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In the fields of quantum metrology and quantum information processing with the system of optically trapped single
neutral atoms, the coherence time of a qubit encoded in the electronic states is regarded as one of the most important
parameters. A longer coherence time is always pursued for higher precision of measurement and quantum manipu-
lation. The coherence time is usually assumed to be merely determined by the relative stability of the energy between
the electronic states, and the analysis of the decoherence was conducted by treating the atom motion classically. We
proposed a complete description of the decoherence of a qubit encoded in two ground electronic states of an optically
trapped alkali atom by adopting a full description of the atomic wavefunction. The motional state, i.e., the phonon
state, is taken into account. In addition to decoherence due to the variance of the differential light shift (DLS), a new, to
our knowledge, decoherence mechanism, phonon-jumping-induced decoherence (PJID), was discovered and verified
experimentally. The coherence time of a single-cesium-atom qubit can be extended to T2 ≈ 20 s by suppressing both
the variances of DLS and PJID by trapping the atom in a blue-detuned bottle beam trap (BBT) and preparing the atom
in its three-dimensional motional ground states. The coherence time is the longest for a qubit encoded in an optically
trapped single alkali atom. Our work provides a deep understanding of the decoherence mechanism for single atom
qubits and thus provides a new way to extend the coherence time limit. The method can be applied for other atoms and
molecules, opening up new prospects for high-precision control of the quantum states of optically trapped atoms or
molecules. ©2024Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement
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1. INTRODUCTION

The systems of optically trapped neutral single atoms are important
platforms for quantum metrology [1–4], quantum measurement
[5,6], quantum computation [7,8], and quantum simulations
[9–11]. Usually, ground-state Zeeman sublevels, such as clock
states, are adopted to encode the information as qubits for appli-
cations. The coherence time (T2) of the qubit is thus one of the key
factors for the high performance in these applications, and a long
T2 time is always pursued. To date, more than 30-s T2 has been
achieved for optically trapped single strontium atoms [2,12]. The
coherence time is obtained by either using optical tweezers with
a “magic wavelength” [2], where the differential light shift (DLS)
between the two clock states can be cancelled, or nuclear spins
[12]. Thus, coherence is intrinsically immune to fluctuations in the
trapping light intensity.

However, for widely used alkali metal atoms, such as rubid-
ium (Rb) atoms and cesium (Cs) atoms, the T2 time of the qubit

encoded in the microwave clock states of optically trapped single
atoms is much shorter due to the lack of a “magic wavelength”.
The DLS between two clock states is susceptible to fluctuations
in the trapping light intensity [13]. In recent years, many efforts
have been made to improve the T2 time of optically trapped alkali
metal atoms by finding other “magic conditions” [14–24], where
the first-order dependence of the DLS on fluctuations in light
intensity and/or magnetic fields could be suppressed. By applying
such “magic conditions”, the T2 time can be improved from tens of
milliseconds to the second level.

Another commonly adopted method for obtaining a long
coherence time is to decrease the temperature of the trapped atom.
In a full quantum picture where the vibrational quantum states
(phonon states) are taken into account [25], a trapped single atom
with a higher temperature has a wider population distribution on
the phonon states. Due to the difference in the DLS associated
with the different phonon states, the Ramsey signal is the sum of
the interfering signals between the two atomic internal electronic

2334-2536/24/101391-06 Journal © 2024Optica PublishingGroup

https://orcid.org/0009-0008-8719-6056
https://orcid.org/0009-0002-5912-5847
https://orcid.org/0009-0001-3674-8577
https://orcid.org/0000-0001-8668-8923
https://orcid.org/0000-0003-0249-5230
mailto:tczhang@sxu.edu.cn
mailto:gangli@sxu.edu.cn
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://doi.org/10.1364/OPTICA.529577
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.529577&amp;domain=pdf&amp;date_stamp=2024-10-05


Research Article Vol. 11, No. 10 / October 2024 / Optica 1392

states associated with different phonon states, and a fast decay of
the amplitude is observed, which is usually referred to as inhomo-
geneous decoherence. The inhomogeneous decoherence can be
recovered by using a spin-echo technique [13,25]. Thus, the usu-
ally assumed residual decoherence factors [13], such as fluctuations
in the trap depth, trap position, magnetic field, etc., will no longer
depend on the atomic temperature. Moreover, without using
“magic conditions”, a T2 time of 12.6 s for single cesium atoms
in blue-detuned traps was recently obtained [26] by adopting
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences with the
atom cooled to its ground phonon state. However, the decoherence
mechanism associated with the atomic temperature has not been
revealed.

