡ Hlow(Pδp |E)

(6)

Here, Hlow(Pδp |E) represents the lower bound on the conditional min-entropy, i.e., the
maximum amount of secure extractable randomness. Hmax(Qδq) is the max-entropy that reflects
Alice’s lack of knowledge about outcomes when measuring the quadrature Q̂. Here P̂, Q̂ are
defined as the data quadrature and check quadrature, respectively. Assuming the injected squeezed
state follows a Gaussian distribution, it is easy to estimate the rate of random number generation
using Hmax(Qδq) = 2 log2

∑︁
k
√︁
p(qk), where p(qk) is the probability of the measurement result

falling into the kth bin.
In this scheme, we exploit quantum noise introduced by squeezing operation instead of vacuum

noise to generate quantum random numbers. Therefore, the amount of extractable quantum
randomness for this scheme can be expressed as

HSQ (Pδp |E) = HS(Pδp |E) − HV(Pδp |E) (7)

where HS(Pδp |E) and HV(Pδp |E) represent the amount of extractable randomness of the anti-
squeezed quadrature of the squeezed vacuum state and the vacuum before squeezing respectively,
as shown in Eq. (6). It can be seen that we remove the randomness contained in the anti-squeezed
noise that is not caused by nonlinear effects.

In addition, the smooth min-entropy is taken into account in the practical random number
protocol, which is related to the randomness extraction. Based on this, the amount of extractable
quantum randomness can be further expressed as [55,58,59]

Hϵ
SQ (Pδp |E) = HSQ (Pδp |E) − 4√np

√︃
log2(

2
ϵ2

) log2(21+
Hmax(Qδq)

2 + 1), (8)

where Hϵ
SQ (Pδp |E) is the smooth min-entropy, representing the secure quantum randomness

accounting for finite-size effects. np is the number of measurements for quadrature P̂ and ϵ is the
security parameter. The protocol is called ϵ-secure, which means that it is ϵ-indistinguishable
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from an ideal protocol that is perfectly secure. The term Hmax(Qδq) is the max-entropy of the
vacuum quadrature, considering the most conservative scenario.

It is important to note that we assume the source emit independent and identically distributed
quantum states. Furthermore, we handle vacuum noise and other classical noise differently in this
scheme. Under the requirements of the SI protocols, vacuum noise within the measured noise is
considered pure and eliminated using Eq. (7). On the other hand, classical noise, assumed as
stationary and Gaussian, including electronic noise and additional noises from local oscillator
(LO) fluctuations, phase drift, temperature variations, external electromagnetic field interference,
and others, is treated as impurities in the input pure state and therefore untrusted. An observed
increase in classical noise reduces the amount of secure randomness, following the entropic
uncertainty principle, as represented by Eq. (6).

3. Experimental setup

The experimental setup is illustrated in Fig. 2. The Nd: YVO4/LBO dual-wavelength laser emits
beams with wavelengths of 1342 nm and 671 nm. The two beams are separated by a dichroic
beam splitter (DBS) and then pass through two mode-cleaners (MCs) respectively, reaching
two coherent states at least 3 MHz, where the quadrature noise is equal to the vacuum noise.
Differing from the previously used OPA [60–63], we design a short half-monolithic optical cavity
to serve as the OPA for the preparation of a broadband squeezed state [64]. The lengths of the
periodically polarized KTiOPO4 (PPKTP) crystal in OPA and whole cavity are approximately 10
mm and 6 mm respectively. The front surface of the crystal is coated with reflectivity R>99.9%
at 1342 nm and transmission T = 85.3% at 671 nm, while the piezo-actuated concave mirror is
coated with reflectivity R = 88.2% at 1342 nm and reflectivity R = 99.9% at 671 nm. The 671
nm laser is used as the pump beam for OPA, while the 1342 nm laser is used as the seed beam for
OPA and LO for balanced homodyne detection. The PPKTP crystal’s temperature is controlled
at around 53 ◦C to achieve simultaneous resonance for both the seed beam (8 mW injection
power) and pump beam (80 mW injection power). When the relative phase between the seed and
pump beam is locked in nπ (n is an odd integer), a bright broadband squeezed state of light is
prepared, characterized by a squeezed quadrature amplitude and an anti-squeezed quadrature
phase. We employ the quadratures of the sideband of bright squeezed light to evaluate the secure
randomness and generate the raw random numbers.

