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Quantum resources have been proven to drive the measurement sensitivity to beyond standard quantum limit
in quantum metrology. However, quantum advantage degrades with optical losses. Aiming at angular rotation
estimation, we theoretically investigate three loss-tolerant (external loss) quantum-enhanced interferometers—
the degenerate SU(1,1) interferometer (DSI), nondegenerate hybrid interferometer (NHI), and degenerate hybrid
interferometer (DHI)—to achieve supersensitive angular rotation estimation, without strict requirement of
external losses. Analysis results show that these interferometers are perfectly applicable to angular rotation
estimation. Moreover, the sensitivity, which is the same as in the case of no external losses, can always be
retrieved by taking full advantage of the second optical parametric amplifier as a phase-sensitive amplification.
The sensitivity bound that originates from laser power restriction in the DSI scheme can be overcome by the
employment of the NHI or DHI scheme. These results are critical in real time variation of the angle measurement
and tracking an object in circular motion.
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I. INTRODUCTION

An interferometer, as one of the most sensitive measure-
ment devices in the world, is the most basic tool in many
scientific missions, from searching for dark matter [1] to grav-
itational wave detection [2–6]. Due to power requirements and
the needs of advanced technologies, the measurement sensi-
tivity of the interferometer continues to be driven to higher
levels in the past years [7,8], extending the scope and depth
of understanding of nature and the universe [9]. However, the
behavior of measurement systems at small scales is governed
by the laws of quantum mechanics; quantum properties of
light place limits on the accuracy to which measurements can
be performed, known as the standard quantum limit (SQL)
[10]. It was Caves who in 1981 proposed to overcome the
SQL and implement the supersensitive measurement by uti-
lizing squeezed states with the fluctuation in one quadrature
component below the SQL, without violating the Heisenberg
uncertainty relation [11]. Subsequently, exploiting diverse
quantum resources [12,13], quantum-enhanced interferome-
ters with novel architecture were proposed and demonstrated
to meet the requirement for a variety of application scenar-
ios [14–22], expecting to reach the Heisenberg limit [23].
Unfortunately, the quantum state is very sensitive to losses;
losses added during the detection process will inevitably limit
metrological enhancement [24]. Relying on the second optical
parametric amplifier (OPA) that serves as a phase-sensitive
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optics amplification, a weak detection signal is magnified to
become a loss-tolerant state, thereby relaxing detection re-
quirements [25]. Similarly, the loss-tolerant detection scheme
that relies on the reversal of quantum interactions has been
also demonstrated in other physical systems [26–30]. How-
ever, the loss-tolerant proposal is confined to relatively few
physical quantities, for example phase and displacement.

Angular rotation estimation, except for phase and displace-
ment estimation, has been another topic of interest with a lot
of potential applications, including quantum gyroscopes [31],
accelerometers [32], and so on. Usually, angular rotation esti-
mation is implemented by the employment of a light carrying
orbital angular momentum (OAM) [33–38]. The OAM that a
photon can have is quantized to integer multiples � of h̄, and
is theoretically unbounded, so the light possessing OAM has
emerged as a valuable experimental tool in imaging [39–41],
optical communication [42–48], quantum information [49],
quantum technologies [50,51], optical tweezers [52], and
quantum detection [53–58]. In angular rotation estimation,
utilizing photon OAM can amplify a mechanical rotation of �

into �θ ; thus, the sensitivity is enhanced by a factor of � [59].
In 1998, Courtial et al. implemented the angular rotation esti-
mation by the employment of OAM light and a Mach-Zehnder
interferometer (MZI) [60]. Fickler et al. demonstrated that the
entanglement photons with nonzero OAM can improve the
sensitivity of angular-rotation measurement [61]. For another
candidate of angular rotation estimation, the nondegenerate
SU(1,1) interferometer, Liu et al. proposed the scheme that
improves the sensitivity beyond SQL utilizing a quantum re-
source [62,63]. Following the work above, they investigated
the dependence of the sensitivities of two different hy-
brid interferometers on interferometer parameters, showing a
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negative influence of losses on the sensitivity [64]. Therefore,
it is extremely urgent to propose some innovative schemes of
angular rotation estimation with loss tolerance and supersen-
sitivity.

In this paper, we investigate loss-tolerant (external loss)
and supersensitive angular rotation estimation based on
quantum-enhanced interferometers. Four different interfer-
ometers, including the traditional MZI, degenerate SU(1,1)
interferometer (DSI), nondegenerate hybrid interferometer
(NHI), and degenerate hybrid interferometer (DHI), are dis-
cussed. The sensitivity of the MZI is defined as SQL which is
restricted by the vacuum fluctuations of the beam. Supposing
that the quantum resource has a squeezing factor of 1.15, the
sensitivity of the DHI can overcome SQL by 5 dB, which
is higher than that of the NHI, and the DHI has a broader
supersensitive range compared to the DSI scheme. The DHI
and NHI can enhance sensitivity by increasing the power of
coherent light injected into the bright port of interferometers,
which is not restricted by nonlinear interaction in the DSI.
However, the inevitable external losses of the interferometer
will make the sensitivity dramatically worse. By taking full
advantage of the second OPA as a phase-sensitive amplifi-
cation, the sensitivity that is the same as in the case of no
external losses can always be retrieved. These results provide
valuable avenues for enhancing sensitivity and loss tolerance
(external losses) of angular rotation estimation, which is of
utmost importance in real time variation of the angle mea-
surement and tracking an object in circular motion.

The paper is organized as follows. In Sec. II, we in-
troduce four different interferometers for angular rotation
estimation, and investigate their sensitivities. In Sec. III, we
discuss the resolutions and sensitivities of these interferome-
ters in the lossless scenario. The influences of interferometer
system parameters, including OAM quanta momentum and
phase-sensing light intensity on resolution and sensitivity, are
analyzed. In Sec. IV, we study the influence of losses on
resolution and sensitivity. Section V presents our conclusions.

II. MODELS OF ANGULAR ROTATION ESTIMATION

A. Scheme of the Mach-Zehnder interferometer

We first give a brief description of the MZI as shown in
Fig. 1. A coherent beam â1 with amplitude |αMZI| = √

Nâ1 and
a vacuum beam b̂1 pass through the first beam splitter (BS)
with transmissivity T1. Then the beams after BS1 undergo the
spiral phase plate (SPP) SPP1 and SPP2, respectively. The
SPPs with a helical surface are used to introduce the OAM
degree of freedom [65]. The optical thickness of the SPPs
increases with azimuthal position. When the light fields pass
through the SPPs, the linear momentum of the light acquires
an azimuthal component that, when expressed with respect to
a radius vector, gives an OAM of �h̄ per photon [66]. The
Dove prism (DP) is an optical element that rotates a beam
carrying orbital angular momentum and also changes the sign
of the beam’s OAM mode index from � to −� [67]. In other
words, the employment of DP1 and DP2 imposes phase shift
of 2�θ1,2 to the fields, denoted by e−2i�θ1,2 , where θ1,2 is the
rotation angle of the DP1 or DP2 and is the parameter to
be estimated in this paper. Then the beams undo their OAM

FIG. 1. Scheme for the angular rotation estimation by the em-
ployment of a Mach-Zehnder interferometer. BS, beam splitter; HR,
high reflection mirror; SPP, spiral phase plate; DP, Dove prism; VBS,
virtual beam splitter; HWP, half-wave plane; QWP, quarter-wave
plane.

encoding with SPP3 or SPP4 of the same quanta number �

[59]. Finally, two beams are combined on BS2 with trans-
missivity T2, and one of the output ports can be selected to
implement balanced homodyne detection (BHD). Note that
the DP will introduce polarization change [68,69], and the po-
larization is dependent on the rotation angle of the DP. When a
linearly polarized light (supposing that it is in S polarization)
passes through two Dove prisms with equal and opposite
rotations, the magnitude and direction of their vertical po-
larization components are the same. However, the horizontal
polarization component has the same magnitude but opposite
direction. Therefore, before the two beams are recombined,
we can add a quarter-wave plate and half-wave plate and
a removable polarization beam splitter (PBS) to ensure that
the polarizations of both beams are the same. The operation
process is as follows: at an unknown DP rotation angle, we
place a removable PBS after two wave plates and then rotate
two wave plates until the light power of P polarization is the
least, then remove the PBS. At the moment, we can confirm
that the beams are in S polarization, which ensures that the
two beams from the two branches interfere at the BS2.

