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We systematically investigated the intrinsic mechanical flexural modes of tapered optical fibers (TOFs)
with a high aspect ratio up to 3 × 104. Based on the near-field scattering of the hemispherical microfiber tip
to the vibrating TOF evanescent field, we detected more than 320 ordered intrinsic mechanical modes
through the TOF transmission spectra which was enhanced by 72 dB compared to without near-field
scattering. The trend of the vibration amplitude with the mode order was similar to pendulum waves. Our
results open a pathway to study the mechanical modes of photonic microstructures-nanostructures that are
expected to be used in waveguide QED, cavity optomechanical, and optical sensing.
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Nanoscale photonic structures with strong evanescent
fields are utilized when pursuing efficient interactions with
a surrounding medium and play a key role in advancing
quantum optics, quantum information, and quantum-based
devices [1–6]. Nanoscale photonic structures with high-
aspect ratios have provided an elegant and powerful
platform for optomechanics [7] and optical sensing [8].
High-aspect ratio nanostructures offer high sensitivity,
wide dynamic range, and low mechanical dissipation
[8,9]. Among these nanostructures, tapered optical fibers
(TOFs) have attracted special interest because their dia-
meters are close to the optical wavelength and their high
aspect ratio can reach 3 × 104. The waist region of a TOF
can support a strong transverse evanescent field that is
tightly confined, called a nanofiber [10,11]. This means
that it can be used as an efficient tool for coupling with the
surrounding matter [6]. In addition, there have been
significant advances in the realization of hybrid photonic
structures, including various types of photonic resonators
based on TOFs [11,12]. Thus, TOFs have emerged as a
novel and versatile platform [6,13] for nonlinear optics
[14], near-field optics [15], quantum optics [13], optome-
chanics [16,17], and optical sensing [18].
A doubly clamped TOF structure treated as nanostrings

can support intrinsic mechanical modes, including flexural,
longitudinal, breathing, and torsional modes. Owing to
vibrations, it is difficult for TOFs to maintain the polari-
zation and phase of an optical guided field, which results in
a decrease in the trapping lifetime [19] of atomic array
trapping by a TOF evanescent field [20,21], and limits the
stabilization of photonic devices coupled with TOFs [20].
Conversely, the mechanical vibrations of TOFs provide a

platform for studying elastic mechanics at the nanoscale
and expanding their application in optomechanical tech-
nology [22]. It is critical to precisely characterize TOF
modes, which is central to many applications ranging from
optical sensing to quantum technologies [22–25].
The nanoscale mechanical modes of photonic structures

have been achieved by far-field optical methods such as
optical interferometry [26], optical scattering [21], and
beam deflection [27]. However, as photonic structure
dimensions decrease, their measurement accuracy becomes
more insensitive and inevitably limited by the optical
diffraction limit [28]. Fortunately, near-field optics based
on the surface evanescent field of TOFs and cavities can
easily break through the optical diffraction limit of light to
realize TOF displacement detection [15,21,25]. However,
these schemes require high stability and spatial accuracy of
the cavities or the TOFs. Moreover, the torsional mode
measurement of TOFs by direct mechanical excitation of
electrodes and injecting amplitude-modulated light has also
been explored experimentally [22–24]. Nevertheless, sys-
tematically measuring the complete flexural modes of
TOFs has not yet been achieved.
In this Letter, the flexural modes of a TOF with an aspect

