基于硅基光电子芯片的低损耗动态偏振控制器*

赵倩如¹) 王旭阳^{1)2)†} 贾雁翔¹) 张云杰¹) 卢振国¹⁾²⁾ 钱懿³) 邹俊³⁾ 李永民^{1)2)‡}

(山西大学光电研究所,量子光学与光量子器件国家重点实验室,太原 030006)
2)(山西大学,省部共建极端光学协同创新中心,太原 030006)
3)(浙江大学,浙江大学杭州国际科创中心,杭州 311215)
(2023 年 7 月 27 日收到; 2023 年 9 月 28 日收到修改稿)

动态偏振控制器能够实现输入光场任意偏振态到输出光场任意偏振态的控制,可以动态补偿长距离单 模光纤导致的双折射效应,是量子通信和相干通信系统中的重要器件.本文设计并实验验证了基于硅基光电 子芯片的低损耗动态偏振控制器,芯片采用标准的绝缘体上硅工艺制作,器件整体尺寸为5.20 mm×0.12 mm× 0.80 mm,整体损耗为5.7 dB,最大功耗为0.2 W.基于可变步长模拟退火算法、低噪声探测器和高静态消光 比的器件,动态偏振消光比可锁定至30 dB以上.芯片采用热相移器对 TE₀光场的相位延迟量进行控制,整 体为0°/45°/0°/45°结构,可实现无端偏振控制.基于 Lumerical 软件对核心部件偏振旋转分束结构进行了优 化,该结构将以端面耦合方式进入波导中的 TM₀模式光场转化至另一波导中的 TE₀模式光场,而原单波导 中 TE₀模式光场不发生转化,实验测得动态偏振控制器的静态偏振消光比可达 40 dB 以上.该器件具有小体 积、低功耗和低成本的特点,可以广泛应用于量子通信和相干通信等领域,特别是需要考虑体积、功耗和成 本的应用场合.

关键词:动态偏振控制器,偏振旋转分束,偏振消光比,硅基光芯片 PACS: 42.82.-m, 42.25.Ja, 42.79.Gn, 03.67.HK DOI: 10.7498/aps.73.20231214

1 引 言

动态偏振控制器是光纤通信^[1-3]、光学成像^[4]、 量子通信等前沿技术的关键组件^[5-18]. 它可以将任 意输入偏振态转换为任意所需偏振态输出, 以克服 系统内部和外部导致的双折射效应. 传统的动态偏 振控制器通常体积大, 功耗高, 控制带宽低. 随着 光学集成技术的迅速发展, 在各种集成平台上实现 动态偏振控制器的研究已逐步展开^[19,20]. 硅基光电 子技术结合了微电子技术与光电子技术,能够充分 利用成熟的微电子加工工艺,同时拥有高带宽、高 速率、低功耗、低成本与抗电磁干扰的特性,是实 现集成动态偏振控制器的优选技术.

2016年,意大利圣安娜高等学校^[21]报道了硅 基集成 0°/45°结构动态偏振控制器,芯片采用二维 光栅输入方式,研究了波导结构的偏振控制器对偏 振的转换特性,但由于缺少一个 0°或 45°结构,无 法实现任意偏振态至任意偏振态的转换.2019年, 武汉光电国家实验室^[22]基于硅基光电子芯片实现

^{*} 山西省应用基础研究计划 (批准号: 202103021224010)、山西省省筹资金资助回国留学人员科研项目 (批准号: 2022-016)、航空 科学基金 (批准号: 20200020115001)、国家自然科学基金 (批准号: 62175138, 62205188, 11904219) 和量子光学与光量子器件国 家重点实验室开放课题 (批准号: KF202006) 和山西省 "1331"工程重点项目资助的课题.

[†] 通信作者. E-mail: wangxuyang@sxu.edu.cn

[‡] 通信作者. E-mail: yongmin@sxu.edu.cn

^{© 2024} 中国物理学会 Chinese Physical Society

了偏振的多种控制功能, 输入结构采用二维光栅, 输出结构为4路一维光栅,由于输出结构中没有二 维光栅,无法实现任意偏振态的输出. 2022年,山 西大学[23] 基于硅基光电子芯片设计并实验实现了 0°/45°/0°/45°动态偏振控制器,该芯片采用垂直二 维光栅耦合方式,可实现将任意偏振态转换至任意 偏振态的无端偏振控制;器件垂直耦合损耗为 7 dB, 整体损耗为 20 dB, 静态偏振消光比为 28 dB, 动态偏振消光比为 25 dB. 从上述研究中可以看 到,器件耦合方式均采用垂直的二维光栅耦合方 式,耦合损耗较大,且静态消光比受二维光栅的限 制, 普遍低于 30 dB. 较大的耦合损耗会使通信系 统探测效率降低,特别是对损耗敏感的量子通信系 统[6,9];同时偏振消光比关系着动态偏振控制器对 偏振态的控制精度,在量子通信领域对额外噪声和 安全密钥速率有着直接的影响[16]. 如果能够优化 这两个核心参数值,将会极大地提高硅基动态偏振 控制器的性能,提升其应用价值和应用范围.