The input-output relations of BS1 are

â2 = √
T1â1 − √

R1b̂1, (1)

b̂2 = √
T1b̂1 + √

R1â1, (2)

where T1 + R1 = 1 is satisfied, T1 and R1 are the transmis-
sivity and reflectivity of BS1, respectively; â1 and b̂1 are the
annihilation operators of the coherent light and the vacuum
state, respectively. The minus symbol in Eq. (1) is created
by the phase difference caused by the half-wave loss. After
BS1, the phase-sensing light intensity, i.e., the intensity of the
phase-sensing field inside the interferometer, is [16]

IMZI
PS = 〈b̂†

2b̂2〉 + 〈â†
2â2〉 = |αMZI|2 = Nâ1 , (3)

where Nâ1 = |αMZI|2 � 1 is the photon number of the coher-
ent light â1.

Then, the beam’s OAM degree of freedom is added by
SPPs. Note that the SPPs are placed after the BS1, rather than
before it, because the quanta number of OAM turns from �
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to −� upon reflection. The optical fields passing through the
SPPs and DPs are described as

â3 = √
T1e−2i�θ2 â1 − √

R1e−2i�θ2 b̂1, (4)

b̂3 = √
T1e−2i�θ1 b̂1 + √

R1e−2i�θ1 â1. (5)

After experiencing the internal losses Rin = 1 − Tin, the
fields â3 and b̂3 become

â4 = √
T1Tine−2i�θ2 â1 − √

R1Tine−2i�θ2 b̂1 + √
Rinŵ2, (6)

b̂4 = √
T1Tine−2i�θ1 b̂1 + √

R1Tine−2i�θ1 â1 + √
Rinŵ1, (7)

where Tin and Rin are the transmissivity and reflectivity of
the virtual beam splitter (VBS) which is used to simulate the
internal losses on the interferometer’s two branches. And ŵ1,2

are the corresponding introduced vacuum noises.
For simplicity, we consider a balanced case, i.e., T1 = T2 =

0.5, and the angles of two DPs satisfy θ1 = −θ2 = θ ; the
input-output relation of the MZI is described by [70]

ĉ = isin(2�θ )
√

Tinâ1 − cos(2�θ )
√

Tinb̂1 + √
Rinŵ−, (8)

where ŵ− = (ŵ2 − ŵ1)/
√

2.
In this case, we use the BHD method to continue the

measurements. The measurement operator is the quadrature
amplitude operator X̂ at the output port ĉ which can be
expressed as

X̂ = −sin(2�θ )
√

TinŶâ1 − cos(2�θ )
√

TinX̂b̂1
+ √

RinX̂ŵ− .

(9)

In order to get the quantum fluctuations on quadrature am-
plitude, we calculate the expected value 〈X̂ 〉 which can be
expressed as

〈X̂ 〉 = −sin(2�θ )
√

Tin|αMZI| = −sin(2�θ )
√

TinIMZI
PS . (10)

The variance of the quadrature amplitude operator is given by

〈δ2X̂ 〉 = 〈X̂ 2〉 − 〈X̂ 〉2 = 1. (11)

An important evaluation criterion is the visibility of param-
eter estimation. In terms of definition of visibility [15],

V = 〈X̂ 〉max − 〈X̂ 〉min

|〈X̂ 〉max| + |〈X̂ 〉min|
, (12)

where 〈X̂ 〉max and 〈X̂ 〉min mean the maximum and minimum
values of 〈X̂ 〉. We can find that the MZI has 100% visibility.

For the sensitivity of angular rotation estimation, it can be
derived as

δθMZI =
√

〈δ2X̂ 〉
|∂〈X̂ 〉/∂θ | = 1

2|�|cos(2�θ )
√

TinIMZI
PS

. (13)

It is shown that the sensitivity depends on not only the phase-
sensing light intensity IMZI

PS but also OAM quanta number �.
And it is relatively easy to prepare the state |�| � 10 under
the current experimental condition, indicating that, while IMZI

PS
remains unchanged, this approach has an enhanced effect of

FIG. 2. Angular rotation sensitivity of the MZI (Fig. 1) as a
function of the phase shift θ of the Dove prism, for the parame-
ters IMZI

PS = 103 and � = 2. The optimal angular rotation sensitivity
δθmin is obtained at θ = 0. The supersensitive angular rotation range
� = 0.

about one to two orders of magnitude compared with non-
OAM systems.

In the case of no internal losses (Tin = 1), we can see
the optimal sensitivity of the MZI appears when the interfer-
ometer is operating at the dark fringe 2�θ = 0 from Fig. 2.
Assuming a relatively weak angular rotation is introduced, the
optimal sensitivity is given by

δθSQL = 1

2|�|
√

IMZI
PS

. (14)

This restriction is known as SQL, due to the Poissonian pho-
ton statistics of the coherent quantum state. However, the SQL
can be overcome by means of nonclassical-states injection
which can reduce the noise inside the interferometer. We will
discuss this in the following sections.

Except for δθmin, another important figure of merit is an-
gular rotation range � where the sensitivity exceeds the SQL,
i.e., the supersensitive range. According to Eqs. (13) and (14),
the supersensitive range of the MZI is zero.

In addition, the lower bound of the achievable precision
in the estimation of θ is provided by the classical Cramér-
Rao theorem; the classical Cramér-Rao bound (CCRB) can
be expressed as

�θMZI
CCRB = 1√

Fθ

, (15)

where Fθ is the Fisher information:

Fθ = (∂〈X̂ 〉/∂θ )2 + 2(∂〈δ2X̂ 〉/∂θ )2

〈δ2X̂ 〉 . (16)

Notice that 〈δ2X̂ 〉 == 1 for the MZI. Therefore, we obtain
δθMZI = �θMZI

CCRB = 1/
√

Fθ . In other words, the sensitivity is
equal to the CCRB for the MZI.
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FIG. 3. Scheme for angular rotation estimation by the employ-
ment of a degenerate SU(1,1) interferometer. The green line indicates
that the beam is a pump beam. A squeezed state is generated from
a degenerate optical parameter amplifier (DOPA1), and its OAM
degree of freedom is added by a SPP1. Subsequently, when the beam
passes through a DP with angular rotation θ , it will have a phase shift
of 2�θ . DBS, dichroic beam splitter.