In this article, we propose a mechanism of decoherence asso-
ciated with the atomic temperature. This decoherence is caused
by the stochastic jump of the atomic phonon state due to trap-
ping noise. We therefore name this decoherence mechanism
phonon-jumping-induced decoherence (PJID). To understand
the PJID between the two internal electronic states |a〉 and |b〉,
we have to take the external vibrational quantum states (phonon
states) of the atom in optical traps into account of the full quantum
wavefunction. The motion of the trapped atom in trap potentials
caused by the light shifts of electronic states |a〉 and |b〉 is described
by three-dimensional (3D) quantum harmonic oscillators. The
motional evolution and the phonon jumping caused by the noise
of the trapping field in the two trap potentials are independent
because there is no interaction between the two internal states
when the atom is freely evolving. Stochastic phonon jumping of
the atom will induce decoherence between the two internal states
|a〉 and |b〉. The PJID mechanism results in an exponential decay
of coherence, which differs from the Gaussian decay of decoher-
ence caused by the variance of the DLS. These two mechanisms
occur simultaneously in the decoherence process. By examining
the decoherence process of a Cs atom in a red-detuned optical
trap with different intensity noise levels, we introduce PJID and
show that experimental data are consistent with our model for
PJID. After fully understanding the decoherence mechanisms, we
adopt a blue-detuned BBT and cool the atom in its 3D motional
ground states to suppress both the PJID and variance of the DLS. A
coherent time T2 of approximately 20 s for a qubit encoded in the
clock states of a single trapped Cs atom is finally obtained. To the
best of our knowledge, this is the longest coherence time for a qubit
encoded in an optically trapped single alkali metal atom, and it can
be improved further by improving the phase noise of the driving
microwave, the pointing noise of the trap, etc.

2. PHONON-JUMPING-INDUCED DECOHERENCE

As shown in Fig. 1, the atom vibrational states (phonon states)
are denoted by |nq 〉, where nq is the phonon number (PN)
along the vibrational axis q (q = x , y , or z). The phonon states
obey the orthogonal relation 〈nq |n′q 〉 = δnq ,n′q . In a rotating
frame associated with the atom frequency between the qubit
states |a〉 and |b〉, the time-dependent full wavefunctions of the
atomic qubit can be expressed as |ψa (t)〉 = |a〉 ⊗

∏
⊗

q |nq ,a 〉

and |ψb(t)〉 = exp[−i(1DLSt + φ)]|b〉 ⊗
∏
⊗

q |nq ,b〉. Here,

1DLS
=−ηU0

~ +
η

2

∑
q (nq +

1
2 )ωq is the DLS between states

|a〉 ⊗
∏
⊗

q |nq ,a 〉 and |b〉 ⊗
∏
⊗

q |nq ,b〉 [25], andφ is the additional
phase.η= |ωhfs

1
| is the ratio between the hyperfine splitting and the

frequency detuning of the trap light. U0 is the potential at the trap

Fig. 1. Principle of PJID. The atom oscillates in the two optical traps
produced by light shifts of the electronic states |a〉 and |b〉. The motional
evolutions and the phonon jumpings caused by the noises of the trap-
ping field in the two trap potentials are independent because there is no
interaction between the two states when the atom is freely evolving. The
phonon jumps induced by the noise of the trap light then destroy the
coherence between the two electronic states. The coherence is usually
characterized by the interference of the two states with the aid of coherent
driving between the two electronic states with the same phonon number.

center, andωq is the oscillation frequency. The coherence between
the two states is

C(t)=
∫

d1DLS
∫

dφ f (1DLS)ϕ(φ)Tr(|ψa (t)〉〈ψb(t)|), (1)

where f (1DLS) andϕ(φ) are the probability distributions of1DLS

and φ, respectively. The trace is made over both the electronic and
phonon state spaces. Then, it is rewritten as

C(t)=
∫

d1DLS

∫
dφ f (1DLS)ϕ(φ)e[−i(1DLSt+φ)]

∏
q

δnq ,a ,nq ,b .