基于上述研究背景,本文基于标准的绝缘体上 硅 (silicon on insulator, SOI) 设计并实验验证了 基于硅基光电子芯片的低损耗动态偏振控制器,采 用端面耦合结构,偏振旋转分束结构,0°/45°/0°/ 45°波导无端偏振控制结构,结合可变步长模拟退 火算法、低噪声探测器和高静态消光比的器件,实 现了动态偏振消光比大于 30 dB 的动态偏振控 制. 与最近基于硅基光电子芯片的垂直耦合动态偏 振控制器相比,静态偏振消光比由 28 dB 提升至 40 dB, 动态偏振消光比由 25 dB 提高至 30 dB, 器件整体损耗由 20 dB 降至 5.7 dB, 在性能上有 较大的提升[23]. 芯片动态偏振控制器的整体尺寸为 5.20 mm × 0.12 mm × 0.80 mm, 功耗为 0.2 W, 均远小于基于光纤挤压原理的动态偏振控制器.综 上所述,本文设计的硅基动态偏振控制器具有小体 积、低功耗和低成本的特点,可以广泛应用于量子 通信和相干通信等领域,特别是需要考虑体积、功 耗和成本的应用场合.

2 器件主要结构和偏振控制原理

2.1 端面耦合结构

实验中,通常采用端面耦合和垂直耦合的方式 将单模光纤中的光束导入到硅基光电子芯片中.为 了降低光场的耦合损耗,设计的动态偏振控制器采 用端面耦合的方式.端面耦合结构如图 1(a) 所示, 呈倒锥体结构,总长度为 400 μm,厚度为 0.22 μm, 与外界单模透镜光纤连接的 A 端宽度为 0.14 μm, 与内部单模波导连接的 B 端宽度为 0.45 μm.单模 透镜光纤将 10 μm 的模场直径转换成 4 μm,与端 面耦合结构 A 端 4 μm 模场直径相匹配,模场分布 如图 1(b) 所示.

单模光纤中任意偏振态的光场经端面耦合结构进行入芯片后,在波导中分为TE₀模式的光场和TM₀模式的光场,如图1(c)所示,分别对应于偏振的水平分量和垂直分量.与之相对应,当光场从芯片导入单模透镜光纤中时,波导中两种模式的光场将转换为单模光纤中任意偏振态光场.

图 1 端面耦合结构及模场分布 (a)端面耦合结构图; (b) A 端模场分布图; (c) B 端模场分布图

Fig. 1. Edge-coupling structure and mode fields: (a) Edge-coupling structure; (b) mode field at position A; (c) mode fields at position B.

2.2 偏振旋转分束结构

偏振旋转分束结构可以将单波导中 TE₀ 模式 和 TM₀ 模式的光场进行分离, 其中 TM₀ 模式光场 转化为 TE₀ 模式的光场并耦合进入另一个波导中, 同时原波导中的 TE₀ 模式不发生转变^[24,25].

图 2 是偏振旋转分束结构示意图, 主要分为两 部分, 偏振旋转部分和偏振分束部分. 偏振旋转部 分总长 $L_r = 90 \mu m$, 由全刻蚀波导和部分刻蚀波导 组成, 其主要功能是将 TM_0 模式的光场旋转为 TE_1 模式的光场, 而 TE_0 模式光场不发生转变. 全 刻蚀波导为梯形结构, 左部 C 端宽度为 $W_1 =$ 450 nm, 厚度 h = 220 nm; 右部 E 端宽度为 $W_2 =$ 850 nm, 厚度 h = 220 nm. 部分刻蚀波导为菱形结 构, 两端与全刻蚀波导的宽度相同, 中间 D 处最大 宽度 $W_s = 1550$ nm, 厚度 $h_s = 90$ nm. 偏振分束部 分总长 $L_s = 300 \mu m$, 由上方的过渡波导和下方的 绝热波导构成, 两者均为全刻蚀波导. 其主要功能 是将 TE_1 模式的光场由过渡波导耦合至绝热波导 并转化为 TE_0 模式, 而过渡波导中的 TE_0 模式光

图 2 偏振旋转分束结构示意图

Fig. 2. The structure of polarization rotator-splitter.

图 3 各种模式光场传输效率与偏振旋转分束结构长度的关系 (a) TE_0 , TM_0 和 TE_1 模式的光场传输效率与偏振旋转结构的 长度 L_r 的关系; (b) TE_0 和 TE_1 模式的光场传输效率与偏振分束结构的长度 L_s 的关系

Fig. 3. The relationships between the transmission efficiencies of different modes and the polarization rotator-splitter length: (a) The relationships between the transmission efficiencies of TE_0 , TM_0 and TE_1 modes and the length of polarization rotator structure L_r ; (b) the relationships between the transmission efficiencies of TE_0 , TE_1 mode and the length of polarization splitter structure L_s .

场不发生转变. 过渡波导为梯形结构, 左端 F 处宽 度为 $W_2 = 850 \text{ nm}$, 右端 G 处的宽度为 $W_3 = 650 \text{ nm}$. 绝热波导同样为梯形结构, 左端 F 处宽度为 $W_4 = 200 \text{ nm}$, 右端 G 处宽度为 $W_0 = 500 \text{ nm}$. 两波导间 隙为 200 nm, 且保持不变.

偏振旋转分束结构是动态偏振控制器的核心器件,其性能直接影响动态偏振控制器所能达到的 消光比.设计器件的过程中,需要对器件各部分的 尺寸进行优化,下面重点介绍偏振旋转部分的长度 *L*_r和偏振分束部分的长度 *L*_s的优化过程.