B. Scheme of the degenerate SU(1,1) interferometer

Now, let us consider a DSI consisting of two degenerate
optical parameter amplifiers (DOPAs) [71], as shown in Fig. 3.
For convenience, we take the Heisenberg picture. The rela-
tionship between input and output of the DOPA is

b̂1 = √
G1b̂0 −

√
G1 − 1eiφ1 b̂†

0, (17)

where G1 = cosh2r1 is the amplitude gain of the DOPA1 with
squeezing factor r1. We suppose here that a coherent seed
beam b̂0 with an amplitude |αDSI| � 1 is injected into the
DOPA1 and the relative phase between the seed beam and
the pump beam φ1 = 0. For the above DSI, we can calculate
IPS as

IDSI
PS ≈ (2cosh2r1 − 1)|αDSI|2. (18)

Subsequently, the beam through SPPs and DP is given by

b̂2 = √
G1e−2i�θ b̂0 −

√
G1 − 1e−2i�θ b̂†

0. (19)

Then a VBS is used to simulate the internal loss:

b̂3 = √
TinG1e−2i�θ b̂0 −

√
Tin(G1 − 1)e−2i�θ b̂†

0 + √
Rinŵ.

(20)

The DOPA2 with opposite phase φ2 = π is placed in the
downstream path. The relationship between input and output
beams of the DSI has the following form:

ĉ = √
Tin[

√
G1G2e−2i�θ −

√
(G1 − 1)(G2 − 1)e2i�θ ]b̂0

+ √
Tin[

√
G1(G2 − 1)e2i�θ −

√
(G1 − 1)G2e−2i�θ ]b̂†

0

+ √
RinG2ŵ +

√
Rin(G2 − 1)ŵ†, (21)

where G2 = cosh2r2 is the amplitude gain of the DOPA2
with the squeezing factor r2. The amplitude quadrature of the
output beam is

X̂ = er1+r2 sin(2�θ )
√

TinŶb̂0
+ er2−r1 cos(2�θ )

√
TinX̂b̂0

+ er2
√

RinX̂ŵ. (22)

The output signal is given by the expected value of X̂ :

〈X̂ 〉 = er1+r2 sin(2�θ )
√

Tin|αDSI|. (23)

According to Eq. (12), we can calculate that the DSI visibil-
ity is 100%. Then, the variance of the quadrature amplitude
operator is

〈δ2X̂ 〉 = e2r2{[e2r1 sin2(2�θ ) + e−2r1 cos2(2�θ )]Tin + Rin}.
(24)

Based on Eqs. (23) and (24), the sensitivity of angular
rotation estimation for the DSI is given by

δθDSI =
√

[tan2(2�θ ) + e−4r1 ]Tin + Rin/e2r1 cos2(2�θ )

2|�|
√

TinIDSI
PS /(2cosh2r1 − 1)

.

(25)

Then, supposing that the internal loss is zero, the supersensi-
tive range is

�DSI = 1

|�|arctan

√
1

2cosh2r1 − 1
− e−4r1 . (26)

It is clear that the gain of the DOPA2 has no effect on the
sensitivity of the DSI in a lossless scenario. But the increase
of IDSI

PS or |�| can provide an enhanced sensitivity. To increase
phase-sensing light intensity IDSI

PS , a seed light is introduced
into the DOPA1 to stimulate the generation of bright squeezed
states. While the DOPA process can be noiseless in theory,
it inevitably introduces noise as the seed beam power is in-
creased due to the coupling between the pump and seed field
[72]. This drawback has to date limited the phase-sensing
light power to few microwatts in the DSI, thereby setting an
intrinsic limit to sensitivity [27].

We now briefly review how to calculate the quantum
Fisher information (QFI) and the quantum Cramér-Rao bound
(QCRB). According to Refs. [17,73,74], the QCRB can be
obtained by transforming the expected values and covariance
matrix from the quadrature operator basis to the annihi-
lation operator basis. We introduce the quadrature column
operators

X̄DSI1 = (0 |αDSI| 0 0)T , (27)

and the symmetric covariance matrix can be expressed as


1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (28)

The transformations through the DP-SPP and two OPAs
can be given by

Sθ =

⎛
⎜⎜⎝

cos(2�θ ) −sin(2�θ ) 0 0
sin(2�θ ) cos(2�θ ) 0 0

0 0 cos(2�θ ) sin(2�θ )
0 0 −sin(2�θ ) cos(2�θ )

⎞
⎟⎟⎠,

(29)
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SDOPA1 =

⎛
⎜⎜⎝

e−r1 0 0 0
0 er1 0 0
0 0 e−r1 0
0 0 0 er1

⎞
⎟⎟⎠, (30)

SDOPA2 =

⎛
⎜⎜⎝

er2 0 0 0
0 e−r2 0 0
0 0 er2 0
0 0 0 e−r2

⎞
⎟⎟⎠, (31)

where we have considered the balanced situation that φ1 =
0, φ2 = π , and θ1 = −θ2 = θ . Therefore, the transformation
matrix for the DSI can be obtained as SDSI = SDOPA2SθSDOPA1.

The column vector of the expected value of the quadrature
X̄DSI2 and the symmetric covariance matrix of the quadrature

DSI2 for the output states of the DSI are

X̄DSI2 = SDSIX̄DSI1, (32)


DSI2 = SDSI
1ST
DSI. (33)

In the following we transform the expected values and co-
variance matrix from the quadrature operator basis to the
annihilation operator basis. For the creation and annihilation
operator vector of the output state d̂ , the expected value can
be obtained:

d̄ = HX̄DSI2 = |αDSI|

⎛
⎜⎜⎝

−er1+r2sin(2�θ )
er1−r2cos(2�θ )

0
0

⎞
⎟⎟⎠, (34)

where the transformation matrix H is used to transform
the expected value and covariance matrix from the quadra-
ture operator basis to the annihilation operator basis, and is
expressed as

H = 1

2

⎛
⎜⎜⎝

1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

⎞
⎟⎟⎠. (35)

Similarly, we can obtain the covariance matrix for the DSI:

� = H
DSI2HT . (36)

According to Ref. [73], the QFI describes the phase-
sensing potential of the quantum state in the interferometer,
which is given by

F DSI
Q = 1

2
Tr

{
∂�

∂θ

[
�

(
∂�

∂θ

)−1

�T + 1

4
J

(
∂�

∂θ

)−1

JT

]−1}

+
(

∂ d̄

∂θ

)T

�−1 ∂ d̄

∂θ

= 16�2sinh(2r1)2 + 4�2e4r1 |αDSI|2

= 16�2sinh(2r1)2 + 4�2e4r1 IDSI
PS /(2cosh2r1 − 1), (37)

where J can be expressed as

J =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠. (38)

FIG. 4. Angular rotation sensitivity of a seeded degenerate
SU(1,1) interferometer (Fig. 3) as a function of angular rotation, for
the parameters r1 = r2 = 1.15, IDSI

PS = 103, and � = 2. The optimal
angular rotation sensitivity δθmin is obtained at θ = 0. The supersen-
sitive angular rotation range � is shown (red arrow).

Then the corresponding QCRB is given by

�θDSI
QCRB = 1/

√
F DSI

Q . (39)

Figure 4 shows the sensitivity δθDSI (Tin = 1) and the
�θDSI

QCRB, as a function of the angular rotation θ with the
parameters r1 = r2 = 1.15 and � = 2. Since the sensitivity of
an interferometer is related to the photon number inside the
interferometer, for a fair comparison between the DSI and
MZI, we set IDSI

PS = IMZI
PS = 103, which can be achieved by

adjusting αDSI and αMZI independently. We obtain that the
sensitivity of the DSI is 6.5 dB higher than that of the MZI
and the supersensitive range is �DSI ≈ π/16 in this case.
Obviously, comparing the result with SQL, it is easy to find
that with the help of the DOPA the optimal angular rotation
sensitivity is enhanced by a factor of

√
2cosh2r1 − 1e−2r1 .