(2)
We first discuss the DLS-dependent part of Eq. (2), which can

be separated as

C1(t)=
∫

d1DLS f (1DLS)e−i1DLSt . (3)

For a given spatial structure of the optical trap, the potential
U0 and trap frequency ωq are determined by the total trap power
P . The probability distribution of P usually follows a Gaussian
function exp[−(P − P0)

2/(2σ 2
P )] with P0 and σP as the mean

and root mean square (rms) values of the total trap power, respec-
tively. The probability distribution of1DLS also follows a Gaussian
function with f (1DLS)∝ exp[−(1DLS

−1DLS
0 )2/(2σ 2

DLS)],
where 1DLS

0 is the mean value of DLS. The variation in the DLS
(σDLS) depends onσP by

σDLS =−η
U0

~
σP

P0
+
η

4

∑
q

(
nq +

1

2

)
ωq
σP

P0
. (4)

By setting C1(0)= 1, the decay of the coherence given in
Eq. (3) will finally take a Gaussian form:

C1(t)= e−σ
2
DLSt2/2. (5)

Next, we will discuss the rest of Eq. (2), which is connected to
the stochastic phonon jumps induced by the noise of the trap light.
As a consequence, the jump of either the PN or the phase would
cause decoherence. We assume that the atom is initially prepared
in a superimposed state of |a〉 ⊗

∏
⊗

q |nq ,a 〉 and |b〉 ⊗
∏
⊗

q |nq ,b〉
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with nq ,a = nq ,b by a coherent driving field. Assuming that the PN
associated with one electronic state alternates due to the noise at
time t , according to Eq. (2), the coherence immediately collapses
because δn′q ,a ,n

′
q ,b
= 0 due to n′q ,a 6= n′q ,b . Here, n′q ,a and n′q ,b are

the PNs at time t . Even if the PNs are alternated simultaneously
to the same number (n′q ,a = n′q ,b) at time t , the coherence also
disappears due to the stochasticity of the noise-induced phonon
jumping process. In this case, the phase φ in Eq. (2) is evenly
distributed in the range [0, 2 π ) with ϕ(φ)= 1/2π . Therefore,∫ 2π

0 dφϕ(φ)= 0 and the coherence is C= 0.
The process of decoherence is determined by the jumping rate

of the PN. If we define the jumping rate from PN nq along axis q
as Rq , the probability of the atom being in state |nq 〉 is pnq . Then,
pnq obeys the rate equation ṗnq =−Rq pnq . Hence, the coherence
takes the form

C2(t)= e−(Rx+R y+Rz)t . (6)

In an optical trap, phonon jumping is induced by the intensity
noise and the beam-pointing noise associated with the trap light
[27,28]. The intensity (beam-pointing) noise will cause the PN to
jump by two (one). The overall phonon jumping rate (PJR) from
state |nq 〉 is the sum of all the jumping rates given in [27,28], and
the result is

Rq =
πω2

q

8
Sk(2ωq )((nq + 1)2 − nq )+

π

2~
Mω3

q Sq (ωq )(2nq + 1),

(7)
where M is the mass of the trapped atom and ωq is the trap fre-
quency along the q axis. Sk(ω) and Sq (ω) are the one-sided power
spectra of the fractional fluctuations in the spring constant and
coordinate q .

