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Abstract: Einstein-Podolsky-Rosen (EPR) entangled states can significantly enhance the secret
key rate and secure distance of continuous-variable quantum key distribution (CV-QKD). In
practical imperfections always exist in the preparation of two-mode squeezing (entangled states),
which present an asymmetrical variance for the two quadratures. The imperfections induced by
the bias effect of the entangled states are commonly treated as part of the untrusted channel to
decrease the performance of the system. Here, we theoretically quantify the influence of bias
effect on the secret key rate and secure distance, and propose a solution of generating unbiased
entangled states protocol. The results demonstrated that the unbiased entangled states protocol
guarantees the longest secure distance and highest key rate compared to that of coherent and
biased entangled states.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD) [1–8] is a prominent technology for quantum information
science, which shares a pre-established secret key between two trusted parties based on the laws
of quantum physics. In continuous-variable (CV) QKD systems, the secret key is encoded in the
quadratures of the electromagnetic field, for example, coherent states [9–13], squeezed/entangled
states [2–5,14], in which homodyne or heterodyne detection techniques are used for signal
extraction [2,15,16]. Multiple protocols [9,10,13,17] indicated that the secret key rate and
secure distance are mainly limited by the excess noise, optical losses, and finite reconciliation
efficiency during the distribution [2,15,16]. Present CV-QKD systems are already working with
state-of-the-art optical channels and the reconciliation efficiency [6,15–18]. The maximum
secure distance has already reached 202 km based on coherent state, in which an ultralow-loss
optical fiber combined with a phase compensation and highly-efficient reconciliation procedures
was applied for the enhancement [17].

Compared with coherent-state protocol, entangled states protocol is more tolerant to excess
noise, loss and reconciliation efficiency [3–5,15,19]. For instance, a -3.5 dB modulated two-mode
squeezed states can significantly boost the robustness and distance for secure communication
[3], in which, a secret raw key was generated between two parties connected by a noisy and
lossy channel-a channel that is not secure for coherent state protocols. As the squeezing factor is
improved to 10 dB, the superiority becomes more obvious. In addition, to further enhance the
performance, Alice and Bob, share a pair of Einstein-Podolsky-Rosen (EPR) beams and randomly
choose a quadrature (amplitude or phase) base measurement to decrypt the key [19]. Therefore,
to keep the advantages of this protocol, the entanglement should be prepared not only with strong
quantum correlations [20,21], but also with symmetric quantum correlations between the two
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quadrature components [22,23]. However, a bias of the two quadratures always accompanies with
the preparation of high degree EPR states [23–25], which originates from several interdependent
factors in the EPR states production [20,22,24,25]. Compared with unbiased EPR protocol, the
bias effect in practical entanglement generation is commonly treated as part of the untrusted
channel to weaken the secret key rate and secure distance. Currently, EPR states protocol with
single-mode squeezing had been studied in detail with asymmetrical quadrature variance [23,26].
Or a position squeezed state with probability P and a momentum one with probability 1 − P,
prepared to produce a Gaussian modulated average isotropic thermal state, are theoretically
demonstrated to have the same performance as an equivalent entanglement-based protocol [14,26].
However, the two-mode squeezing protocol has been demonstrated without considering the bias
effect [3,4,19,27]. In [24], we had experimentally and theoretically researched the bias effect in
detail, and given a methodology to produce an unbiased EPR states. This inspires the following
works: (1) quantitative analysis of the dependence of the system performance of CV-QKD on the
bias effect; (2) how to weaken the influence of the bias effect on the secret key rate and secure
distance.

Here, we quantitatively analyze the secret key rate and secure distance for three protocols:
coherent, biased, and unbiased entanglement. The results indicate a superiority for unbiased
EPR protocol in long-distance communication, compared with biased entanglement and coherent
protocols. Further, we model the generation process of EPR entangled states and propose a
solution to construct unbiased entangled states protocol.