图 3 是各种模式的传输效率与偏振旋转分束 结构长度关系的仿真结果.图 3(a) 是 TE₀, TM₀ 和 TE₁模式的传输效率随偏振旋转部分长度 L_r 的 变化情况.黑色曲线表示 TE₀模式的传输效率,其 值恒为 1, 不随长度 L_r 变化,表示 TE₀模式没有转 换,即偏振旋转部分的长度 L_r 对 TE₀模式的转换 没有影响.蓝色曲线表示 TM₀模式的传输效率,随 着长度 L_r 的增加, TM₀模式的传输效率降为 0, 而 代表 TE₁模式的红色曲线的传输效率从 0 升到 1, 说明在偏振旋转部分 TM₀模式逐渐转化为 TE₁ 模式. 当长度 $L_r \ge 90 \, \mu m$ 时, TM₀ 模式几乎全部转 化为 TE₁模式. 综合考虑器件体积和损耗, 偏振旋 转结构的长度优化为 90 µm. 图 3(b) 表示在偏振 分束部分, TE₀和 TE₁模式的传输效率随长度 L_s 的变化情况. 黑色曲线表示过渡波导中 TE₀模式 的传输效率,其值为1,不随长度Ls变化,即Ls的 取值对 TE₀模式的转换没有影响. 红色曲线表示 过渡波导中 TE₁模式的传输效率随着长度 L_s的增 加而减小,直至降为0;同时代表绝热波导中TEo 模式的绿色曲线的传输率从0升至1,表示过渡波 导中的 TE1 模式逐渐耦合转化至绝热波导中的 TE₀模式. 当长度 L_s ≥ 300 µm 时, TE₁模式几乎全 部转化为 TE₀ 模式. 综合考虑器件体积和损耗, 偏 振分束部分的长度优化为 300 µm.

相应地,当光场反向传播时,偏振旋转分束结构将具有偏振合束功能,可以将两束分别从过渡波

导和绝热波导中输入的 TE₀ 模式光场合并至同一 波导中,同时将绝热波导中输入的 TE₀ 模式转化 为 TM₀ 模式,过渡波导中输入的 TE₀ 模式不发生 转化.

2.3 波导 0°和 45°偏振控制结构和工作 原理

延迟量控制是动态偏振控制中常用的控制方法. 当光场沿 z 轴传播时, 两偏振分量分别在 x 轴与 y 轴上, 一般定义延迟量波片方位角 ϕ 为光轴和 x 轴的夹角, 光轴相对其垂直轴的相位延迟量定义为 δ . 方位角 $\phi = 0^{\circ}$, 延迟量 $\delta = \alpha$ 的琼斯矩阵可以表示为

$$\boldsymbol{M}_0 = \begin{bmatrix} \mathbf{e}^{i\alpha} & 0\\ 0 & 1 \end{bmatrix} \,. \tag{1}$$

方位角 $\phi = 45^{\circ}$, 延迟量为 $\delta = \beta$ 的琼斯矩阵可以 表示为

$$M_{45} = \begin{bmatrix} (1 + e^{i\beta})/2 & -(1 - e^{i\beta})/2 \\ -(1 - e^{i\beta})/2 & (1 + e^{i\beta})/2 \end{bmatrix}$$
$$= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} e^{i\beta} & 0 \\ 0 & 1 \end{bmatrix}$$
$$\times \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
$$= M_{\rm R} \cdot M_0 \cdot M_{\rm L}.$$
(2)

该矩阵可以分解为三个简单矩阵 M_R, M₀ 和 M_L.

在波导光学中,通过设计出实现上述矩阵的结构,同样能够对光场的偏振实现延迟量控制.图4(a)所示是矩阵 *M*₀ 对应的等效波导结构,由两根平行波导和控制波导相位的热相移器构成.图4(b)所示是矩阵 *M*₄₅ 对应的等效波导结构,由矩阵 *M*_L,

 M_0 和 M_R 对应的波导结构构成. 矩阵 M_R 对应的 波导结构由上波导 $\pi/2$ 固定相移器, 50/50 多模干 涉耦合器 (multi-mode inferometer coupler, MMI) 和下波导 $\pi/2$ 固定相移器构成, 其表达式为

$$M_{\rm R} = \begin{bmatrix} e^{i\pi/2} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & i/\sqrt{2}\\ i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \\ \times \begin{bmatrix} 1 & 0\\ 0 & e^{i\pi/2} \end{bmatrix} \begin{bmatrix} e^{-i\pi/2} & 0\\ 0 & e^{-i\pi/2} \end{bmatrix} \\ = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2}\\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$
(3)

矩阵 M_L 对应的波导结构由下波导 $\pi/2$ 固定相移器, 50/50 MMI 和上波导 $\pi/2$ 固定相移器构成, 其表达式为

$$M_{\rm L} = \begin{bmatrix} e^{-i\pi/2} & 0\\ 0 & e^{-i\pi/2} \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & e^{i\pi/2} \end{bmatrix}$$
$$\times \begin{bmatrix} 1/\sqrt{2} & i/\sqrt{2}\\ i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} e^{i\pi/2} & 0\\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2}\\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \qquad (4)$$

其中 $\begin{bmatrix} e^{-i\pi/2} \\ 0 & e^{-i\pi/2} \end{bmatrix}$ 为上下波导的共有相位 $-\pi/2$, 对输出偏振态变换无影响, 因此在动态偏振 控制器设计时, 将该共有相位 $-\pi/2$ 省略.