Finally, we obtain the decay of the overall coherence

C(t)=C1(t)C2(t)= e−σ
2
DLSt2/2−Rt , (8)

where R = Rx + R y + Rz is the overall phonon jumping rate
(PJR). We see that the coherence actually shows a Gaussian and
exponential combined decay. It should be noted that the above
analysis is based on an atom with specific phonon number nq . For
a thermal atom the overall variation in the DLS and PJR should be
obtained by σ 2

DLS,all =
∑

nq
P (nq )σ

2
DLS and Rall =

∑
nq

P (nq )R
with P (nq )= 〈nq 〉

nq /(〈nq 〉 + 1)nq+1 the probability of an atom
on phonon state |nq 〉 and 〈nq 〉 the mean phonon number.

In the experiment of optically trapped single atoms, a trap-
ping laser with low intensity noise and pointing noise is usually
adopted to get a longer atom storage time and coherence time.
In such situation, the PJID is much smaller than the DLS vari-
ance. To experimentally check the effect of PJID, we deliberately
amplify the PJID by adding a 40-dB intensity noise on the trap
light. We measured two coherence decays in a red-detuned
ODT with a normal intensity noise and a deliberately enlarged
intensity noise. It should be noted that the 40-dB noise will
not affect the state lifetime T1, but the atom lifetime is reduced
to approximate 1 s compared to the 30-s lifetime without the
noise. The ODT is formed by strongly focusing a 1052-nm laser
beam to a size of 1.65 µm and loading single Cs atoms from a
magneto-optical trap (MOT). The coherence between the clock
states (|6S1/2 F = 3,mF = 0〉 and |6S1/2 F = 4,mF = 0〉)
was measured by a standard spin-echo interferometer [29,30]
with a 9.2-GHz microwave driving field. Figures 2(a) and 2(b)

Fig. 2. Coherence decay of a single Cs atom trapped in a 1052-nm
ODT. (a), (b) Coherence decays at the conditions that the laser is free run-
ning (low intensity noise) and 40-dB intensity noise is added. (c) Displays
the distributions of the sampled light power, which is normalized to the
mean value, for the two conditions. σF and σN are the normalized power
variances for the free-running laser and laser with 40-dB noise added,
respectively. (d) Displays the noise spectra, in which the dashed lines
marked as 2×ωz and 2×ωr are the frequencies where the parametric
process occurs. SNL: shot-noise limit.

show the coherence data for different time delays under the con-
dition that the trap laser is free running and 40-dB intensity
noise is added in a frequency range that covers the trap frequen-
cies. In Fig. 2(a), the coherence decays more like a Gaussian
function because of the low PJR. The data fitting by Eq. (8)
gives a DLS variation of σDLS = 7.54± 0.63 s−1 and a PJR
R = 0.00± 0.87 s−1. The corresponding T2 = 188± 5 ms,
which is defined by 1/e of the coherence. However, the coherence
data in Fig. 2(b), where 40-dB intensity noise is added to the trap
light, apparently deviate from the Gaussian function, and the
1/e coherence time is T2 = 75± 3 ms. In this situation, Eq. (8)
provides good data fitting, and the fitted DLS variation and PJR
are σDLS = 15.0± 1.5 s−1 and R = 5.14± 1.71 s−1, respectively.
Compared to the condition in which the laser is free running, the
DLS variation is increased by a factor of two, which is in agreement
with the increase (≈ 2.2) in the variance of the trap light intensity
[Fig. 2(c)]. The PJR is increased by 5.14 s−1, which comes from
the parametric-process-induced phonon jumping [the first term
in Eq. (7)] because the second term remains the same in the two
situations. By using the measured intensity noise [Fig. 2(d)], the
increase in the PJR can be estimated as 6.0 s−1 (Supplement 1),
which agrees well with the number obtained by the data fitting.
Therefore, the existence of PJID can be confirmed.