The squeezed state is detected using a LO and a balanced homodyne detector. The obtained
alternating current component is amplified using a broadband amplifier. We employ a 103 MHz
signal and a 100 MHz low-pass filter for mixing and filtering the amplified signal. Subsequently,
the signal is collected using an oscilloscope for data acquisition, enabling discrete measurement
of the anti-squeezed quadrature and the evaluation of targeted quantum randomness. The choice
of quadrature measurements is governed by a random seed that alternates between data quadrature
and check quadrature measurements. The detected squeezing level of the check quadrature is
exploited to estimate the amount of secure randomness and raw random numbers are generated
based on the quadrature measurements. To ensure the uniformity of the random switching, we
segment the total measurement time into a large number of 20-µs intervals, selecting only 1 µs
randomly within each interval for measuring the check quadrature. Consequently, we input 5
random bits every 20 µs to facilitate the selection and switching of quadrature measurements.
During the generation of raw random numbers, the oscilloscope assigns each measurement
result to a different bin and converts it into an n-bit raw random number. These raw random
numbers are processed offline using a computer, with the check quadrature used for evaluating
the conditional min-entropy. Exploiting the randomness extractor, we obtain the ultimate secure
quantum random bits. A small portion of these random numbers is recycled into the phase
modulator, enabling randomly switching measurements of quadrature components. The LO
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Fig. 1. Schematic diagram for generating random numbers with the signal field 𝑠. The left
side is a balanced homodyne detection used to measure the quadrature components of the
signal field. The right side depicts the distribution of the measured data, i.e., the measured
anti-squeezed quadratures of squeezed states with variances of 1, 4, and 16, corresponding
to the black, red, and blue curves respectively. The yellow area enclosed by the black curve
represents the distribution of measurement results with the vacuum and coherent states. The
distribution of measurement results becomes flatter and more uniform with the enhancement
of the anti-squeezing, indicating an increase in targeted entropy. LO: local oscillator, BS:
50:50 beam splitter, OSC: oscilloscope.

stands as the foundational theory of this SI quantum random number protocol, where 𝐻 (·)
represents von Neumann entropy and the term 𝑐0 quantifies the complementarity of the observables.
Consider a system with a partition state𝜔𝐴𝐵𝐶 . Under the conditions of discretization measurement
mentioned above, the uncertainty relationship described by the conditional max-entropy and
conditional min-entropy is given by [57]

𝐻min (𝑃𝛿𝑝 |𝐶) + 𝐻max (𝑄 𝛿𝑞 |𝐵) ≥ − log2 𝑐(𝛿𝑞, 𝛿𝑝), (4)

where 𝐻min (𝑃𝛿𝑝 |𝐶) and 𝐻max (𝑄 𝛿𝑞 |𝐵) are the conditional quantum min- and max-entropy,
respectively. The complementarity 𝑐(𝛿𝑞, 𝛿𝑝) can be expressed in terms of the 0th radial prolate
spheroidal wave function of the first kind 𝑆
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precision of quadratures �̂� and �̂� in phase space using an actual digital device. Typically, 𝛿𝑝 and
𝛿𝑞 are set as equal, denoted by 𝛿.

For the partition state 𝜔𝐴𝐵𝐶 , we assume that system 𝐶 is held by Eve, and the system B
coincides with A in the quantum random number scheme. Equation (4) is further represented as
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≡ 𝐻low (𝑃𝛿𝑝 |𝐸) (6)

Here, 𝐻low (𝑃𝛿𝑝 |𝐸) represents the lower bound on the conditional min-entropy, i.e., the maximum
amount of secure extractable randomness. 𝐻max (𝑄 𝛿𝑞) is the max-entropy that reflects Alice’s
lack of knowledge about outcomes when measuring the quadrature �̂�. Here �̂�, �̂� are defined as
the data quadrature and check quadrature, respectively. Assuming the injected squeezed state

Fig. 1. Schematic diagram for generating random numbers with the signal field ŝ. The left
side is a balanced homodyne detection used to measure the quadrature components of the
signal field. The right side depicts the distribution of the measured data, i.e., the measured
anti-squeezed quadratures of squeezed states with variances of 1, 4, and 16, corresponding
to the black, red, and blue curves respectively. The yellow area enclosed by the black curve
represents the distribution of measurement results with the vacuum and coherent states. The
distribution of measurement results becomes flatter and more uniform with the enhancement
of the anti-squeezing, indicating an increase in targeted entropy. LO: local oscillator, BS:
50:50 beam splitter, OSC: oscilloscope.

Fig. 2. Schematics of the setup for the quantum random number generation. HR: mirror with
high reflectivity, DBS: dichroic beam splitter, MC: mode cleaner, BS: 50:50 beam splitter,
PM: phase modulator, OPA: optical parametric amplifier, LO: local oscillator, Sq: squeezed
state, PD: photoelectric detector, Sub: subtractor, SG: signal source, AMP: broadband
amplifier, LP: low-pass filter, PC: computer, OSC: oscilloscope.

prepared, characterized by a squeezed quadrature amplitude and an anti-squeezed quadrature
phase. We employ the quadratures of the sideband of bright squeezed light to evaluate the secure
randomness and generate the raw random numbers.