2. Theoretical analysis of CV-QKD with biased EPR protocol

Our CV-QKD protocol is shown in Fig. 1, which has three parts, the sender Alice with a state
preparation (the EPR entanglement source and modulator) and detection, the quantum channel,
and the remote receiver Bob with state detection. The entanglement source is prepared by mixing
two amplitude squeezed states with amplitude variances V1 (X) and V2 (X) at a 50/50 beam
splitter (BS), which outputs are two entangled modes A0 and B0, and belong to the trusted sender.
Mode A0 is a thermal state with a variance of Va (X/Y) = (V1 (X/Y) + V2 (Y/X))/2 (X and Y are
the amplitude and phase components, respectively), which is homodyne detected by Alice with a
detection efficiency of ηA. Mode B0 with a variance of Vb (X/Y) = (V1 (X/Y) + V2 (Y/X))/2 .

Fig. 1. Schematic diagram of the CV-QKD protocol with modulated entangled states.
Alice prepares a Gaussian entangled state with variances Va and Vb, which is modulated
with a variance VM controlled by Alice. One of the modulated entangled states mode VB0
transmits through an untrusted quantum channel with a channel transmittance η and excess
noise ε, which can be fully eavesdropped by the third part-Eve. Then, the resulting state
with variance VB is homodyne detected by Bob. The other entanglement mode VA0 is also
homodyne detected by Alice with a variance VA. ηA: detection efficiency of Alice; νelA:
electronic noise of Alice; ηB: detection efficiency of Bob; νelB: electronic noise of Bob.

Then mode B0 transmits through a lossy η and noisy ε quantum channel, which is assumed
to be fully controlled by an eavesdropper Eve, consequently, makes the channel untrusted.
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Then, mode B0 is also homodyne detected by a trusted receiver Bob. Bob’s noisy detection is
purified by placing a beam splitter with an EPR state ρR0G input, which transmission mimics his
electronic noise νelB and detection efficiency ηB. Then the point-to-point repeaterless Pirandola-
Laurenza-Ottaviani-Banchi (PLOB) bound can be expressed as −log2 (1 − ηAηBη) [8,26,28],
which provides the exact benchmark and the secret key capacity of the lossy communication
channel (pure-loss channel).

In the EPR based CV-QKD protocol, secret key is distilled from the state information shared
by the two trusted parties-Alice and Bob. Considering a protocol with reverse reconciliation
(RR) and collective attacks, the secret key rate is expressed as [3,4,27,29,30]

∆I = βIAB − χBE . (1)

The protocol is secure, while the key rate ∆I>0 [3,31]. IAB is the Shannon mutual information
between Alice and Bob, and χBE is the Holevo quantity. Where β ≤ 1 refers to the reconciliation
efficiency, which is determined by the signal-to-noise ratio (SNR) and algorithm being used for
the reconciliation and computational power in trusted devices [32]. Nevertheless, imperfections
always indwell in the devices, such as state generation (imperfect coherent or EPR state) and
modulation in sender side, or state detection in Bob’s station. The imperfections introduce noises
and losses into the detection parts, which can seriously shorten the secure distance or limit the
key rate to an extremely lower level [32]. Therefore, the key rate in entanglement-based CV-QKD
should be analyzed under imperfection conditions. By introducing the imperfections as trusted
noise, the Shannon mutual information IAB between Alice and Bob related to the variances in the
two stations and their correlation, is expressed as [4,27]

IAB=
1
2

log2
VA

VA/B
=

1
2

log2
VA

VA − C2
AB/VB

, (2)

where VA and VB are the variances of the quadratures measured by Alice and Bob, respectively.
VA/B is the conditional variance. CAB is the correlation coefficient between Alice and Bob. We
assume the state information from Alice transmits through a Gaussian channel-optical fiber with
the transmittance η = 10−αL/10 and excess noise ε, where α (L) is the loss coefficient (length) of
the fiber.