ratio as high as 3 × 104 are systematically studied for the
first time. We propose and demonstrate a novel method for
achieving high sensitivity and enhanced measurement for
high-order modes. This method is based on the near-field
scattering of a TOF caused by a hemispherical microfiber
tip (MFT). When the hemispherical MFT extremity is
immersed in the evanescent field of TOF, the field
distribution could be further extended, leading to an
increased scattering loss in transmitted TOF light. The
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scattering loss is sensitive to the gap size between the TOF
and MFT [29–31]. The transmission of TOF is affected by
the perturbations in the TOF-MFT gap arising from the
TOF’s flexural vibrations. Under appropriate conditions of
MFT diameter and TOF-MFT gap, the TOF flexural
vibration can be detected with a high enhancement.
Experimentally, we measure the TOF vibration spectrum
in high vacuum, which is in good agreement with the
numerical simulation results. Furthermore, the MFT-
enhanced vibration behavior of TOFs caused by external
resonant and off-resonant mechanical excitation is demon-
strated. This method of vibration amplitude and profile
measurement can be extended to other microstructures-
nanostructures [31], such as integrated photonic and
MEMS devices.
Figure 1 schematically illustrates the TOF-MFT system

for the measurement of TOF flexural modes. The TOF
diameter is comparable to the light wavelength; thus, there
is a considerable portion of the optical guide mode outside
the dielectric in the evanescent field. The evanescent field
extending into the surrounding air decreases exponentially
with a scale less than half of the wavelength [32]. The
flexural modes of the TOF generated by Brownian motion
will modulate the TOF-MFT gap size. Once the TOF-MFT
gap changes slightly due to the TOF flexural vibration, the
TOF transmitted light intensity is modulated. This means
that the TOF transmission will follow the perturbations
induced by the TOF flexural vibrations. The flexural modes
can be detected by measuring and analyzing the spectrum
of TOF transmitted light. The TOF transmission can be
expressed as

TðtÞ ¼ Td0 þ
∂T
∂d

X

i

δdiðtÞ; ð1Þ

where Td0 is the transmission when the TOF-MFT gap is
d ¼ d0. The derivative of ð∂T=∂dÞ denotes the relationship
between TOF transmission and the gap. This relationship
has been simulated numerically and demonstrated exper-
imentally [29]. δdiðtÞ represents the minute time-dependent
displacement of the TOF ith mode.

The TOF flexural modes are simulated using the finite
element method with COMSOL Multiphysics version 5.6
(see the Supplemental Material, Sec. I [33]). The TOF
profiles used in the simulations are from the measured
results of a real TOF (the values are shown in Fig. S2(a) in
the Supplemental Material, Sec. I [33]). We conclude and
plot the flexural mode amplitude and frequency as a
function of the z axis and the mode order, which are
shown in Fig. S2(c) of the Supplemental Material, Sec. I
[33]. We used simplified formulas to fit them to obtain an
approximated numerical expression of the flexural ampli-
tude with various orders along the TOF axis shown in the
Supplemental Material, Sec. II [33]:

Aði; zÞ ¼ jA0ði; zÞ cos½Kði; zÞz�j; ð2Þ

where A0ði; zÞ is the vibration amplitude at the TOF axial
position z for the ith order mode, and Kði; zÞ is the wave
number of the ith order mode along the TOF axis.
We plot the vibration amplitude as a function of the z

axis for the 1st, 5th, 10th, 15th, 20th, and 25th order modes,
which are shown in Fig. 2(a). The phonon number of the
TOF vibration mode and vibration amplitude decrease with
increasing order. Moreover, the flexural vibration for all the
modes is concentrated in the TOF central region (concen-
trated region), which is approximately 15 mm in length. A
larger diameter will cause a smaller vibration amplitude;
thus, the TOF vibration amplitude varies with the TOF’s
tapered profile along its axis. In this model, the size of the
touched point between the MFTand the TOF should be less
than the MFT size of 37.3 μm, and it is much less than the
mechanical wave wavelength from 15 mm to 82.2 μm
when the mode order ranges from 1 to 200. Thus, the TOF-
MFT system can measure the amplitude of a mechanical
wave packet at a single point along the TOF axis. For each
order of the wave packet, the vibration amplitudes can be
detected simultaneously. Figure 2(b) shows the normalized
maximum vibration amplitudes as a function of order when
the MFT is at a position of z ¼ 0.1 mm. For this position of
the MFT, the vibration amplitudes for the even-order (green

FIG. 1. Experimental setup for detecting the TOF flexural
modes.