为了能够清晰地说明矩阵 M_0 和 M_{45} 对偏振态的作用,将任意偏振态 P 在庞加莱球上的表示和矩阵对偏振态 P 的变换进行了绘制,如图 4(c)所示.任意偏振态 P 在庞加莱球上的偏振分量为 S_1 , S_2 和 S_3 .改变延迟量 α ,偏振态 P 经过矩阵 M_0 作用后输出的偏振态的轨迹为蓝色曲线,即矩阵 M_0 对偏振态的作用是使其绕 S_x 轴逆时针旋转角度 α ;

图 4 传递矩阵对应的等效波导结构 (a) 矩阵 M_0 的等效波导结构; (b) 矩阵 M_{45} 的等效波导结构; (c) 矩阵 M_0 和 M_{45} 对任 意偏振态 P 在庞加莱球上的变换轨迹; TPS: 热相移器

Fig. 4. Equivalent waveguide structures of transfer matrices: (a) Equivalent waveguide structure of matrix M_0 ; (b) equivalent waveguide structure of matrix M_{45} ; (c) the transform traces of matrix M_0 and matrix M_{45} on arbitrary polarization state P in Poincare sphere; TPS: Thermal phase shift.

改变延迟量 β ,偏振态 P经过矩阵 M_{45} 作用后输出的偏振态的轨迹为红色曲线,即矩阵 M_{45} 对偏振态的作用是使其绕 S_y 轴逆时针旋转角度 β .

2.4 波导 0°/45°/0°/45°动态偏振控制器

延迟量型动态偏振控制器能够实现任意偏振 态至任意偏振态的转换,通常需要 0°/45°/0°结构, 或 45°/0°/45°结构^[26,27],通过图 4(c)也不难看出 两种结构的变换可以将球面上任意一点移动至任 意一点.实际应用中,为了实现无端偏振控制,通 常使用 0°/45°/0°/45°结构,或 45°/0°/45°/0°结构, 多一个变换结构通常可以避免在偏振控制过程中 因某相位控制电压暂时饱和而复位的过程中偏振 发生跳变.因此本文采用 0°/45°/0°/45°四个等效 波导结构来进行偏振锁定.

图 5(a) 是初步设计出的基于波导结构的动态 偏振控制器, 从左到右依次为端面耦合结构, 偏振 旋转分束结构, 波导 0°/45°/0°/45°结构 (M_1 , M_2 , M_3 , M_4), 偏振旋转分束结构, 端面耦合结构. 其 中 φ_i (i = 1, 2, 3, 4) 是需要延迟的相位, $\Delta \theta_i$ (i = 1, 2, 3, 4, 5) 是平行波导的初始相位差. 实际应用中, 可以通过调整热相移器相位为 $\phi_i = \varphi_i \pm n\pi/2\pm$ $\Delta \theta_i$, (i = 1, 2, 3, 4; n = 1, 2), 灵活实现相位的延迟 和补偿, 因此设计出的实际波导 0°/45°/0°/45°动 态偏振控制器结构可简化为如图 5(b) 所示的结构. 图 5(b) 中 M_4 结构与图 5(a) 中 M_4 结构相比, 少 了一个 $\pi/2$ 固定相移量, 且相位差 $\Delta \theta_5$ 无法补偿. 由于动态偏振控制器中已具备 0°/45°/0°结构, 因 此并不影响任意偏振态至任意偏振态的输出, 通过 调整 0°/45°/0°结构输出的任意偏振态可以补偿掉 $\pi/2$ 固定相移和相位差 $\Delta \theta_5$. 平行波导结构中,下 方波导的热相移器可以不使用,但实际设计时将其 加入,这样可使两波导的局部环境尽量一致,从而 减小固有相位差 $\Delta \theta_i$.

3 模拟退火算法程序仿真和优化

为获得较高的动态偏振消光比,实验拟采用模 拟退火算法对偏振进行锁定.关于模拟退火算法的 介绍可参考相关文献 [28-31].本节主要仿真了步长, 探测器电子学噪声和静态偏振消光比等因素对动 态偏振消光比锁定的影响,以及采用的相应措施.

图 6(a) 是各种固定步长和可变步长下所能达 到的偏振消光比的仿真结果. 蓝色、绿色、紫色和 橙色曲线分别是采用固定步长 st = 0.16, 0.08, 0.03, 0.008 rad 时的锁定结果,随着步长的减小,所能达 到的偏振消光比逐渐增大,但是所需步长逐渐增 加. 通过仿真优化结果发现,采用可变步长的方法 可以用较少的循环次数实现高消光比,如图 6(a) 中的黑色曲线所示. (5) 式是根据固定步长和所能 达到的消光比设计出的动态步长公式:

$$st = \begin{cases} 0.16 \text{ rad}, \ 0.1 < I_{st} \leq 1, \\ 0.08 \text{ rad}, \ 0.01 < I_{st} \leq 0.1, \\ 0.03 \text{ rad}, \ 0.001 < I_{st} \leq 0.01, \\ 0.008 \text{ rad}, \ I_{st} \leq 0.001, \end{cases}$$
(5)

图 5 基于硅基光电子芯片的动态偏振控制器结构 (a) 与波导 0°/45°/0°/45°结构对应的片上动态偏振控制器结构; (b) 实际片 上动态偏振控制器结构

Fig. 5. The structures of dynamic polarization controller on silicon photonics chip: (a) The structure of dynamic polarization controller corresponding to $0^{\circ}/45^{\circ}/0^{\circ}/45^{\circ}$ structure; (b) the simplified structure of dynamic polarization controller on chip.