3. 20-s COHERENCE TIME OF A QUBIT
ENCODED IN AN OPTICALLY TRAPPED SINGLE
Cs ATOM

A long coherence time can be obtained by suppressing both
the DLS variance and PJR. The DLS variance can be greatly
suppressed by adopting red-detuned optical traps with “magic
conditions” [14]. However, because the atom is confined in the
region of intensity maxima, the decoherence induced by photon
scattering is also maximized (Supplement 1). In a well-aligned
blue-detuned trap, the atom is trapped in the region with zero light

https://doi.org/10.6084/m9.figshare.27004459
https://doi.org/10.6084/m9.figshare.27004459
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Fig. 3. (a) Schematic experimental setup for the long coherence time of a single Cs atom in a BBT. The R-ODT trap is used to load a single atom. The
R-ODT and B-OL combined trap is used for the motional ground state cooling of the atom by Raman sideband cooling. The state is transferred from
|6S1/2 F = 4,mF = 4〉 to |6S1/2 F = 4,mF = 0〉 after the RSC by four π -pulses. (b), (c) Display the intensity profiles of the R-ODT and BBT along the
radial and the axial directions, respectively. The BBT laser intensity is plotted with 40 times enlargement. (d) The time sequence for a single iteration of the
experiment. (e) The Carr-Purcell-Meiboom-Gill pulse sequence used for suppressing the residual DLS variance.

intensity in principle. Thus, the decoherence induced by photon
scattering is completely canceled. The main term of DLS [the first
term on the right-hand side of Eq. (4)] also disappears. The rest of
the DLS due to the phonon energy can be suppressed by preparing
the atom in its three-dimensional (3D) motional ground state (zero
phonon state, ZPS), i.e., nq = 0.

As given by Eq. (7), the PJR is determined by the trap frequency
ωq , intensity noise Sk , pointing noise Sq , and PN nq . Therefore,
it can be suppressed by reducing these parameters. The trap fre-
quency ωq is determined by the depth and size of the optical trap
and thus can be reduced by using a trap with shallow depth and
large size. The intensity noise can be suppressed by applying a
noise eater or adopting a low-noise laser. The pointing noise can
be minimized by improving the mechanical stability of the trap
optics. The most efficient way to suppress the PJR is to decrease the
PN. PJID can be minimized by preparing the atom in its 3D ZPS.

Here, we adopt a blue-detuned optical bottle beam trap (BBT)
to demonstrate the long coherence of a qubit encoded in a single
Cs atom by suppressing both the DLS variance and the PJR. The
trap is formed by focusing two parallelly propagating 780-nm

vortex laser beams with orthogonal polarization by a single objec-
tive with a numerical aperture NA= 0.4 [Fig. 3(a)]. Therefore,
the two beams cross each other around the focus of the objective,
and a microsized BBT is formed [31]. The radius and length
of the BBT are r = 2.9 µm and l = 14.3 µm, respectively. The
details of the trap construction can be found in Supplement 1.
The intensity ratio between the trap center and the trap barrier
is 1.5%. Thus, the DLS variance can be greatly reduced by using
a shallow trap depth and preparing the atom in its motional 3D
ground states. The PJR can also be suppressed by adopting a low-
intensity-noise laser and improving the mechanical stability of
the trap. We use a 780-nm external-cavity diode laser to build
the trap. The output has very low intensity noise [Fig. 4(b)], and
the relative intensity variance is smaller than 0.015%. By using
a trap power of 9 mW, we can build a trap with a minimum bar-
rier of kB × 50 µK (kB is the Boltzmann constant). The trap
frequencies are (ωx , ωy , ωz)= 2π × (5.65, 8.3, 0.435) kHz.
For a Cs atom in its 3D ZPS, the estimated DLS variance and the
PJR due to the intensity noise are σDLS < 3.0× 10−3 s−1 and
Rk < 2.5× 10−6 s−1, respectively. The pointing noise of the BBT

https://doi.org/10.6084/m9.figshare.27004459
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Fig. 4. Coherence decay of a single Cs atom in the 780-nm BBT.
(a) Coherence decays obtained by spin-echo spectroscopy. (b) Relative
intensity noise of the BBT trap light, and the dashed lines are the frequen-
cies at which the parametric process occurs. SNL: shot-noise limit.
(c) Coherence decay by CPMG sequence. Three interference fringes at
time delays of 0, 4.8, and 11.2 s obtained by the CPMG sequence are also
shown as insets.

is difficult to measure, and it is improved by mounting all the optics
with the cage system from Thorlabs. With the atom in its 3D ZPS,
the PJR due to pointing noise can also be minimized. Therefore, a
long T2 time is expected.