For information eavesdropping, the upper bound information χBE accessible to Eve from Bob
is limited by the Holevo quantity [27].
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(3)

where G (x)= (x + 1) log2 (x + 1) − xlog2 (x) is the bosonic entropic function, XB(YB) represents
Bob’s measurement for amplitude (phase) quadrature, ρXB

E is Eve’s state conditional on the
measured result of Bob, and S is the Von Neumann entropy of the quantum state ρ. As Eve’s
system purifies the system A0B1 (S (ρE) = S

(︁
ρA0B1

)︁
), Bob’s measurement purifies the system

A0ERG (S
(︂
ρXB

E

)︂
= S
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ρXB

A0RG

)︂
), where A0B1 and A0ERG are the pure states. χBE can be rewritten

as
χBE = S

(︁
ρA0B1

)︁
− S

(︂
ρXB

A0RG

)︂
. (4)

λ1,2 and λ3,4,5 are the symplectic eigenvalues of the covariance matrix γA0B1 and γXB
A0RG respectively,

which are related to the noise variances of the prepared states at Alice’s and Bob’s stations (VA0

and VB0 ) [27], the transmittance η and excess noise ε of the quantum channel, and the efficiency
ηB and the electronic noise νelB of the homodyne detector at Bob’s station.
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Obviously, IAB and χBE link the noise variances Va (X/Y) and Vb (X/Y) to the secret key rate.
Therefore, the variances Va,b of the two EPR modes should be dwelled on the actual preparation
of EPR states. In the QKD process, unbiased entangled states with symmetrical quantum
correlations are usually considered by coupling two equivalent squeezed states V1 (X) = V2 (X)
on a 50/50 BS [3]. In fact, the variances of the two EPR modes are related to the trusted optical
channel losses la,b, the relative phase between the two squeezing beams φ, variances of the
squeezed states V1,2 (X) and balance of the BS (1-T):T [20,22,24,25]. Any deviation of these
parameters from the ideal value may destroy the symmetric correlations and introduce a bias
effect as shown in Fig. 2 [22,24,25], which is harmful to the requirements of random quadrature
base measurement and also weakens the superiority of the EPR states [23]. Taking into account
the bias effect, the amplitude and phase correlation variances can be expressed as (without
considering the relative phase between the two squeezing beams φ, the method is detailedly
demonstrated in the Appendix)

Va (X)= (1 − la) (1 − T)V1 (X) + (1 − la)TV2(Y) + la, (5)

Va (Y)= (1 − la) (1 − T)V1 (Y) + (1 − la)TV2(X) + la, (6)

Vb (X)= (1 − lb)TV1 (X) + (1 − lb) (1 − T)V2(Y) + lb, (7)

Vb (Y)= (1 − lb)TV1 (Y) + (1 − lb) (1 − T)V2(X) + lb. (8)

Fig. 2. Conceptual illustration of the modulated thermal states protocol. V1 and V2: the
variance of two squeezed states; Va and Vb: the variances of the two EPR modes; la and
lb: the trusted optical losses in the preparation part; VA0 and VB0 : the variances of the two
modulated EPR modes.

When V1 (X) = V2 (X), the unbiased entangled states can be prepared by a balanced BS T = 0.5
or loss la = lb, and more details can be found in Ref. [24]. In Ref. [24], we had firstly analyzed
the origin of the bias effect in detail and directly observed an unbiased entanglement of -10.7 dB
by using two single-mode squeezed states. It provides a superior unbiased entangled light source
for CV-QKD protocol based on entangled states.