图 6 基于模拟退火算法的偏振锁定仿真结果 (a)采用各种固定步长及可变步长锁定后的偏振消光比;(b)考虑探测器电子学 噪声时采用固定步长的仿真锁定结果;(c)考虑探测器噪声和静态消光比时采用固定步长的仿真锁定结果;(d)考虑探测器噪声 和静态消光比时采用固定步长和可变步长的锁定结果;EN:电子学噪声,SER:静态消光比

Fig. 6. The simulation of polarization locking using simulated annealing method: (a) The extinction ratios of polarization locking using fixed steps and variable steps methods; (b) the polarization locking results using fixed steps considering electronic noise; (c) the polarization locking results using fixed steps and variable steps considering electronic noise and static extinction ratio; (d) the polarization locking results using fixed steps and variable steps considering electronic noise and static extinction ratio. EN: electronic noise, SER: static extinction ratio.

对应的电压值的比值,即归一化到最大光强所对应的值.

图 6(b) 仿真了不同固定步长下探测器电子学 噪声对动态偏振消光比的影响. 橙色曲线表示当采 用固定步长 st = 0.008 rad 时, 可达到 45 dB 的动态 偏振消光比. 当考虑电子学噪声后, 如青色曲线所 示, 动态偏振消光比从 45 dB 降至 40 dB 左右. 电 子学噪声呈正态分布, 标准差为 1×10⁻⁴ V (归一化 到最大光强所对应的电压值). 紫色曲线表示当采 用固定步长 st = 0.03 rad 时, 可达到 33 dB 的动态 偏振消光比. 当考虑电子学噪声后, 如棕色曲线所 示, 动态偏振消光比无明显变化. 从仿真结果中可 以看出, 如果要达到高动态消光比, 探测器的电子 学噪声需降至足够小.

静态消光比是限制动态消光比的另一个因素. 当固定步长为 0.03 rad 或 0.08 rad 时,锁定结果 分别为图 6(c)中的紫色曲线和绿色曲线,与图 6(a) 中锁定结果相比,消光比没有太大的变化.当固定 步长为 0.008 rad 时,图 6(c)中的青色曲线表示 只考虑电子学噪声时的锁定结果,动态消光比为 40 dB; 当考虑 40 dB 静态消光比时,动态消光比降 低到 35 dB 左右.从仿真结果可以看出,要测得较 高的动态消光比,需以较高的静态消光比为基础.

图 6(d) 中的仿真结果均考虑了探测器的电子 学噪声和系统静态消光比的影响. 蓝色曲线和红色 曲线分别采用了 0.16 rad 和 0.008 rad 的固定步 长, 黑色曲线采用可变步长, 只需要较少的内循环 就可以达到 30 dB 以上的动态消光比.

以上述仿真结果为依据,偏振锁定实验中将采 用可变步长方法,使用低噪声探测器和高静态消光 比的器件.

4 实验系统及测量结果

基于硅基光电子芯片的动态偏振控制实验系 统如图 7(a) 所示. 光源为 1550 nm DFB 连续激光 器, 经保偏光纤输出线偏振光. 保偏光纤衰减器用 于调节光功率, 经 50/50 单模保偏光纤分束器分为

两束光.其中一束光输入至功率计中,用于检测硅 基光电子芯片动态偏振控制器的输入光功率;另外 一束输入到硅基芯片中,起偏器 (general photonics, NPOL-15-PP-FC/APC)的偏振消光比大于 40 dB, 用于提高激光的偏振纯度,手动偏振控制器用于调 节输入到硅基芯片的光偏振状态.芯片采用端面耦 合方式与单模透镜光纤进行耦合. 硅基光电子芯片 的输出光经光纤偏振分束器件(光库科技, PBS-55-P-2-L-1-S) 后分成两路, 光束1 连接光电探测 器, 光束 2 连接功率计. 图 7(a) 中红色光路代表光 路中使用的光纤是保偏光纤,蓝色光路代表光路中 使用的光纤是单模光纤.光电探测器为图 7(b) 所 示的光电探测器,电源由电池供电,无需运算放大 器,电子学噪声标准差可低至 1.2×10⁻⁴,该值归一 化到探测器输出的最大电压值. 硅基光芯片的四路 热相移器控制信号和光电探测器的输出信号均连 接至多功能输入输出卡 USB6259, 相关数据由计 算机进行处理. 图 7(c) 是对准平台上的硅基动态 偏振控制器及其外围电路; 图 7(d) 是端面耦合对 准时整个硅基光电子芯片的俯视图; 图 7(e)是端面 耦合对准时透镜光纤和芯片端面的显微镜图; 图 7(f) 是硅基动态偏振控制器的显微镜图. 经测试和计算,偏振控制器尺寸为 5.20 mm × 0.12 mm × 0.80 mm,整体损耗为 5.7 dB,其中四个 50/50 MMI 的损耗约为 0.3 dB × 4 = 1.2 dB,两个偏振旋转分束结构的损耗约为 0.1 dB × 2 = 0.2 dB,波导长度引起的损耗约为 0.3 dB,两个端面的耦合损耗约为 2 dB × 2 = 4 dB.