FIG. 5. Scheme for the angular rotation estimation by the
employment of a nondegenerate hybrid interferometer. NOPA, non-
degenerate optical parameter amplifier.
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C. Scheme of the nondegenerate hybrid interferometer

In this section, we consider another construction in which
a MZI and two nondegenerate optical parameter amplifiers
(NOPAs) construct an NHI, as shown in Fig. 5.

A NOPA is used to generate twin beams â1 and b̂1. Accord-
ing to quantum optics, the input and output of the NOPA have
the relations

â1 = i
√

G1â0 + i
√

G1 − 1b̂†
0, (40)

b̂1 = i
√

G1 − 1â†
0 + i

√
G1b̂0. (41)

Then the signal beam b̂1 from the NOPA1 is fed into the
MZI dark input port, and is recombined with a coherent
light û1 with amplitude |αNHI| on BS1; the operators can be
expressed as

b̂2 = √
R1û1 + √

T1b̂1, (42)

û2 = √
T1û1 − √

R1b̂1. (43)

And the phase sensing field intensity is

INHI
PS = |αNHI|2 = Nû1 . (44)

After the beams traversing the SPPs and DPs have the follow-
ing forms:

b̂3 = e−2i�θ1 b̂2, (45)

û3 = e−2i�θ2 û2. (46)

The beams experience the internal loss:

b̂4 = √
Tinb̂3 + √

Rinŵ1, (47)

û4 = √
Tinû3 + √

Rinŵ2. (48)

Then they are recombined on the BS2:

û5 = √
T2b̂4 − √

R2û4. (49)

The light û5 emerging from the MZI dark output port is
then recombined with the idler beam â1 in the NOPA2. The
output field of the NHI is

ĉ = √
TinG2(

√
R1T2e−2i�θ1 − √

T1R2e−2i�θ2 )ĉ1 + i(
√

T1T2e−2i�θ1 + √
R1R2e−2i�θ2 )

√
TinG2(G1 − 1)â†

0

− i
√

G1(G2 − 1)â†
0 − i

√
(G1 − 1)(G2 − 1)b̂0 + i

√
TinG1G2(

√
T1T2e−2i�θ1 + √

R1R2e−2i�θ2 )b̂0

+ √
RinT2G2ŵ1 − √

RinR2G2ŵ2. (50)

Supposing that θ1 = −θ2 = θ and T1 = T2 = 0.5, the amplitude quadrature operator of the output field can be calculated as

X̂ = √
TinG2sin(2�θ )Ŷû1 − √

RinG2X̂ŵ− + [
√

TinG2(G1 − 1)cos(2�θ ) −
√

G1(G2 − 1)]Ŷâ0

+ [
√

(G1 − 1)(G2 − 1) − √
TinG1G2cos(2�θ )]Ŷb̂0

. (51)

The output signal, i.e., the expected value of the amplitude quadrature of the NHI, is

〈X̂ 〉 = √
TinG2sin(2�θ )|αNHI|. (52)

We can calculate that the visibility of the NHI is 100%.
Next, we calculate the associated uncertainty 〈δ2X̂ 〉 of the output beam, the sensitivity of angular rotation estimation, and the

supersensitive range in the lossless scenario, i.e., Tin = 1 for the NHI:

〈δ2X̂ 〉 = TinG2sin2(2�θ ) + RinG2 + [
√

TinG2(G1 − 1)cos(2�θ ) −
√

G1(G2 − 1)]2 + [
√

(G1 − 1)(G2 − 1)

− √
TinG1G2cos(2�θ )]2, (53)

δθNHI = {RinG2 + TinG2sin2(2�θ ) + [TinG2cos2(2�θ ) + G2 − 1](2G1 − 1)

− 4
√

TinG1G2(G1 − 1)(G2 − 1)cos(2�θ )} 1
2 /

[
2|�|√TinG2cos(2�θ )

√
INHI
PS

]
, (54)

� = 1

|�|arctan[2(1 − G1) + 4
√

G1(G1 − 1)(G2 − 1)/G2 − (2G1 − 1)(G2 − 1)/G2]
1
2 . (55)

For the NHI, the transformation through the BS, the NOPA, and the phase shift can be given by

SBS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
1
2 0 −

√
1
2 0

0
√

1
2 0 −

√
1
2√

1
2 0

√
1
2 0

0
√

1
2 0

√
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (56)
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Sθ =

⎛
⎜⎜⎜⎝

cos(2�θ ) −sin(2�θ ) 0 0

sin(2�θ ) cos(2�θ ) 0 0

0 0 cos(2�θ ) sin(2�θ )

0 0 −sin(2�θ ) cos(2�θ )

⎞
⎟⎟⎟⎠,

(57)

SNOPA1 =

⎛
⎜⎜⎜⎝

0 −coshr1 0 sinhr1

coshr1 0 sinhr1 0

0 sinhr1 0 −coshr1

sinhr1 0 coshr1 0

⎞
⎟⎟⎟⎠, (58)

SNOPA2 =

⎛
⎜⎜⎜⎝

coshr2 0 sinhr2 0

0 coshr2 0 −sinhr2

sinhr2 0 coshr2 0

0 −sinhr2 0 coshr2

⎞
⎟⎟⎟⎠. (59)

The column vector of expected values of the quadratures
for the output states is

X̄NHI2 = SNHI1X̄DSI1 = SNOPA2SBSSθ SBSX̄NHI1 (60)

where X̄NHI1 = (0 |αNHI| 0 0)T . And the input-output relation
of the symmetric covariance matrix of the quadratures is


NHI2 = SNHI2
1ST
NHI2, (61)

where SNHI2 = SNOPA2SBSSθSBSSNOPA1.
Then the QFI of the NHI can be obtained as

F NHI
Q = 4�2[|αNHI|2cosh(2r1) + 4cosh2(2r1) − 4]

= 4�2[INHI
PS cosh(2r1) + 4cosh2(2r1) − 4]. (62)

According to Eq. (39), we can obtain the corresponding
QCRB of the NHI, as shown in Fig. 6.

Although the sensitivity of the NHI can beat SQL by
3.5 dB, it is worse than that of the DSI as shown in Fig. 6.
However, the NHI has broader supersensitive range �, which
is approximately π/8, due to the introduction of the MZI.

D. Scheme of the degenerate hybrid interferometer

In order to further improve the sensitivity of angular rota-
tion without affecting the supersensitive range, we introduce
a DHI scheme, as shown in Fig. 7. A squeezed vacuum from
the DOPA1 is injected into the MZI dark port to reduce noise
of the whole loop; the bright port is fed with coherent light
with an amplitude |αDHI|. The SPPs and DPs are placed in
both arms. Finally, the MZI dark port output is amplified
by the DOPA2 and then measured. Here, for the sake of
completeness, we consider the measurement of the amplitude
quadrature by means of a balanced homodyne detector.

For the DHI, these are

b̂1 = √
G1b̂0 −

√
G1 − 1eiφ1 b̂†

0, (63)

â2 = √
T1â1 − √

R1b̂1, b̂2 = √
R1â1 + √

T1b̂1, (64)

â3 = e−2i�θ2 â2, b̂3 = e−2i�θ1 b̂2, (65)

FIG. 6. Angular rotation sensitivity of a nondegenerate hybrid
interferometer (Fig. 5) as a function of angular rotation θ , for the pa-
rameters r1 = r2 = 1.15, INHI

PS = 103, and � = 2. The optimal angular
rotation sensitivity δθmin is obtained at θ = 0. The supersensitive
angular rotation range � is shown (red arrow). For comparison, the
angular rotation sensitivity of the DSI (gray dashed line) from Fig. 4
is plotted as well.