FIG. 2. The TOF flexural modes are simulated with COMSOL
Multiphysics. (a) The vibration amplitude (x axis) as a function
along the nanofiber axis (z axis) for the 1st, 5th, 10th, 15th, 20th,
and 25th order modes. (b) The vibration amplitudes of various
order TOF flexural modes at position z ¼ 0.1 mm.
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open squares) and odd-order (orange open circles) modes
exhibit opposite trends with increasing order. This reveals
the varying amplitudes for different order modes, which is
similar to a typical vibration behavior of pendulum
waves [34,35].
The MFT is fabricated by a carbon dioxide laser with a

wavelength of 10.6 μm. The fabrication setup and proce-
dures for TOFs and MFTs have been discussed in [29,30].
A TOF glued to a U-shaped quartz holder is positioned on
two slip-stick positioners (ANPx51/ANPz51, attocube).
The MFT is fixed on a two-axis piezo stage (y and z
axes). Thanks to these piezo stages, the MFT extremity can
be finely positioned within the TOF evanescent field, and
the distance between the MFT and the TOF can be
controlled with subnanometer accuracy. In addition, the
piezo stage can provide spatial vibration excitation with a
certain frequency to the TOF.
A laser (TLB-6716-P, New Focus) with wavelength

λ¼ 852 nm is coupled into a 50∶50 fiber beam splitter.
One output is connected to the TOF as a probe light, and
another output is coupled into a fiber variable attenuator
(VOA850-APC, Thorlabs) as a reference light. The variable
attenuator is used to adjust the reference light intensity to
keep the two detector inputs equal. During the experiment,
the signal light intensity is kept at 20 μW to reduce the
heating from scattering and maintain a sufficient signal-to-
noise ratio. Two beams are detected by a balanced
photodetector (PDB420A, Thorlabs) to achieve a balanced
amplification measurement of the flexural modes. The
detector signal is input into a spectrum analyzer or an
oscilloscope. To reduce the air damping influence on the
TOF intrinsic flexural vibration, the system is placed in a
high vacuum chamber with pressure as low as 10−4 Pa. The
light is coupled into the TOF via an optical fiber feed-
through [36]. The TOF transmission reaches more than
95%. The vacuum chamber is fixed on an optical platform
with active vibration isolation to reduce low-frequency
mechanical vibration from the optical table.
We first measured the intrinsic flexural mode enhance-

ment spectrum of a high-aspect ratio TOF under high
vacuum. The enhancement spectrum is the ratio of the
enhanced spectrum to the spectral background without the
MFT. As shown in Fig. 3(a), the blue curve is the
enhancement spectrum with a 20 nm gap between the
TOF and the MFT, while the gray curve represents
references without scattering loss by the MFT. More than
560 modes are detected; the maximum vibration frequency
can reach 1.6 MHz, and the maximum enhancement is
72 dB compared to without near-field scattering. The inset
in Fig. 3(a) provides a magnified spectrum with orders
ranging from 47th to 50th. We find that there exists a
concomitant mode (odd-order mode POV, green solid
circles, or even-order mode PEV, orange solid diamond)
next to every main mode (odd-order mode POP, green open
circles, or even-order mode PEP, orange open diamond).

The concomitant mode and the main mode are orthogonal
flexural modes for symmetry breaking of the same order
modes due to the TOF radial noncylindrical structure. They
are nondegenerate and can be distinguished from the
spectrum because of the TOF flexural vibration direction
relative to the MFT. The vibration direction causes a
distinct vibration amplitude of the two nondegener-
ate peaks.
From the overall modes with odd order or even order, the