实验中,采用金丝键合机和 25 μm 金线将 热相移器的焊盘与印制电路板的焊盘进行焊接. 多功能输入输出卡 USB6259 可输出电压范围为 $V = \pm 10$ V,最大电流为 20 mA. 热相移器长度为 400 μm,热相移器的电阻为R = 2 kΩ. 动态偏振控 制器共需要 4 个热移相器,每个热移相器的控制电 压范围为 0—10 V,整个器件在动态工作时需要的 最大功率为 $P_{max} = (V_{max}^2/R) \times 4 = 0.2$ W.图 8 是 利用单个马赫-增德尔干涉仪 (Mach-Zehnder interferometer, MZI) 结构测试的热相移器的特性. 从 图 8(a) 可以看出,热相移器的相移 φ与功率 P具 有良好的线性关系,其关系式为

$$\varphi = k \cdot P + \theta = k \cdot V^2 / R + \theta. \tag{6}$$

斜率为k = 0.164 rad/mW,截距 $\theta = 0.931 \text{ rad}$ 为

图 7 动态偏振控制实验示意图及芯片实物图 (a)动态偏振控制实验示意图;(b)低噪声光电探测器示意图;(c)硅基动态偏振 控制器及外围电路;(d)硅基芯片俯视图;(e)透镜光纤与硅基芯片端面耦合的显微镜图;(f)硅基动态偏振控制器显微镜图;VOA, 可调光衰减器;MPC,手动偏振控制器;PBS,偏振分束器;MFI/O card,多功能输入输出卡

Fig. 7. The scheme of experimental setup about locking the polarization and related photographs: (a) The scheme of experimental setup; (b) the scheme of low noise photodetector; (c) the microscope photograph of whole silicon photonics chip and related circuits; (d) the vertical view of whole silicon photonics chip; (e) the microscope photograph of aligning the fiber lens with chip edges; (f) the microscope photograph of silicon photonics integrated dynamic polarization controller. VOA: Variable optics attenuator; MPC: Manual polarization controller; PBS: Polarization beam splitter; MF I/O card: Multi-function I/O card.

图 8 热相移器特性图 (a) 热相移器的热功率和相移关 系图; (b) MZI 调制器的上升和下降时间

Fig. 8. The characteristics of thermal phase shift: (a) The relationship of thermal power and phase shift; (b) the rise and fall time of the MZI modulator.

两臂的固有相位差. 电压从 0 到 10 V 变化时, 功率 从 0 mW 变为 50 mW, 相移的变化范围为 8.2 rad > 2π rad, 满足偏振锁定的需求. 由 (6) 式可以得出, 电压步长值 ΔV 与弧度步长值 $\Delta \varphi$ 的关系为

$$\Delta V = \frac{R}{2kV} \Delta \varphi. \tag{7}$$

两者不是线性关系, 弧度步长值固定时, 电压值越大, 电压步长值越小. 实验中为了获得较好的实验结果, 计算电压步长值 ΔV 时电压值取 V = 10 V.因此对照仿真结果, 弧度步长值 0.16, 0.08, 0.03和 0.008 rad 对应的最大电压步长值分别为 0.1, 0.05, 0.02和 0.005 V.

图 8(b) 是热调制器的响应时间测试结果, 红 色脉冲为加载在 MZI 热调制器上的电脉冲, 幅度 为 5.6 V. 上升和下降时间均为 5 ns. 蓝色脉冲为 MZI 测试结构的单臂输出结果, 下降沿时间为 10 μs, 上升沿时间为 20 μs, 对应的响应带宽分别为 30 kHz 和 15 kHz, 带宽积分别为 5.6 V·30 kHz = 168 kHz·V 和 5.6 V·15 kHz = 84 kHz·V, 远高于基于光纤挤压 原理的商用动态偏振控制器 PolaRITE III (general photonics). 该器件由于需加载高压 140 V, 通常结 合高压放大器件 PCD-M02 使用, 典型的带宽积分 值为 1.25 kHz·V, 最大消耗功率为 11.2 W.

进行动态偏振控制之前,首先对硅基动态偏振 控制器的静态消光比进行了测试,测试示意图如 图 7(a) 所示. 首先需要测试的是光纤偏振分束器 的偏振消光比,此时需将光路中的硅基动态偏振控 制器去掉. 经手动偏振控制器的光场直接进入偏振 分束器件,其输出光路2和光路1均接入功率计 中.调节衰减器和手动偏振控制器,使光路1的功 率至最大 0.5 mW, 光路 2 的功率最低, 进行多次 测量后可得偏振消光比的平均为 41.44 dB, 具体 测试值见表1测试1.调节衰减器和手动偏振控制 器, 使光路 2 的功率至最大 0.5 mW, 光路 1 的功 率最低,进行多次测量后可得偏振消光比的平均 为 41.32 dB, 具体测试值见表 1 测试 2. 然后将硅 基动态偏振控制芯片加入光路中,其位于手动偏振 控制器和偏振分束器之间. 调节衰减器和硅基动态 偏振控制器的控制电压,使光路2的功率至最大 0.5 mW, 光路1的功率最低, 进行多次测量后可得 偏振消光比的平均为 40.4 dB, 具体测试值见表 1 测试 3. 调节衰减器和硅基动态偏振控制器的控制 电压, 使光路1的功率至最大0.5 mW, 光路2的 功率最低,进行多次测量后可得偏振消光比的平均 为 40.36 dB, 具体测试值见表 1 测试 4. 从测试结 果可以看出, 硅基动态偏振控制器的静态消光比大 于 40 dB.