â4 = √
Tinâ3 + √

Rinŵ2, b̂4 = √
Tinb̂3 + √

Rinŵ1, (66)

â5 = √
T2â4 − √

R2b̂4, (67)

ĉ = √
G2â5 −

√
G2 − 1eiφ2 â†

5. (68)

And IDHI
PS is

IDHI
PS = Nâ1 . (69)

Here we suppose T1 = T2 = 0.5, φ1 = 0, φ2 = π , θ1 =
−θ2 = θ , and the output field ĉ is simplified to

ĉ = isin(2�θ )
√

Tin(
√

G2â1 −
√

G2 − 1â†
1)

+ √
Tin[

√
(G1 − 1)(G2 − 1) − √

G1G2]cos(2�θ )b̂0

+ √
Tin[

√
(G1 − 1)G2 −

√
G1(G2 − 1)]cos(2�θ )b̂†

0

+ √
Rin(

√
G2ŵ− +

√
G2 − 1ŵ

†
−). (70)

FIG. 7. Scheme for the angular rotation estimation by the em-
ployment of a degenerate hybrid interferometer.
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The amplitude quadrature is given by

X̂ = −sin(2�θ )er2
√

TinŶâ1 + √
Riner2 X̂ŵ−

+ er2−r1 cos(2�θ )
√

TinX̂b̂0
. (71)

The output signal is

〈X̂ 〉 = −sin(2�θ )er2
√

Tin|αDHI|. (72)

From Eq. (12), we obtain that the visibility of the interferom-
eter can be obtained as 100%. The noise variance is

〈δ2X̂ 〉 = [sin2(2�θ ) + cos2(2�θ )e−2r1 ]e2r2 Tin + Rine2r2 .

(73)
The sensitivity for the angular rotation estimate is

δθDHI =
√

[sin2(2�θ ) + cos2(2�θ )e−2r1 ]Tin + Rin

2|�|cos(2�θ )
√

Tin|αDHI|
. (74)

And the supersensitive range (in the lossless situation
Tin = 1) is

�DHI = 1

|�|arctan
√

1 − e−2r1 . (75)

In addition, due to the DOPA1 a squeezed vacuum state is
generated, so the transformation through the DOPA1 and the
BS for the DHI can be given by

SDOPA1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 e−r1 0
0 0 0 er1

⎞
⎟⎟⎠. (76)

The transformation matrix for the DHI can be obtained as
SDHI = SDOPA2SBSSθSBSSDOPA1. Note that the SDOPA2 for the
DHI is the same as that for the DSI. Therefore, the column
vector of expected values of the quadratures for the output
states and the input-output relation of the symmetric covari-
ance matrix of the quadratures are

X̄DHI2 = SDHIX̄DHI1, (77)


DHI2 = SDHI
1ST
DHI (78)

where X̄DHI1 = (0 |αDHI| 0 0)T .
Then the QFI of the DHI can be obtained as

F DHI
Q = 16�2sinh2(2r1) + 4�2e4r1 |αDSI|2

= 16�2sinh2(2r1) + 4�2e4r1 IDHI
PS . (79)

According to Eq. (39), we can obtain the corresponding
QCRB of the DHI.

These results are summarized in Fig. 8, showing the angu-
lar rotation sensitivity as a function of θ with the parameters
r1 = r2 = 1.15, IDHI

PS = 103, and � = 2 in the lossless sce-
nario. The optimal sensitivity of the DHI has an enhancement
of 5 dB compared with that of the MZI, which is better than
that of the NHI. And the DHI has broader supersensitive angu-
lar rotation range than that of the DSI, which is approximately
π/8. It is significant for improving the absolute sensitivity of
the measurement while the supersensitive range still becomes
broader for maintaining the measurement advantage.

FIG. 8. Angular rotation sensitivity of a degenerate hybrid in-
terferometer (Fig. 7) as a function of angular rotation θ , for the
parameters r1 = r2 = 1.15, IDHI

PS = 103, and � = 2 in the lossless
scenario. The optimal angular rotation sensitivity δθmin is obtained
at θ = 0. The supersensitive angular rotation range � is shown (red
arrow). For comparison, the angular rotation sensitivity of the DSI
(gray dashed line) from Fig. 4 is plotted as well.

III. ANALYSIS IN THE LOSSLESS SCENARIO

On the basis of the above, we calculate and compare the
optimal sensitivities of different interferometers as a function
of squeezing factor r2 of the OPA2 in case of r1 = 1.15,
IPS = 103, and � = 2 as shown in Fig. 9(a). It can be seen that
the optimal sensitivities of the DSI and DHI remain constant
with the squeezing factor r2 increase. In other words, the
optimal sensitivities of the DSI and DHI remain unaffected
by the squeezing factor r2 of the DOPA2 in the lossless sce-
nario. However, for the NHI, as shown with the blue curve in
Fig. 9(a), as the squeezing factor r2 decreases, the sensitivity
has a downward trend in a specific range. Especially, when the
r2 is less than 0.66, the sensitivity is even worse than the SQL.
The phenomenon mainly comes from the imperfect detection
process that only utilizes one of the entangled beams from the
NOPA1 in the case of r2 = 0. The beam has a higher noise
variance than the vacuum state, resulting in worse sensitiv-
ity. As the squeezing factor r2 increases, the phase-sensitive
amplification with an opposite phase with the NOPA1 not
only reduces the noise, but also amplifies the signal, hence
improving the sensitivity of the NHI.

Figure 9(b) presents the sensitivity curves with the phase-
sensing light intensity IPS. It is shown that quantum-enhanced
interferometers can achieve better measurement sensitivity
than the MZI. When the phase-sensing light intensity IPS in-
creases from 10 to 1000, the sensitivity of the interferometers
increases by one order of magnitude. Moreover, the sensi-
tivity of the DSI is superior to that of other interferometers.
However, for the DSI, the phase-sensing light intensity is re-
stricted to a lower level, which becomes a primary bottleneck
of applying to real systems. For the DHI, a coherent light
is introduced into the MZI bright input port to increase IPS
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FIG. 9. (a) In the ideal case, the optimal sensitivities of four
interferometers as a function of squeezing factor r2 of the OPA2
(r1 = 1.15, IPS = 103, � = 2). (b) The optimal sensitivities of four
interferometers as a function of phase-sensing light intensity IPS

in case r1 = r2 = 1.15, � = 2. (c) The optimal sensitivities of four
interferometers as a function of OAM quanta number � in case
r1 = r2 = 1.15, IPS = 103.

without introducing additional noise. That is, the DHI is easier
to improve the measurement sensitivity than the DSI.

Figure 9(c) represents the optimal sensitivities of different
interferometers versus the OAM quanta number �. For these
interferometers, when OAM quanta number � increases, the
sensitivities become better. However, the increasing � reduces
the quality of the generated beam and narrows supersensitive
range, which can be obtained using Eqs. (26), (55), and (75).

IV. EFFECTS OF REALISTIC FACTORS

For practical interferometric measurements, except for
internal losses, there always exist external losses due to imper-
fect elements or nonideal phase matching, etc., which makes
the sensitivity worse. Supposing that the losses are linear,
a VBS with transmissivity Tex is placed in the output port
of interferometers to simulate external losses, as shown in
Fig. 10. Accordingly, the parameter Rex = 1 − Tex can be used
to represent external losses.