The squeezed state is detected using a LO and a balanced homodyne detector. The obtained
alternating current component is amplified using a broadband amplifier. We employ a 103 MHz
signal and a 100 MHz low-pass filter for mixing and filtering the amplified signal. Subsequently,
the signal is collected using an oscilloscope for data acquisition, enabling discrete measurement
of the anti-squeezed quadrature and the evaluation of targeted quantum randomness. The choice
of quadrature measurements is governed by a random seed that alternates between data quadrature
and check quadrature measurements. The detected squeezing level of the check quadrature is
exploited to estimate the amount of secure randomness and raw random numbers are generated
based on the quadrature measurements. To ensure the uniformity of the random switching, we
segment the total measurement time into a large number of 20-μs intervals, selecting only 1 μs
randomly within each interval for measuring the check quadrature. Consequently, we input 5
random bits every 20 μs to facilitate the selection and switching of quadrature measurements.
During the generation of raw random numbers, the oscilloscope assigns each measurement
result to a different bin and converts it into an 𝑛-bit raw random number. These raw random
numbers are processed offline using a computer, with the check quadrature used for evaluating
the conditional min-entropy. Exploiting the randomness extractor, we obtain the ultimate secure
quantum random bits. A small portion of these random numbers is recycled into the phase
modulator, enabling randomly switching measurements of quadrature components. The LO
power is continuously monitored in real-time using a detector and a power meter, ensuring the
reliability of the measurement results.

Before initiating random number generation, it is necessary to characterize the relevant
devices. Firstly, the electronic noise level of the homodyne detector is recorded. Subsequently,
the LO is measured via the balanced homodyne detector to record the vacuum noise level.
Continuous monitoring of the LO power level is essential throughout the random number
generation process. Maintaining a constant LO power ensures that the measured vacuum noise
level remains unchanged. Additionally, random switching to the check quadrature (i.e., the
squeezed quadrature) is necessary to assess the anti-squeezing level and the amount of the
targeted quantum randomness. The switching time is set to 5% of the total measurement time,

Fig. 2. Schematics of the setup for the quantum random number generation. HR: mirror
with high reflectivity, DBS: dichroic beam splitter, MC: mode cleaner, BS: 50:50 beam
splitter, PM: phase modulator, OPA: optical parametric amplifier, LO: local oscillator,
Sq: squeezed state, PD: photoelectric detector, Sub: subtractor, SG: signal source, AMP:
broadband amplifier, LP: low-pass filter, PC: computer, OSC: oscilloscope.

power is continuously monitored in real-time using a detector and a power meter, ensuring the
reliability of the measurement results.

Before initiating random number generation, it is necessary to characterize the relevant
devices. Firstly, the electronic noise level of the homodyne detector is recorded. Subsequently,
the LO is measured via the balanced homodyne detector to record the vacuum noise level.
Continuous monitoring of the LO power level is essential throughout the random number
generation process. Maintaining a constant LO power ensures that the measured vacuum noise
level remains unchanged. Additionally, random switching to the check quadrature (i.e., the
squeezed quadrature) is necessary to assess the anti-squeezing level and the amount of the
targeted quantum randomness. The switching time is set to 5% of the total measurement time,
and the starting point of random switching is provided by the terminal random bits. Measuring
the squeezed noise level not only allows for the assessment of the quality of the squeezed state but
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Fig. 3. Experimental Results. (a) The measured noise power spectra, spanning a frequency
range from 3 MHz to 200 MHz. (b) The entropy rate of quantum random numbers varies
with the level of anti-squeezed noise. Here, the quadrature noise of coherent states (or
vacuum state) is defined as 1. When the anti-squeezed noise level is 1, no targeted quantum
random numbers can be extracted.

and the starting point of random switching is provided by the terminal random bits. Measuring
the squeezed noise level not only allows for the assessment of the quality of the squeezed state but
also enables the observation of the effects of other factors on the system. The latter may lead to
an increase in undesired randomness. Finally, the amount of the targeted quantum randomness is
evaluated using Eqs. (4)-(8), followed by further randomness extraction. If squeezing disappears,
or if strong noise interference causes the noise level of the squeezed quadrature to surpass vacuum
noise, the protocol is aborted.

4. Experimental results

The prepared squeezed state of light is measured using a spectrum analyzer, and the power spectra
are shown in Fig. 3(a). The anti-squeezed noise, ranging from 3 MHz to 203 MHz, is selected
for random number generation. The estimated amount of targeted quantum randomness for the
squeezed quadrature is based on the squeezed quadrature data. The signals are initially acquired
at a rate of 1 GSamples/s and then downsampled to 200 MSamples/s.