采用固定步长和可变步长的动态偏振锁定结 果如图 9 所示,与仿真结果基本符合.黑色曲线是 采用固定步长 0.1 V时的锁定结果,动态偏振消光

表 1 静态偏振消光比测试数据

	Table 1.	Test da	ta for static pola	rization extine	ction ratios.				
测试数据和相应静态偏振消光比									
浙山宁 1	光路2功率/nW	37	32	35	36	38	35.6		
视风	偏振消光比/dB	41.3	41.9	41.5	41.4	41.1	41.44		
通行中の	光路1功率/nW	38	37	35	38	34	36.4		
视风之	偏振消光比/dB	41.1	41.3	41.5	41.1	41.6	41.32		
测试3	光路1功率/nW	46	41	46	46	46	45		
	偏振消光比/dB	40.3	40.8	40.3	40.3	40.3	40.4		
测学生 4	光路2功率/nW	45	47	45	45	48	46		
伙! 风4	偏振消光比/dB	40.5	40.2	40.5	40.5	40.1	40.36		

比为 10 dB, 循环次数为 10 次; 红色曲线代表固定 步长为 0.02 V 时的锁定结果, 动态偏振消光比大 于 20 dB, 需循环次数为 50 次; 蓝色曲线代表固定 步长为 0.005 V 时的锁定结果, 动态偏振消光比大 于 30 dB, 需循环次数为 600 次. 随着固定步长的 减小, 锁定的偏振消光比增加, 但是锁定至稳定状 态所需的循环次数也越多. 绿色曲线代表可变步长 时锁定情况, 动态偏振消光比可达到 30 dB 以上, 仅需 50 次循环.

图 9 采用固定步长和可变步长时基于硅基芯片的偏振锁 定结果

Fig. 9. Experiment results of polarization locking using fixed or variable steps based on silicon photonics integrated dynamic polarization controller.

5 总结与展望

本文设计并实验验证了基于硅基光电子芯 片的低损耗 0°/45°/0°/45°动态偏振控制器.芯 片采用标准的 SOI 工艺制作,器件整体尺寸为 5.20 mm × 0.12 mm × 0.80 mm,端面耦合损耗 为 2 dB,整体损耗为 5.7 dB. 通过仿真优化偏振旋 转分束结构,仿真优化可变步长模拟退火算法,降 低光电探测器噪声,提高偏振分束器件静态消光比 等方法,可实现静态消光比大于 40 dB,动态偏振 消光比大于 30 dB 的动态偏振控制.该器件仅需 0—10 V 控制电压,最大功耗 0.2 W,相比于商用 的光纤挤压式控制方法,有效降低了器件的功耗.

在今后的研究中,可通过优化端面耦合尺寸和工艺,将端面耦合损耗进一步降至 0.5—1.0 dB^[32,33];还可将输入输出接口设计至同一端,方便对器件进行端面阵列耦合封装.总之,该器件具有小体积、低功耗和低成本的特点,可以实现高动态消光比的

锁定,希望可以广泛应用于光纤通信、光学成像、 量子通信等领域,特别是需要考虑体积、功耗和成 本的应用场合.

参考文献

- [1] Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18
- [2] Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109
- [3] Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W, Luo B 2016 Light-Sci. Appl. 6 e16207
- [4] Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203 (in Chinese) [殷玉龙, 孙晓兵, 宋茂新, 陈 卫, 陈斐楠 2019 物理学报 68 024203]
- [5] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332
- [6] Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 *Optica* 9 492
- [7] Chen L Y, Li Z C, Chen H, Tian J G, Chen S Q 2021 Acta Opt. Sin. 41 0823106 (in Chinese) [陈烈裕, 李占成, 程化, 田建 国, 陈树琪 2021 光学学报 41 0823106]
- [8] Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330
- [9] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 *Phys. Rev. Lett.* 125 010502
- [10] Liu S S, Lu Z G, Wang P, Tian Y, Wang X Y, Li Y M 2023 *NPJ Quantum Inf.* 9 92
- [11] Xin G F, Shen L, Pi H Y, Chen D J, Cai H W, Feng H Z, Geng J X, Qu R H, Chen G T, Fang Z J, Chen W B 2012 *Chin. Opt. Lett.* **10** 101403
- [12] Zhang P Y, Lu L L, Qu F C, Jiang X H, Zheng X D, Lu Y Q, Zhu S N, Ma X S 2020 Chin. Opt. Lett. 18 082701
- [13] Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214 (in Chinese) [李申, 马海强, 吴令安, 翟光杰 2013 物理 学报 62 084214]
- [14] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274
- [15] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L, Thompson M G 2017 Optica 4 172
- [16] Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625
- [17] Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 *Opt. Lett* 48 2953
- [18] Tomohiro N, Takefumi N, Mamoru E, Ruofan H, Takahiro K, Takeshi U, Akira F 2023 Opt. Express 31 19236
- [19] Sarmiento-Merenguel J D, Halir R, Le Roux X, Alonso-Ramos C, Vivien L, Cheben P, Durán-Valdeiglesias E, Molina-Fernández I, Marris-Morini D, Xu D X, Schmid J H 2015 Optica 2 1019
- [20] Kim J W, Park S H, Chu W S, Oh M C 2012 Opt. Express 20 12443
- [21] Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa A, Romagnoli M 2016 Opt. Lett. 41 5656
- [22] Zhou H L, Zhao Y H, Wei Y X, Li F, Dong J J, Zhang X L 2019 Nanophotonics 8 2257
- [23] Wang X Y, Jia Y X, Guo X B, Liu J Q, Wang S F, Liu W Y, Sun F Y, Li Y M 2022 Chin. Opt. Lett. 20 041301
- [24] Sacher W. D, Barwicz T, Taylor B. J. F, Poon J. K. S 2014 Opt. Express 22 3777