Under the situation when the system suffers from external
losses, the expected value and the noise variance of X̂ are
revised as follows:

〈X̂l〉 = √
Tex〈X̂ 〉, (80)

〈δ2X̂l〉 = Tex〈δ2X̂ 〉 + Rex〈δ2X̂v̂〉, (81)

where Rex is the reflectivity of the VBS; v̂ is the annihilation
operator for the vacuum state with noise variance 〈δ2X̂v̂〉 = 1.

FIG. 10. Simplified model for external losses. A VBS is used to
simulate photon losses. v̂ is the operator for the vacuum state. VBS,
virtual beam splitter; Lo, local oscillation; BHD, balanced homodyne
detection; SA, spectrum analyzer.

According to the transformation relationships, we can ob-
tain the optimal sensitivities of four interferometers in the
case of r1 = r2 = 1.15, IPS = 103, and � = 2 with Tin and
Tex, as manifested in Figs. 11(a) and 11(b), respectively. And
keeping the internal losses in each arm the same, the in-
fluence of internal losses on sensitivity of angular rotation
measurement is more severe than that of external losses. The
sensitivities of angular rotation estimation gradually degrade
with the decrease of the Tex. Note that the gradient of the
sensitivities decreases with the increase of the Tex. We know
from Fig. 11(b), that the DSI or DHI has better external-loss
tolerance in an identical situation. Moreover, different from
the NHI scheme, the DSI and DHI employ the DOPA to per-
form the quantum enhancement, which omit the application
of the frequency converter [64].

Finally, we study the influence of the squeezing factor
r2 of the OPA2 on the sensitivities of angular rotation es-
timation for different quantum-enhanced interferometers in
the lossy environment (external losses) (Fig. 12). We know
from Eqs. (80) and (81) that the inevitable external losses
during the measurement not only reduce the signal amplitude,
but also introduce additional noise, resulting in measurement
sensitivity degradation. The influence of the external losses on

FIG. 11. Optimal angular rotation sensitivities δθmin in case r1 =
r2 = 1.15, IPS = 103, and � = 2 for different interferometers as a
function of transmissivity (a) Tin and (b) Tex, respectively. The stars
indicate that the sensitivities of interferometers are equal to SQL.
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FIG. 12. Optimal sensitivities δθmin of the DSI (a), NHI (b), and DHI (c) with the squeezing factor r2 of the OPA2 and transmissivity Tex

in case r1 = 1.15, IPS = 103, and � = 2.

the sensitivities of quantum-enhanced interferometers can be
overcome by squeezing factor unbalancing for a given gain
of the OPA1. As shown in Fig. 12, the sensitivity can be
recovered by increasing the squeezing factor r2 of the OPA2
until the sensitivity remains unchanged. And more external
losses require more r2 of the OPA2. That is to say, the es-
timation system becomes robust to external losses with the
help of the OPA2. However, increasing r2 cannot compensate
the worsened sensitivity caused by the internal losses. The
internal losses can be reduced by technological approaches,
such as improving the mode-matching efficiency between two
OPAs [25].

V. CONCLUSION

In summary, we have compared these performances of four
different interferometers, including the external-loss-tolerant
performance and the supersensitive range, for the applica-
tion of angular rotation estimation. These results indicate
that these different interferometers are perfectly applicable to
angular rotation estimation. In virtue of quantum-enhanced
schemes, we can obtain the sensitivity beyond SQL for

angular rotation estimation. Further, the sensitivity that is
the same as in the case of no external losses can always
be retrieved by taking full advantage of the second OPA
as a phase-sensitive amplification. The DHI, combining the
advantages of the DSI and MZI, can obtain the sensitivity
enhancement beyond the SQL, external-loss-tolerant quantum
noise reduction of the DSI, and broader supersensitive range
of the MZI approach. These lay the foundation for experimen-
tal studies and provide the basis for sensitivity expression in
a realistic scenario. We expect that this paper will extend the
application field of optical interferometers and have potential
applications in high-precision sensing and rotational Doppler
shift measurement.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 62225504, No.
62027821, No. U22A6003, No. 62035015, No. 12174234,
and No. 12304399) and Fundamental Research Program of
Shanxi Province (Grants No. 202303021212003 and No.
202303021224006).

[1] K. M. Backes, D. A. Palken, S. A. Kenany, B. M. Brubaker,
S. B. Cahn, A. Droster et al., A quantum enhanced search for
dark matter axions, Nature (London) 590, 238 (2021).

[2] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R.
Abernathy et al., Enhanced sensitivity of the LIGO gravitational
wave detector by using squeezed states of light, Nat. Photonics
7, 613 (2013).

[3] Y. Zhao, N. Aritomi, E. Capocasa, M. Leonardi, M.
Eisenmann, Y. Guo et al., Frequency-dependent squeezed vac-
uum source for broadband quantum noise reduction in advanced
gravitational-wave detectors, Phys. Rev. Lett. 124, 171101
(2020).

[4] L. McCuller, C. Whittle, D. Ganapathy, K. Komori, M. Tse,
A. Fernandez-Galiana et al., Frequency-dependent squeez-
ing for advanced LIGO, Phys. Rev. Lett. 124, 171102
(2020).

[5] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsle,
S. Kawamura, F. J. Raab et al., LIGO: The laser inter-
ferometer gravitational-wave observatory, Science 256, 325
(1992).

[6] H. C. Yu, L. McCuller, M. Tse, N. Kijbunchoo, L. Barsotti,
N. Mavalvala (the LIGO Scientific Collaboration), Quantum
correlations between light and the kilogram-mass mirrors of
LIGO, Nature (London) 583, 43 (2020).

[7] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley et al., Observation of gravitational waves
from a binary black hole merger, Phys. Rev. Lett. 116, 061102
(2016).

[8] T. Akutsu, M. Ando, K. Arai, K. Arai, Y. Arai, S. Araki et al.,
An arm length stabilization system for KAGRA and future
gravitational wave detectors, Classical Quantum Gravity 37,
035004 (2020).

032429-10

https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1103/PhysRevLett.124.171101
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1038/s41586-020-2420-8
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/1361-6382/ab5c95


LOSS-TOLERANT AND SUPERSENSITIVE ANGULAR … PHYSICAL REVIEW A 110, 032429 (2024)

[9] J. Heinze, A. Gill, A. Dmitriev, J. Smetana, T. Yan, V.
Boyer, D. Martynov, and M. Evans, First results of the laser-
interferometric detector for axions (LIDA), Phys. Rev. Lett.
132, 191002 (2024).

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[11] C. M. Caves, Quantum-mechanical noise in an interferometer,
Phys. Rev. D 23, 1693 (1981).

[12] S. P. Shi, L. Tian, Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C.
Peng, Demonstration of channel multiplexing quantum commu-
nication exploiting entangled sideband modes, Phys. Rev. Lett.
125, 070502 (2020).

[13] X. C. Sun, Y. J. Wang, Y. H. Tian, Q. W. Wang, L. Tian,
Y. H. Zheng, and K. C. Peng, Deterministic and universal quan-
tum squeezing gate with a teleportation-like protocol, Laser
Photonics Rev. 16, 2100329 (2022).

[14] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Quantum interferometric optical
lithography: Exploiting entanglement to beat the diffraction
limit, Phys. Rev. Lett. 85, 2733 (2000).

[15] J. P. Dowling, Quantum optical metrology: The lowdown on
high-N00N states, Contemp. Phys. 49, 125 (2008).

[16] F. Hudelist, J. Kong, C. J. Liu, J. T. Jing, Z. Y. Ou, and
W. P. Zhang, Quantum metrology with parametric amplifier-
based photon correlation interferometers, Nat. Commun. 5,
3049 (2014).