In order to estimate the generation rate, the amount of quantum random numbers based on
different anti-squeezing levels can be obtained using the theory described in Theory and Protocol,
as shown in Fig. 3(b). Based on the measured squeezing level and the selected squeezing
bandwidth, the squeezing ranges from 6.3 dB at 3 MHz to 4.1 dB at 203 MHz. We chose a
conservative squeezing level of 4.1 dB. Based on the estimated quantum conditional min-entropy,
each measurement result contains approximately 0.68 targeted quantum random bits.

In the subsequent randomness extraction, Toeplitz-Hash processing is performed on the 106

samples obtained from a round of experiments. The randomness extraction involves a security
parameter 𝜖 , which is set as 10−12. A Toeplitz matrix, composed of 𝑚 × 𝑙 − 1 computer-generated
random numbers, is used to extract randomness from the raw random bits, where 𝑚 and 𝑙

represent the number of input raw random bits and output terminal random bits respectively, with
𝑚 > 𝑙. The smooth min-entropy is further obtained using Eq. (8), and 𝐻 𝜖

min (𝑃𝛿𝑝 |𝐸) = 0.48
bit. Furthermore, the amount of targeted quantum random numbers or the smooth min-entropy
obtained at different squeezing levels under the same extraction conditions is shown in Fig. 3(b).
Considering that the time required for randomly switching and measuring the check quadrature
constitutes 5% of the total measurement time, along with the consumption of random seed at a

Fig. 3. Experimental results. (a) The measured noise power spectra, spanning a frequency
range from 3 MHz to 200 MHz. (b) The entropy rate of quantum random numbers varies
with the level of anti-squeezed noise. Here, the quadrature noise of coherent states (or
vacuum state) is defined as 1. When the anti-squeezed noise level is 1, no targeted quantum
random numbers can be extracted.

also enables the observation of the effects of other factors on the system. The latter may lead to
an increase in undesired randomness. Finally, the amount of the targeted quantum randomness is
evaluated using Eqs. (4)–(8), followed by further randomness extraction. If squeezing disappears,
or if strong noise interference causes the noise level of the squeezed quadrature to surpass vacuum
noise, the protocol is aborted.

4. Experimental results

The prepared squeezed state of light is measured using a spectrum analyzer, and the power spectra
are shown in Fig. 3(a). The anti-squeezed noise, ranging from 3 MHz to 203 MHz, is selected
for random number generation. The estimated amount of targeted quantum randomness for the
squeezed quadrature is based on the squeezed quadrature data. The signals are initially acquired
at a rate of 1 GSamples/s and then downsampled to 200 MSamples/s.

In order to estimate the generation rate, the amount of quantum random numbers based on
different anti-squeezing levels can be obtained using the theory described in Theory and Protocol,
as shown in Fig. 3(b). Based on the measured squeezing level and the selected squeezing
bandwidth, the squeezing ranges from 6.3 dB at 3 MHz to 4.1 dB at 203 MHz. We chose a
conservative squeezing level of 4.1 dB. Based on the estimated quantum conditional min-entropy,
each measurement result contains approximately 0.68 targeted quantum random bits.

In the subsequent randomness extraction, Toeplitz-Hash processing is performed on the 106

samples obtained from a round of experiments. The randomness extraction involves a security
parameter ϵ , which is set as 10−12. A Toeplitz matrix, composed of m× l− 1 computer-generated
random numbers, is used to extract randomness from the raw random bits, where m and l represent
the number of input raw random bits and output terminal random bits respectively, with m>l. The
smooth min-entropy is further obtained using Eq. (8), and Hϵ

min(Pδp |E) = 0.48 bit. Furthermore,
the amount of targeted quantum random numbers or the smooth min-entropy obtained at different
squeezing levels under the same extraction conditions is shown in Fig. 3(b). Considering that the
time required for randomly switching and measuring the check quadrature constitutes 5% of the
total measurement time, along with the consumption of random seed at a rate of 156.25 kbps,
our random number generation rate is approximately 92.8 Mbps. A extracted random string of
5 Mbit from raw random data is tested with the NIST suite [65], and the results are shown in
Table 1. In the case of multiple tests in a category, the smallest have been reported.
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Table 1. Results of NIST test suite on the extracted random numbers.