- [25] Zou J, Ma X, Xia X, Wang C H, Zhang M, Hu J H, Wang X Y, He J J 2021 J. Lightwave Technol. 39 2431
- [26] Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173 (in Chinese) [张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173]
- [27] L. Moller 2001 IEEE Photonics Technol. Lett. 13 585
- [28] Yassin B, Zeriab E S M, Lahcen A 2023 J. Optim. Theory Appl. 197 438
- [29] Shen Y D, Dong Y C, Han X X, Wu J D, Xue K, Jin M Z, Xie G, Xu X Y 2023 Int. J. Hydrogen Energy 48 24560
- [30] Kuznetsov A, Karpinski M, Ziubina R, Kandiy S, Frontoni E, Peliukh O, Veselska O, Kozak R 2023 Information 14 259
- [31] Wang Z S, Wu Y H 2023 Processes 11 861
- [32] Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Light. Technol. 39 4374
- [33] Cheben P, Schmid J H, Wang S R, Xu D X, Vachon M, Janz S, Lapointe J, Painchaud Y, Picard M J 2015 Opt. Express 23 22553

Low-loss integrated dynamic polarization controller based on silicon photonics^{*}

Endo gian ita mang ita rang ola ran inang Enang ran olo	Zhao Qian-Ru ¹⁾	Wang Xu-Yang ^{1)2)†}	Jia Yan-Xiang ¹⁾	Zhang Yun-Jie ¹
---	----------------------------	-------------------------------	-----------------------------	----------------------------

Lu Zhen-Guo¹⁾²⁾ Qian Yi³⁾ Zou Jun³⁾ Li Yong-Min^{1)2)‡}

1) (State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China)

2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China)

3) (ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China)

(Received 27 July 2023; revised manuscript received 28 September 2023)

Abstract

A dynamic polarization controller (DPC) is an important component in fiber optic communication, optical imaging, and quantum technologies. The DPC can transform any input state of polarization (SOP) into any desired SOP to overcome polarization-related impairments resulting from high internally and externally induced birefringence. In this work, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. The whole chip is fabricated by using industry-standard silicon-on-insulator technology. Using the edge-coupling method, the coupler loss is reduced to less than 2 dB, and the total loss of DPC is reduced to 5.7 dB. Using a variable-step simulated annealing method, for a low-noise photodetector and high-static-extinction-ratio device, a dynamic polarization extinction ratio can reach more than 30 dB. The size of the DPC on the chip is 5.20 mm \times 0.12 mm \times 0.80 mm.

The DPC utilizes a $0^{\circ}/45^{\circ}/0^{\circ}/45^{\circ}$ structure, which can realize arbitrary polarization-based coordinate conversion with endless polarization control. The 0° and 45° transform structures and matrices are presented, and the principle of the 0° and 45° structures is explained in detail by using the Poincaré sphere.

A simulation using Lumerical is conducted to optimize the polarization rotator-splitter, which can transform the TM_0 mode light in one waveguide into the TE_0 mode light in the other waveguide while the TE_0 mode light in one waveguide remains unchanged. Based on the optimized structure, the static polarization extinction ratio of DPC can be measured to be a value greater than 40 dB.

^{*} Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021224010), the Shanxi Provincial Foundation for Returned Scholars, China (Grant No. 2022-016), the Aeronautical Science Foundation of China (Grant No. 20200020115001), the National Natural Science Foundation of China (Grant Nos. 62175138, 62205188, 11904219), the Open Fund of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202006), and the "1331 Project" for Key Subject Construction of Shanxi Province, China.

 $[\]dagger$ Corresponding author. E-mail: wangxuyang@sxu.edu.cn

[‡] Corresponding author. E-mail: yongmin@sxu.edu.cn

The thermal phase shift (TPS) is characterized by using a Mach–Zehnder modulator. The length of the TPS is 400 μ m, and the resistance of the metal heater is 2.00 k Ω . The maximum power consumed by the four TPSs is a total of 0.2 W. The modulation bandwidth of the DPC designed by our group is approximately 30 kHz. By considering an applied voltage of 5.6 V in the case of the TPS, the bandwidth–voltage product is $5.6 \times 30 = 168 \text{ kHz-V}$.

To optimize the DPC parameters, such as the step length, electronic noise, and static polarization extinction ratio, numerical simulation results of the simulated annealing approach are analyzed in detail.

In conclusion, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. A dynamic polarization extinction ratio is obtained to be greater than 30 dB by using the variable-step simulated annealing method. The DPC is expected to be utilized in fiber or quantum communication systems to minimize size and further decrease costs.

Keywords: dynamic polarization controller, polarization rotator and splitter, polarization extinction ratio, silicon photonics chip

PACS: 42.82.-m, 42.25.Ja, 42.79.Gn, 03.67.HK

DOI: 10.7498/aps.73.20231214