flexural vibration amplitude decreases with increasing
order, as shown in Fig. 3(a). According to the trend
between the frequency and the mode order, approximately
320 order modes can be clearly distinguished. As shown in
Fig. 3(b), the TOF vibration frequency (purple open circles)
increases nonlinearly with the order. This trend is consis-
tent with the clamped beam flexural modes obtained from
the analytical results in the Supplemental Material, Sec. III
[33]. However, the axial stress and asymmetry of the TOF
also lead to inconsistencies between the measured fre-
quency of the vibration modes and the simulation results.
The measured frequencies are higher than the simulated
results for the same mode order. The open black stars in
Fig. 3(b) indicate the TOF frequency increment of two
adjacent orders, and the red curve indicates the quadratic
fitting. However, the frequency increment is not strictly
linear with the order. The reason is that the concentrated
region of the higher-order modes extends slightly into the
TOF’s tapered region, which can be found in Fig. S2(a) in
the Supplemental Material, Sec. I [33], and the extended
concentrated region causes a smaller frequency increment.
In addition, the vibration amplitude varies with the mode

order in opposite directions for the odd-order and even-
order modes, which agrees with the numerical simulation
shown in Fig. 2(b). One typical phenomenon is that some
modes vanish and are submerged by background noise in
frequency ranges from 0.47 MHz to 0.56 MHz, from
0.91 MHz to 1.10 MHz, and from 1.21 MHz to
1.62 MHz. The reason is that the MFT is located near
the mode nodes in these frequency ranges. Notably, the
MFT modes are not found in the frequency spectrum

FIG. 3. (a) TOF flexural vibration enhancement spectrum.
Inset: enlarged enhancement spectrum of 47th–50th modes.
(b) Frequency (purple open circles) and frequency increment
(open black stars) of the flexural modes as a function of the mode
order; the red curve is the quadratic results.
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experimentally because the TOF vibration amplitudes are 7
orders larger than those of the MFT (see Fig. S5 of the
Supplemental Material, Sec. IV [33]). In the frequency
range of 0–0.4 MHz, a remarkable fluctuation in the
amplitude can be observed because the mechanical vibra-
tion from the environment further enhances the TOF
intrinsic modes. From these experimental results, it can
be seen that the TOF can be affected by vibrations at any
frequency.
The influence of external vibration on the TOF is critical

when the TOF is used for atom manipulation or coupling
with other nanostructures. To demonstrate the TOF
response to external mechanical noise, resonant excitation
(427 Hz) and off-resonant excitation (550 Hz) are imple-
mented on the TOF. The same sinusoidal modulation
intensity is applied to both kinds of excitations, and the
modulation frequency is below 1 kHz which is limited by
the bandwidth of the piezoelectric transducer of the slip-
stick positioner. The modulation amplitude is approxi-
mately 8 nm, and the modulation direction is perpendicular
to the TOF axis (z axis). The vibration spectra with external
excitation are shown in Fig. 4(a). The red, cyan, and gray
curves represent the resonant excitation, off-resonant exci-
tation, and intrinsic vibration spectra, respectively. The
ratio of the vibration amplitude between the excited
vibration and the intrinsic vibration is shown in Fig. 4(b).
For resonant excitation, the excitation frequency and
nonresonant frequency response amplitude increase by
more than 36 dB (red arrow) and 20 dB, respectively.
Conversely, when off-resonant excitation is applied, the

excitation frequency and nonresonant frequency response
amplitude increase by less than 33 dB (blue arrow) and
10 dB, respectively. The maximum displacements of the
actual vibration amplitude caused by resonant excitation,
nonresonant excitation, and intrinsic vibration are 105.7,
35.2, and 0.4 nm, respectively.
The evolution of flexural vibration in the time do-