Test P-value Result

ApproximateEntropy 0.741933 Pass

BlockFrequency 0.927454 Pass

CumulativeSums 0.873457 Pass

FFT 0.686381 Pass

Frequency 0.896566 Pass

LinearComplexity 0.118981 Pass

LongestRun 0.264913 Pass

NonOverlappingTemplate 0.597707 Pass

OverlappingTemplate 0.547525 Pass

RandomExcursions 0.079253 Pass

RandomExcursionsVariant 0.215725 Pass

Rank 0.677375 Pass

Runs 0.572743 Pass

Serial 0.423874 Pass

Universal 0.916456 Pass

5. Summary

In this work, we choose the anti-squeezing noise completely introduced by the squeezing operation
as the targeted quantum entropy source for random number generation. By exploiting the entropic
uncertainty principle and a prepared broadband squeezed light, we achieve a SI QRNG with
the generation rate of approximately 92.8 Mbps. In this protocol, the vacuum noise and other
untrusted noise are treated separately and differently. The generated random numbers can be
used to demonstrate some quantum information protocols [60,66–70]. Furthermore, recent
advancements in waveguide-based squeezed light suggest that the squeezing bandwidth can be
significantly improved [71,72], indicating the potential for further enhancement in the generation
rate of such a QRNG. The demonstrated quantum random number scheme represents a novel
scheme that enriches the research on QRNGs.
Funding. National Natural Science Foundation of China (61925503, 62122044, 62135008); Program for the
Outstanding Innovative Teams of Higher Learning Institutions of Shanxi; Program for the Innovative Talents of Higher
Education Institutions of Shanxi; Fund for Shanxi Key Subjects Construction (1331 Project).

Acknowledgment. The authors thank for Xiongfeng Ma and Hongyi Zhou for useful discussions.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random number generators,” Rev. Mod. Phys. 89(1),

015004 (2017).
2. X. Ma, X. Yuan, Z. Cao, et al., “Quantum random number generation,” npj Quantum Inf. 2(1), 16021 (2016).
3. B. Shen, H. Shu, W. Xie, et al., “Harnessing microcomb-based parallel chaos for random number generation and

optical decision making,” Nat. Commun. 14(1), 4590 (2023).
4. M. Eaton, A. Hossameldin, R. J. Birrittella, et al., “Resolution of 100 photons and quantum generation of unbiased

random numbers,” Nat. Photonics 17(1), 106–111 (2023).
5. S. Li, X. Zhu, J. Fan, et al., “5-bit all-optical quantum random number generator based on a time-multiplexed optical

parametric oscillator,” Opt. Express 31(23), 38939–38948 (2023).
6. Y. Zhang, H.-P. Lo, A. Mink, et al., “A simple low-latency real-time certifiable quantum random number generator,”

Nat. Commun. 12(1), 1056 (2021).

https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1038/s41467-023-40152-w
https://doi.org/10.1038/s41566-022-01105-9
https://doi.org/10.1364/OE.503779
https://doi.org/10.1038/s41467-021-21069-8


Research Article Vol. 32, No. 10 / 6 May 2024 / Optics Express 18244

7. Y. Okawachi, B. Y. Kim, Y. Zhao, et al., “Dynamic control of photon lifetime for quantum random number generation,”
Optica 8(11), 1458–1461 (2021).

8. A. Quirce and A. Valle, “Random polarization switching in gain-switched vcsels for quantum random number
generation,” Opt. Express 30(7), 10513–10527 (2022).

9. Q. Luo, Z. Cheng, J. Fan, et al., “Quantum random number generator based on single-photon emitter in gallium
nitride,” Opt. Lett. 45(15), 4224–4227 (2020).

10. H. Zhou, P. Zeng, M. Razavi, et al., “Randomness quantification of coherent detection,” Phys. Rev. A 98(4), 042321
(2018).

11. S. Pironio, A. Acín, S. Massar, et al., “Random numbers certified by bell’s theorem,” Nature 464(7291), 1021–1024
(2010).

12. Q. Zhang, D. Kong, Y. Wang, et al., “Dual-entropy-source quantum random number generation based on spontaneous
emission,” Opt. Lett. 45(2), 304–307 (2020).

13. R. Shakhovoy, D. Sych, V. Sharoglazova, et al., “Quantum noise extraction from the interference of laser pulses in an
optical quantum random number generator,” Opt. Express 28(5), 6209–6224 (2020).

14. M.-H. Li, X. Zhang, W.-Z. Liu, et al., “Experimental realization of device-independent quantum randomness
expansion,” Phys. Rev. Lett. 126(5), 050503 (2021).

15. W.-Z. Liu, M.-H. Li, S. Ragy, et al., “Device-independent randomness expansion against quantum side information,”
Nat. Phys. 17(4), 448–451 (2021).

16. Y. Liu, Q. Zhao, M.-H. Li, et al., “Device-independent quantum random-number generation,” Nature 562(7728),
548–551 (2018).

17. L. K. Shalm, Y. Zhang, J. C. Bienfang, et al., “Device-independent randomness expansion with entangled photons,”
Nat. Phys. 17(4), 452–456 (2021).

18. B. Bai, J. Huang, G.-R. Qiao, et al., “18.8 Gbps real-time quantum random number generator with a photonic
integrated chip,” Appl. Phys. Lett. 118(26), 264001 (2021).