The single atom in its 3D ZPS is prepared with the aid of
a combined microsized ODT. Due to the loose confinement
of the atom in the BBT, it is impossible to directly cool the
atom to its 3D ZPS. Therefore, an extra combined microsized
ODT with strong confinement is adopted. The experimen-
tal sketch is displayed in Fig. 3(a), and the BBT and ODT are
arranged to be overlapped in both the radial and axial directions
[Figs. 3(b) and 3(c)]. The time sequence is shown in Fig. 3(d)
and the experimental details can be found in Supplement 1.
Resolved Raman sideband cooling (RSC) is used to prepare
the atoms in 3D ZPS, and the residual phonon numbers are
(n̄x , n̄ y , n̄z)' (0.07± 0.07, 0.04± 0.04, 0.08± 0.06) [32].
The atom populates on state |6S1/2 F = 4,mF = 4〉 after the
RSC process. The combined ODT is then adiabatically turned
off, and the atom is resettled in the BBT without changing its
phonon state and electronic state. The atom is transferred to
|6S1/2 F = 4,mF = 0〉 by four microwave π -pulses via the inter-
mediate states |6S1/2 F = 3,mF = 3〉, |6S1/2 F = 4,mF = 2〉,
and |6S1/2 F = 3,mF = 1〉. A spin-echo between the Cs clock
states (|6S1/2 F = 3,mF = 0〉 and |6S1/2 F = 4,mF = 0〉) is
performed to evaluate the decay of the coherence.

The coherence decay measured by a spin-echo interfer-
ometer is displayed in Fig. 4(a). The data show a Gaussian
function decay, and the fitting by Eq. (8) gives the DLS vari-
ance σDLS = 0.51± 0.13 s−1 and PJR R = 0.00± 0.29 s−1.
The variation of DLS dominates the decay; thus the fitted R has
a very large error and is inaccurate. The corresponding coherence
time is T2 = 2.8± 0.2 s. The DLS variance is much larger than
we estimated. This is probably due to the slow disturbance of the

energy levels caused by the variations in the magnetic field and the
BBT light field, which are not taken into account in the discussions
above. A CPMG pulse sequence is then applied to decouple the
spin dynamics from these slow disturbances [33,34]. The pulse
sequence is shown in Fig. 3(e), where a series ofπ -pulses is inserted
between the two π/2-pulses. The time interval T = 0.8 s is cho-
sen for its best performance. The CPMG pulse sequence works
as a filter that can filter out slow DLS variations with frequen-
cies n × 0.0625 Hz (n = 1, 2, 3, · · · ). The obtained decay of
coherence turns out to be much slower. The data are shown in
Fig. 4(c). The residual DLS variance and PJR are fitted by Eq. (8)
with σDLS = 0.020± 0.038 s−1 and R = 0.058± 0.011 s−1. The
variation of DLS σDLS is dramatically suppressed, and the PJID
then dominates the coherence decay. The small DLS variance
might come from residual variations in the magnetic field and
BBT light. The stability and phase noise of the microwave source
may also contribute to the DLS variance. The main source of the
residual PJR should be the pointing noise of the BBT. All of these
factors could be suppressed further by using proper methods. In the
current case, the coherence time is T2 = 16.6± 0.9 s. Accounting
for the single atom lifetime of 105.5± 13.1 s (Supplement 1), the
actual coherence time should be T2 = 19.7 s.

4. CONCLUSION

We discovered and experimentally verified a new decoherence
mechanism, i.e., phonon-jumping-induced decoherence, for a
single-alkali-atom qubit trapped in an optical dipole trap. Then,
a coherence time of approximately 20 s is obtained for a qubit
encoded in a single Cs atom by suppressing both the DLS variance
and the PJID by adopting a blue-detuned BBT and preparing the
atom into its 3D ZPS. This is the longest coherence time reported
to date for a qubit encoded in an optically trapped alkali metal
atom. Our analysis and the results and corresponding methods
for improving coherence are universal and can be applied to other
atoms and molecules, opening up new prospects for expanding the
coherent manipulation of optically trapped atoms or molecules.
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