main can qualitatively describe the properties of modes.
Figure 4(c) shows the ringdown of resonant excitation (red
squares) and off-resonant excitation (cyan hexagons) at a
pressure of 1 Pa after the excitation source is suddenly
removed. The clifflike drops in the vibration amplitude
occur just when the external excitation is stopped for both
kinds of excitation. The drop time is too short to measure its
spectrum of off-resonant excitation with a measuring reso-
lution time of 10 μs, as shown in the inset of Fig. 4(c). The
clifflike drops result from the quick energy decay of the
modes at the excited frequencies. Then, the off-resonant
excitation presents a slow decay, while the resonant
excitation presents double exponential decay, indicating
fast decay and slow decay processes. The slow decay is
mainly dependent on the energy decay of the adjacent
intrinsic mode (638 Hz) induced by the excitation. The
black, purple, and green curves in Fig. 4(c) indicate the
exponential fittings. During the fast decay for resonant
excitation, the vibration energy of all the frequencies
decays. However, only intrinsic modes decay during the
slow decay for both kinds of excitation; thus, the decay
times are the same for the two slow decays. This can be
seen in the spectra during the two stages of fast decay and
slow decay for the two kinds of excitation shown in Fig. S6
of the Supplemental Material, Sec. V [33]. Additionally, the
vibration energy of the off-resonant excitation is higher
than the resonant excitation because the frequency of the
off-resonant excitation is closer to the adjacent intrinsic
mode frequency band (638 Hz) and the weaker response at
resonant excitation compared to that at 638 Hz [37].
The influence of pressure on flexural vibration damping

is investigated. According to the ringdown, theQ factors of
the resonant (red squares) and off-resonant (cyan hexagons)
flexural modes’ slow decay as a function of the pressure are
shown in Fig. 4(d). When the pressure is less than 10−2 Pa,
theQ factor saturates, which means that the damping effect
of the pressure is negligible compared with other mechani-
cal losses. When the pressure is greater than 10−2 Pa, theQ
factor decreases with increasing pressure. In this case, the
mechanical mode damping is dominated by gas damping.
The pressure is more than 102 Pa, and the damping effect of
the pressure on the mechanical modes tends to be saturated.
For the fast decay of the resonant excitation (purple
diamonds), the Q factor remains constant. More details
can be found in Fig. S6 of the Supplemental Material,
Sec. V [33]. It is worth noting that oscillation occurs during
the decay shown in Fig. 4(c). The oscillation is caused by

FIG. 4. (a) TOF mechanical vibration spectra with resonant
excitation, off-resonant excitation, and intrinsic vibration spectra.
(b) The spectra of the enhancement factor. (c) Ringdown of
flexural modes with resonant and off-resonant excitation. (d) Q
factors as a function of the pressure with resonant, off-resonant
modes’ slow decay and the fast decay of the resonant excitation.
Red and cyan indicate resonant and off-resonant excitation,
respectively.
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the beating between the two TOF degenerate flexural
modes [38].
In conclusion, we have proposed and demonstrated a

method to systematically measure the intrinsic flexural
modes of a high-aspect-ratio TOF using near-field scatter-
ing of the TOF-MFT system. More than 320 orders of the
intrinsic flexural modes are discriminated, the maximum
vibration frequency can reach more than 1.6 MHz and the
maximum enhancement is 72 dB compared to that without
near-field scattering. The TOF vibration amplitude
decreases with increasing order. For odd-order and even-
order modes, the vibration amplitudes vary oppositely,
resembling the behavior of pendulum waves. The exper-
imental results are found to be in good agreement with
simulation results. The TOF vibration behavior under
external resonant and off-resonant mechanical excitation
are characterized. In addition, the influence of pressure on
the damping of mechanical vibration is investigated. The
systematic demonstration of TOF intrinsic flexural modes
is significant to the trapping of atomic arrays based on the
dipole trap provided by TOFs. This concept and method
can be implemented with a variety of microphotonic-
nanophotonic structures to either take advantage of the
mechanical vibration frequency or to tune it over a larger
range while avoiding structural vibration modes [8,31]. It is
possible to increase the lifetime of trapped atoms by
cooling the TOF [24,39]. This method for measuring
high-aspect-ratio nanostructures is expected to be used in
waveguide QED [40], cavity optomechanical [17], and
optical sensing [41].
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