19. C. Bruynsteen, T. Gehring, C. Lupo, et al., “100-gbit/s integrated quantum random number generator based on
vacuum fluctuations,” PRX Quantum 4(1), 010330 (2023).

20. Y.-Q. Nie, L. Huang, Y. Liu, et al., “The generation of 68 Gbps quantum random number by measuring laser phase
fluctuations,” Rev. Sci. Instrum. 86(6), 063105 (2015).

21. V. Tamma and S. Laibacher, “Boson sampling with random numbers of photons,” Phys. Rev. A 104(3), 032204
(2021).

22. M. A. Smirnov, K. Petrovnin, V I. Fedotov, et al., “Quantum random numbers from a fiber-optic photon-pair source,”
Laser Phys. Lett. 16(11), 115402 (2019).

23. T. Michel, J. Y. Haw, D. G. Marangon, et al., “Real-time source-independent quantum random-number generator
with squeezed states,” Phys. Rev. Appl. 12(3), 034017 (2019).

24. X. Guo, C. Cheng, M. Wu, et al., “Parallel real-time quantum random number generator,” Opt. Lett. 44(22),
5566–5569 (2019).

25. J.-R. Álvarez, S. Sarmiento, J. A. Lázaro, et al., “Random number generation by coherent detection of quantum
phase noise,” Opt. Express 28(4), 5538–5547 (2020).

26. D. Rusca, H. Tebyanian, A. Martin, et al., “Fast self-testing quantum random number generator based on homodyne
detection,” Appl. Phys. Lett. 116(26), 264004 (2020).

27. J. Cheng, S. Liang, J. Qin, et al., “Semi-device-independent quantum random number generator with a broadband
squeezed state of light,” npj Quantum Inf. 10(1), 20 (2024).

28. R. Shakhovoy, M. Puplauskis, V. Sharoglazova, et al., “Phase randomness in a semiconductor laser: Issue of quantum
random-number generation,” Phys. Rev. A 107(1), 012616 (2023).

29. F. Raffaelli, P. Sibson, J. E. Kennard, et al., “Generation of random numbers by measuring phase fluctuations from a
laser diode with a silicon-on-insulator chip,” Opt. Express 26(16), 19730–19741 (2018).

30. Y.-Y. Hu, X. Lin, S. Wang, et al., “Quantum random number generation based on spontaneous raman scattering in
standard single-mode fiber,” Opt. Lett. 45(21), 6038–6041 (2020).

31. K. Aungskunsiri, R. Amarit, K. Wongpanya, et al., “Random number generation from a quantum tunneling diode,”
Appl. Phys. Lett. 119(7), 074002 (2021).

32. H. Zhou, J. Li, W. Zhang, et al., “Quantum random-number generator based on tunneling effects in a Si diode,” Phys.
Rev. Appl. 11(3), 034060 (2019).

33. H. Tebyanian, M. Zahidy, M. Avesani, et al., “Semi-device independent randomness generation based on quantum
state’s indistinguishability,” Quantum Sci. Technol. 6(4), 045026 (2021).

34. V. Lovic, D. Marangon, M. Lucamarini, et al., “Characterizing phase noise in a gain-switched laser diode for quantum
random-number generation,” Phys. Rev. Appl. 16(5), 054012 (2021).

35. A. Quirce and A. Valle, “Phase diffusion in gain-switched semiconductor lasers for quantum random number
generation,” Opt. Express 29(24), 39473–39485 (2021).

36. F. Raffaelli, G. Ferranti, D. H. Mahler, et al., “A homodyne detector integrated onto a photonic chip for measuring
quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).

37. Z. Zheng, Y. Zhang, W. Huang, et al., “6 Gbps real-time optical quantum random number generator based on vacuum
fluctuation,” Rev. Sci. Instrum. 90(4), 043105 (2019).

https://doi.org/10.1364/OPTICA.433102
https://doi.org/10.1364/OE.446838
https://doi.org/10.1364/OL.396561
https://doi.org/10.1103/PhysRevA.98.042321
https://doi.org/10.1038/nature09008
https://doi.org/10.1364/OL.382067
https://doi.org/10.1364/OE.380156
https://doi.org/10.1103/PhysRevLett.126.050503
https://doi.org/10.1038/s41567-020-01147-2
https://doi.org/10.1038/s41586-018-0559-3
https://doi.org/10.1038/s41567-020-01153-4
https://doi.org/10.1063/5.0056027
https://doi.org/10.1103/PRXQuantum.4.010330
https://doi.org/10.1063/1.4922417
https://doi.org/10.1103/PhysRevA.104.032204
https://doi.org/10.1088/1612-202X/ab3f9c
https://doi.org/10.1103/PhysRevApplied.12.034017
https://doi.org/10.1364/OL.44.005566
https://doi.org/10.1364/OE.383196
https://doi.org/10.1063/5.0011479
https://doi.org/10.1038/s41534-024-00814-z
https://doi.org/10.1103/PhysRevA.107.012616
https://doi.org/10.1364/OE.26.019730
https://doi.org/10.1364/OL.409187
https://doi.org/10.1063/5.0055955
https://doi.org/10.1103/PhysRevApplied.11.034060
https://doi.org/10.1103/PhysRevApplied.11.034060
https://doi.org/10.1088/2058-9565/ac2047
https://doi.org/10.1103/PhysRevApplied.16.054012
https://doi.org/10.1364/OE.439337
https://doi.org/10.1088/2058-9565/aaa38f
https://doi.org/10.1063/1.5078547