[17] X. J. Zuo, Z. H. Yan, Y. N. Feng, J. X. Ma, X. J. Jia, C. D. Xie,
and K. C. Peng, Quantum interferometer combining squeezing
and parametric amplification, Phys. Rev. Lett. 124, 173602
(2020).

[18] S. Balybin, D. Salykina, and F. Ya. Khalili, Improving the
sensitivity of Kerr quantum nondemolition measurement via
squeezed light, Phys. Rev. A 108, 053708 (2023).

[19] X. T. Chen, R. Zhang, W. J. Lu, Y. L. Zuo, Y. F. Jiao, and L. M.
Kuang, Asymmetry-enhanced phase sensing via asymmetric
entangled coherent states, Phys. Rev. A 109, 042609 (2024).

[20] Z. Y. Ou, Enhancement of the phase-measurement sensitivity
beyond the standard quantum limit by a nonlinear interferome-
ter, Phys. Rev. A 85, 023815 (2012).

[21] T. Gefen, R. Tarafder, R. X. Adhikari, and Y. B. Chen, Quan-
tum precision limits of displacement noise-free interferometers,
Phys. Rev. Lett. 132, 020801 (2024).

[22] B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C.
Hermann-Avigliano, K. M. Jones, and P. D. Lett, Phase sensing
beyond the standard quantum limit with a variation on the SU(1,
1) interferometer, Optica 4, 752 (2017).

[23] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N.
Plick, S. D. Huver, H. Lee, and J. P. Dowling, Quantum
metrology with two-mode squeezed vacuum: Parity detec-
tion beats the heisenberg limit, Phys. Rev. Lett. 104, 103602
(2010).

[24] R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S.
Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,
Quantum phase estimation with lossy interferometers, Phys.
Rev. A 80, 013825 (2009).

[25] L. Tian, W. X. Yao, Y. M. Wu, Q. W. Wang, H. Shen, Y. H.
Zheng, and K. C. Peng, Loss-tolerant and quantum-enhanced
interferometer by reversed squeezing processes, Opt. Lett. 48,
3909 (2023).

[26] M. Manceau, G. Leuchs, F. Khalili, and M. Chekhova, De-
tection loss tolerant supersensitive phase measurement with
an SU(1, 1) interferometer, Phys. Rev. Lett. 119, 223604
(2017).

[27] W. Du, J. Kong, G. Z. Bao, P. Y. Yang, J. Jia, S. Ming, C. H.
Yuan, J. F. Chen, Z. Y. Ou, M. W. Mitchell, and W. P. Zhang,
SU(2)-in-SU(1, 1) nested interferometer for high sensitivity,
loss-tolerant quantum metrology, Phys. Rev. Lett. 128, 033601
(2022).

[28] M. Korobko, J. Südbeck, S. Steinlechner, and R. Schnabel,
Fundamental sensitivity limit of lossy cavity-enhanced interfer-
ometers with external and internal squeezing, Phys. Rev. A 108,
063705 (2023).

[29] D. Gatto, P. Facchi, and V. Tamma, Heisenberg-limited estima-
tion robust to photon losses in a Mach-Zehnder network with
squeezed light, Phys. Rev. A 105, 012607 (2022).

[30] X. N. Feng, D. He, and L. F. Wei, Robust phase metrology with
hybrid quantum interferometers against particle losses, Phys.
Rev. A 107, 062411 (2023).

[31] A. B. Matsko and S. P. Vyatchanin, Standard quantum limit of
sensitivity of an optical gyroscope, Phys. Rev. A 98, 063821
(2018).

[32] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter,
A high-resolution microchip optomechanical accelerometer,
Nat. Photonics 6, 768 (2012).

[33] S. Barnett and R. Zambrini, Resolution in rotation measure-
ments, J. Mod. Opt. 53, 613 (2006).

[34] O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W.
Boyd, Amplification of angular rotations using weak measure-
ments, Phys. Rev. Lett. 112, 200401 (2014).

[35] Z. J. Zhang, T. Y. Qiao, K. Ma, L. Z. Cen, J. D. Zhang, F. Wang,
and Y. Zhao, Ultra-sensitive and super-resolving angular rota-
tion measurement based on photon orbital angular momentum
using parity measurement, Opt. Lett. 41, 3856 (2016).

[36] S. X. Xiao, L. D. Zhang, D. Wei, F. Liu, Y. Zhang, and M. Xiao,
Orbital angular momentum-enhanced measurement of rotation
vibration using a Sagnac interferometer, Opt. Express 26, 1997
(2018).

[37] J. X. Guo, S. Ming, Y. Wu, L. Q. Chen, and W. P. Zhang,
Super-sensitive rotation measurement with an orbital angular
momentum atom-light hybrid interferometer, Opt. Express 29,
208 (2021).

[38] M. Hiekkamäki, F. Bouchard, and R. Fickler, Photonic angular
superresolution using twisted N00N states, Phys. Rev. Lett. 127,
263601 (2021).

[39] M. Pancaldi, F. Guzzi, C. S. Bevis, M. Manfredda, J. Barolak,
S. Bonetti et al., High-resolution ptychographic imaging at a
seeded free-electron laser source using OAM beams, Optica 11,
403 (2024).

[40] N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and
A. V. Sergienko, Object identification using correlated or-
bital angular momentum states, Phys. Rev. Lett. 110, 043601
(2013).

[41] X. Y. Fang, H. C. Yang, W. Z. Yao, T. X. Wang, Y. Zhang, M.
Gu, and M. Xiao, High-dimensional orbital angular momentum
multiplexing nonlinear holography, Adv. Photonics 3, 015001
(2021).

[42] M. Bourennane, A. Karlsson, and G. Björk, Quantum key dis-
tribution using multilevel encoding, Phys. Rev. A 64, 012306
(2001).

032429-11

https://doi.org/10.1103/PhysRevLett.132.191002
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevLett.125.070502
https://doi.org/10.1002/lpor.202100329
https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1038/ncomms4049
https://doi.org/10.1103/PhysRevLett.124.173602
https://doi.org/10.1103/PhysRevA.108.053708
https://doi.org/10.1103/PhysRevA.109.042609
https://doi.org/10.1103/PhysRevA.85.023815
https://doi.org/10.1103/PhysRevLett.132.020801
https://doi.org/10.1364/OPTICA.4.000752
https://doi.org/10.1103/PhysRevLett.104.103602
https://doi.org/10.1103/PhysRevA.80.013825
https://doi.org/10.1364/OL.487355
https://doi.org/10.1103/PhysRevLett.119.223604
https://doi.org/10.1103/PhysRevLett.128.033601
https://doi.org/10.1103/PhysRevA.108.063705
https://doi.org/10.1103/PhysRevA.105.012607
https://doi.org/10.1103/PhysRevA.107.062411
https://doi.org/10.1103/PhysRevA.98.063821
https://doi.org/10.1038/nphoton.2012.245
https://doi.org/10.1080/09500340500186156
https://doi.org/10.1103/PhysRevLett.112.200401
https://doi.org/10.1364/OL.41.003856
https://doi.org/10.1364/OE.26.001997
https://doi.org/10.1364/OE.409964
https://doi.org/10.1103/PhysRevLett.127.263601
https://doi.org/10.1364/OPTICA.509745
https://doi.org/10.1103/PhysRevLett.110.043601
https://doi.org/10.1117/1.AP.3.1.015001
https://doi.org/10.1103/PhysRevA.64.012306


YAO, ZHANG, TIAN, LIU, SHI, AND ZHENG PHYSICAL REVIEW A 110, 032429 (2024)

[43] A. Vaziri, G. Weihs, and A. Zeilinger, Experimental two-
photon, three-dimensional entanglement for quantum commu-
nication, Phys. Rev. Lett. 89, 240401 (2002).