Research Article Vol. 32, No. 10 / 6 May 2024 / Optics Express 18245

38. X. Lin, R. Wang, S. Wang, et al., “Imperfection-insensitivity quantum random number generator with untrusted daily
illumination,” Opt. Express 30(14), 25474–25485 (2022).

39. Y.-H. Li, X. Han, Y. Cao, et al., “Quantum random number generation with uncharacterized laser and sunlight,” npj
Quantum Inf. 5(1), 97 (2019).

40. D. Drahi, N. Walk, M. J. Hoban, et al., “Certified quantum random numbers from untrusted light,” Phys. Rev. X
10(4), 041048 (2020).

41. B. Sanguinetti, A. Martin, H. Zbinden, et al., “Quantum random number generation on a mobile phone,” Phys. Rev.
X 4(3), 031056 (2014).

42. W.-B. Liu, Y.-S. Lu, Y. Fu, et al., “Source-independent quantum random number generator against tailored detector
blinding attacks,” Opt. Express 31(7), 11292–11307 (2023).

43. Y. Li, Y. Fei, W. Wang, et al., “Practical security analysis of a continuous-variable source-independent quantum
random number generator based on heterodyne detection,” Opt. Express 31(15), 23813–23829 (2023).

44. C. Roch i Carceller, K. Flatt, H. Lee, et al., “Quantum vs noncontextual semi-device-independent randomness
certification,” Phys. Rev. Lett. 129(5), 050501 (2022).

45. C. Wang, I. W. Primaatmaja, H. J. Ng, et al., “Provably-secure quantum randomness expansion with uncharacterised
homodyne detection,” Nat. Commun. 14(1), 316 (2023).

46. M. Avesani, D. G. Marangon, G. Vallone, et al., “Source-device-independent heterodyne-based quantum random
number generator at 17 gbps,” Nat. Commun. 9(1), 5365 (2018).

47. J. Ma, A. Hakande, X. Yuan, et al., “Coherence as a resource for source-independent quantum random-number
generation,” Phys. Rev. A 99(2), 022328 (2019).

48. C. Wang, W. Y. Kon, H. J. Ng, et al., “Experimental symmetric private information retrieval with measurement-
device-independent quantum network,” Light: Sci. Appl. 11(1), 268 (2022).

49. Z. Zheng, Y. Zhang, M. Huang, et al., “Bias-free source-independent quantum random number generator,” Opt.
Express 28(15), 22388–22398 (2020).

50. T. Gehring, C. Lupo, A. Kordts, et al., “Homodyne-based quantum random number generator at 2.9 gbps secure
against quantum side-information,” Nat. Commun. 12(1), 605 (2021).

51. J. Cheng, J. Qin, S. Liang, et al., “Mutually testing source-device-independent quantum random number generator,”
Photonics Res. 10(3), 646–652 (2022).

52. Y. Zhang, L. K. Shalm, J. C. Bienfang, et al., “Experimental low-latency device-independent quantum randomness,”
Phys. Rev. Lett. 124(1), 010505 (2020).

53. G. Gras, A. Martin, J. W. Choi, et al., “Quantum entropy model of an integrated quantum-random-number-generator
chip,” Phys. Rev. Appl. 15(5), 054048 (2021).

54. C. Weedbrook, S. Pirandola, R. García-Patrón, et al., “Gaussian quantum information,” Rev. Mod. Phys. 84(2),
621–669 (2012).

55. D. G. Marangon, G. Vallone, and P. Villoresi, “Source-device-independent ultrafast quantum random number
generation,” Phys. Rev. Lett. 118(6), 060503 (2017).

56. P. J. Coles, M. Berta, M. Tomamichel, et al., “Entropic uncertainty relations and their applications,” Rev. Mod. Phys.
89(1), 015002 (2017).

57. F. Furrer, M. Berta, M. Tomamichel, et al., “Position-momentum uncertainty relations in the presence of quantum
memory,” J. Math. Phys. 55(12), 122205 (2014).

58. M. Berta, M. Christandl, R. Colbeck, et al., “The uncertainty principle in the presence of quantum memory,” Nat.
Phys. 6(9), 659–662 (2010).

59. T. Eberle, V. Haendchen, J. Duhme, et al., “Gaussian entanglement for quantum key distribution from a single-mode
squeezing source,” New J. Phys. 15(5), 053049 (2013).

60. M. Huo, J. Qin, J. Cheng, et al., “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4(10),
eaas9401 (2018).

61. X. Zuo, Z. Yan, Y. Feng, et al., “Quantum interferometer combining squeezing and parametric amplification,” Phys.
Rev. Lett. 124(17), 173602 (2020).

62. J. Yu, Y. Qin, J. Qin, et al., “Quantum enhanced optical phase estimation with a squeezed thermal state,” Phys. Rev.
Appl. 13(2), 024037 (2020).

63. Z. Yan, L. Wu, X. Jia, et al., “Establishing and storing of deterministic quantum entanglement among three distant
atomic ensembles,” Nat. Commun. 8(1), 718 (2017).

64. S. Liang, J. Cheng, J. Qin, et al., “High-speed quantum radio-frequency-over-light communication,” Phys. Rev. Lett.
132(14), 140802 (2024).

65. L. Bassham, A. Rukhin, J. Soto, et al., “A statistical test suite for random and pseudorandom number generators for
cryptographic applications, special publication (nist sp),” National Institute of Standards and Technology (2024).

66. H. Zhang, Z. Sun, R. Qi, et al., “Realization of quantum secure direct communication over 100 km fiber with time-bin
and phase quantum states,” Light: Sci. Appl. 11(1), 83 (2022).

67. Y. Zhou, J. Yu, Z. Yan, et al., “Quantum secret sharing among four players using multipartite bound entanglement of
an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).

68. Y. Qin, J. Ma, D. Zhao, et al., “Continuous variable quantum conference network with a greenberger-horne-zeilinger
entangled state,” Photonics Res. 11(4), 533–540 (2023).

https://doi.org/10.1364/OE.460907
https://doi.org/10.1038/s41534-019-0208-1
https://doi.org/10.1038/s41534-019-0208-1
https://doi.org/10.1103/PhysRevX.10.041048
https://doi.org/10.1103/PhysRevX.4.031056
https://doi.org/10.1103/PhysRevX.4.031056
https://doi.org/10.1364/OE.481832
https://doi.org/10.1364/OE.493586
https://doi.org/10.1103/PhysRevLett.129.050501
https://doi.org/10.1038/s41467-022-35556-z
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1103/PhysRevA.99.022328
https://doi.org/10.1038/s41377-022-00959-6
https://doi.org/10.1364/OE.396461
https://doi.org/10.1364/OE.396461
https://doi.org/10.1038/s41467-020-20813-w
https://doi.org/10.1364/PRJ.444853
https://doi.org/10.1103/PhysRevLett.124.010505
https://doi.org/10.1103/PhysRevApplied.15.054048
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1063/1.4903989
https://doi.org/10.1038/nphys1734
https://doi.org/10.1038/nphys1734
https://doi.org/10.1088/1367-2630/15/5/053049
https://doi.org/10.1126/sciadv.aas9401
https://doi.org/10.1103/PhysRevLett.124.173602
https://doi.org/10.1103/PhysRevLett.124.173602
https://doi.org/10.1103/PhysRevApplied.13.024037
https://doi.org/10.1103/PhysRevApplied.13.024037
https://doi.org/10.1038/s41467-017-00809-9
https://doi.org/10.1103/PhysRevLett.132.140802
https://doi.org/10.1038/s41377-022-00769-w
https://doi.org/10.1103/PhysRevLett.121.150502
https://doi.org/10.1364/PRJ.481168


Research Article Vol. 32, No. 10 / 6 May 2024 / Optics Express 18246

69. S. Shen, C. Yuan, Z. Zhang, et al., “Hertz-rate metropolitan quantum teleportation,” Light: Sci. Appl. 12(1), 115
(2023).

70. Z. Yan and X. Jia, “Teleportation goes to hertz rate,” Light: Sci. Appl. 12(1), 167 (2023).
71. T. Kashiwazaki, N. Takanashi, T. Yamashima, et al., “Continuous-wave 6-db-squeezed light with 2.5-thz-bandwidth

from single-mode ppln waveguide,” APL Photonics 5(3), 036104 (2020).
72. T. Kashiwazaki, T. Yamashima, K. Enbutsu, et al., “Over-8-dB squeezed light generation by a broadband waveguide

optical parametric amplifier toward fault-tolerant ultra-fast quantum computers,” Appl. Phys. Lett. 122(23), 234003
(2023).

https://doi.org/10.1038/s41377-023-01158-7
https://doi.org/10.1038/s41377-023-01216-0
https://doi.org/10.1063/1.5142437
https://doi.org/10.1063/5.0144385