[44] J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel
capacity limit for linear photonic superdense coding, Nat. Phys.
4, 282 (2008).

[45] L. Chen and W. She, Teleportation of a controllable orbital
angular momentum generator, Phys. Rev. A 80, 063831 (2009).

[46] M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren,
M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A.
Forbes, Higher-dimensional orbital-angular-momentum-based
quantum key distribution with mutually unbiased bases, Phys.
Rev. A 88, 032305 (2013).

[47] G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L.
Marrucci, F. Sciarrino, and P. Villoresi, Free space quantum key
distribution by rotation-invariant twisted photons, Phys. Rev.
Lett. 113, 060503 (2014).

[48] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C.
Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S.
Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Op-
tical communications using orbital angular momentum beams,
Adv. Opt. Photonics 7, 66 (2015).

[49] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and
J. Laurat, A quantum memory for orbital angular momentum
photonic qubits, Nat. Photonics 8, 234 (2014).

[50] G. Molina-Terriza, J. P. Torres, and L. Torner, Twisted photons,
Nat. Phys. 3, 305 (2007).

[51] M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, Twisted
photons: New quantum perspectives in high dimensions, Light:
Sci. Appl. 7, 17146 (2018).

[52] M. Padgett and R. Bowman, Tweezers with a twist, Nat.
Photonics 5, 343 (2011).

[53] P. J. L. Martin, F. C. Speirits, S. M. Barnett, and M. J. Padgett,
Detection of a spinning object using lights orbital angular mo-
mentum, Science 341, 632 (2013).

[54] N. Cvijetic, G. Milione, E. Ip, and T. Wang, Detecting lateral
motion using light’s orbital angular momentum, Sci. Rep. 5,
15422 (2015).

[55] J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, Gradual edge
enhancement in spiral phase contrast imaging with fractional
vortex filters, Sci. Rep. 5, 15826 (2015).

[56] D. G. Grier, A revolution in optical manipulation, Nature
(London) 424, 810 (2003).

[57] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang,
A. E. Willner, and S. Ramachandran, Terabit-scale orbital an-
gular momentum mode division multiplexing in fibers, Science
340, 1545 (2013).

[58] Y. J. Chen, J. W. Gao, J. X. Han, Z. H. Yuan, R. Q. Li, Y. Y.
Jiang, and J. Song, Orbital-angular-momentum-enhanced phase
estimation using non-Gaussian states with photon loss, Phys.
Rev. A 108, 022613 (2023).

[59] V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y.
Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F.

Sciarrino, Photonic polarization gears for ultra-sensitive angu-
lar measurements, Nat. Commun. 4, 2432 (2013).

[60] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J.
Padgett, Measurement of the rotational frequency shift imparted
to a rotating light beam possessing orbital angular momentum,
Phys. Rev. Lett. 80, 3217 (1998).

[61] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff,
S. Ramelow, and A. Zeilinger, Quantum entanglement of high
angular momenta, Science 338, 640 (2012).

[62] J. Liu, W. X. Liu, S. T. Li, D. Wei, H. Gao, and F. L. Li,
Enhancement of the angular rotation measurement sensitivity
based on SU(2) and SU(1, 1) interferometers, Photonics Res. 5,
617 (2017).

[63] J. Liu, S. T. Li, D. Wei, H. Gao, and F. L. Li, Super-resolution
and ultra-sensitivity of angular rotation measurement based on
SU(1, 1) interferometers using homodyne detection, J. Opt. 20,
025201 (2018).

[64] J. Liu, C. Y. Wang, J. W. Wang, Y. Chen, R. F. Liu, D. Wei,
H. Gao, and F. L. Li, Super-sensitive measurement of angular
rotation displacement based on the hybrid interferometers, Opt.
Express 27, 31376 (2019).

[65] G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and
M. J. Padgett, The generation of free-space Laguerre-Gaussian
modes at millimetre-wave frequencies by use of a spiral phase-
plate, Opt. Commun. 127, 183 (1996).

[66] A. M. Yao and M. J. Padgett, Orbital angular momentum:
Origins, behavior and applications, Adv. Opt. Photonics 3, 161
(2011).

[67] A. K. Jha, G. S. Agarwal, and R. W. Boyd, Supersensitive mea-
surement of angular displacements using entangled photons,
Phys. Rev. A 83, 053829 (2011).

[68] M. J. Padgett and J. P. Lesso, Dove prisms and polarized light,
J. Mod. Opt. 46, 175 (1999).

[69] I. Moreno, G. Paez, and M. Strojnik, Polarization transforming
properties of Dove prisms, Opt. Commun. 220, 257 (2003).

[70] M. Manceau, F. Khalili, and M. Chekhova, Improving the
phase super-sensitivity of squeezing-assisted interferometers by
squeeze factor unbalancing, New J. Phys. 19, 013014 (2017).

[71] S. P. Shi, Y. J. Wang, L. Tian, W. Li, Y. M. Wu, Q. W. Wang,
Y. H. Zheng, and K. C. Peng, Continuous variable quantum tele-
portation network, Laser Photonics Rev. 17, 2200508 (2023).

[72] X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and
K. C. Peng, Dependence of the squeezing and anti-squeezing
factors of bright squeezed light on the seed beam power and
pump beam noise, Opt. Lett. 44, 1789 (2019).

[73] D. Li, B. T. Gard, Y. Gao, C. H. Yuan, W. P. Zhang, H. Lee, and
J. P. Dowling, Phase sensitivity at the Heisenberg limit in an
SU(1, 1) interferometer via parity detection, Phys. Rev. A 94,
063840 (2016).

[74] B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones,
and P. D. Lett, Optimal phase measurement with bright- and
vacuum-seeded SU(1, 1) interferometers, Phys. Rev. A 95,
063843 (2017).

032429-12

https://doi.org/10.1103/PhysRevLett.89.240401
https://doi.org/10.1038/nphys919
https://doi.org/10.1103/PhysRevA.80.063831
https://doi.org/10.1103/PhysRevA.88.032305
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1364/AOP.7.000066
https://doi.org/10.1038/nphoton.2013.355
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/lsa.2017.146
https://doi.org/10.1038/nphoton.2011.81
https://doi.org/10.1126/science.1236929
https://doi.org/10.1038/srep15422
https://doi.org/10.1038/srep15826
https://doi.org/10.1038/nature01935
https://doi.org/10.1126/science.1237861
https://doi.org/10.1103/PhysRevA.108.022613
https://doi.org/10.1038/ncomms3432
https://doi.org/10.1103/PhysRevLett.80.3217
https://doi.org/10.1126/science.1227193
https://doi.org/10.1364/PRJ.5.000617
https://doi.org/10.1088/2040-8986/aaa38b
https://doi.org/10.1364/OE.27.031376
https://doi.org/10.1016/0030-4018(96)00070-3
https://doi.org/10.1364/AOP.3.000161
https://doi.org/10.1103/PhysRevA.83.053829
https://doi.org/10.1080/09500349908231263
https://doi.org/10.1016/S0030-4018(03)01423-8
https://doi.org/10.1088/1367-2630/aa53d1
https://doi.org/10.1002/lpor.202200508
https://doi.org/10.1364/OL.44.001789
https://doi.org/10.1103/PhysRevA.94.063840
https://doi.org/10.1103/PhysRevA.95.063843