In general EPR states are treated as thermal states [31] with a circular noise distribution for the
two quadratures. But for biased EPR states, the quadrature noise distributes to be an elliptical
one as describing in Fig. 2 (initial or measured variance before mode B is sent to the untrusted
channel), due to the asymmetrical noise redistribution of V1 (X) and V2 (X) to Alice and Bob. This
asymmetrical noise redistribution of the practical systems is commonly treated as an untrusted
part. Hence, Eve is able to extract the information from the untrusted channel, by preparing an
appropriate squeezed state to restore the variance to the initial level, and pretend no information
leakage to her. In this case, it decreases the performance of the system. To maintain the advanced
performance with (single-mode or two-mode [3,4,26]) squeezed state, Bob should discard some



Research Article Vol. 29, No. 14 / 5 July 2021 / Optics Express 22627

information in one of the measured quadratures, which weakens the secure distance compared with
unbiased protocol [23]. On the other hand, the existing theory for homodyne protocol with EPR
state requires the two quadrature of the amplitude and phase variances should be equal with each
other. Therefore, a modulated thermal state is proposed for the analysis of biased entanglement,
in which the small variance quadrature is modulated to generate a circular thermal state [31],
showed by the modulated variance in Fig. 2. Under this circumstance, Va,b evolves into V ′

A0,B0 ,
V ′

A0 (X)=Va (X) + VM1 (X), V ′
A0 (Y)=Va (Y), V ′

B0 (X)=Vb (X), V ′
B0 (Y)=Vb (Y) + VM1 (Y), and

Eve cannot distinguish the difference between the biased or unbiased EPR protocols. CV-QKD
for biased EPR states again restores the performance. Eve is allowed to achieve any attack by
emulating the channel transmission and excess noise, and the bias does not affect the leakage
information to Eve. Finally, the biased protocol can be treated with the standard CV-QKD theory
for the pure state [3,4].

Under a high loss case with RR, i.e., communication in a long-distance fiber, the existing
reconciliation algorithm suffers a low efficiency, which severely limits the key rate and distance.
To overcome this problem, an additional modulation VM2 is added to the prepared state (modulated
thermal state in Fig. 2) to further extend the secure distances [3,4,19]. In an ideal situation
(noiseless and lossless in the sender and receiver), arbitrary high modulation (1 ∼ +∞) can be
applied to greatly enhance the key rate and distance. However, a practical schema is always
imperfect, and squeezing level can continuously improve the security parameters, while the
modulation must be optimized to tolerate the channel noise [3,19,33].

During the key distribution, mode B0 is sent to the remote trusted party-Bob, through a quantum
channel characterized by the lossy η and noisy ε, and the covariance matrix is expressed as

γA0B1 =
⎛⎜⎝
γA0 CA0B1

CA0B1 γB1

⎞⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

VA0 (X) 0 CA0B1 (X) 0

0 VA0 (Y) 0 CA0B1 (Y)

CA0B1 (X) 0 VB1 (X) 0

0 CA0B1 (Y) 0 VB1 (Y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

where VA0 (X)=Va (X) + VM1 (X) + VM2 (X) and VA0 (Y)=Va (Y) + VM2 (Y) are the variances of
mode A0 in the amplitude and phase quadratures; VB1 (X) = η

(︁
VB0 (X) + χline

)︁
and VB1 (Y) =

η
(︁
VB0 (Y) + χline

)︁
are the variances of mode B1 in the amplitude and phase quadratures;

VB0 (X)=Vb (X)+VM2 (X) and VB0 (Y)=Vb (Y)+VM1 (Y)+VM2 (Y) are the variances of mode B0
in the amplitude and phase quadratures; CA0B1 (X) =

√
ηCA0B0 (X) and CA0B1 (Y) =

√
ηCA0B0 (Y)

are the correlation between the two modes A0 and B1 in the amplitude and phase quadratures;
CA0B0 (X) = Cab (X)+VM1 (X)/2 +VM2 (X) and CA0B0 (Y) = Cab (Y)+VM1 (Y)/2 +VM2 (Y) are
the correlation between the two modes A0 and B0 in the amplitude and phase quadratures. Cab is
the initial correlation coefficient of the entangled states without modulation, and the detailed
analysis method is in Appendix.

To simplify the analysis process, we assume a trusted noise in the detection part, and a
narrow-band homodyne detector is applied [32,34,35]. Then, the modified variances of the
quadratures measured by Alice and Bob are deduced as

VA = ηAVA0 + 1 − ηA + νelA, (10)

VB = ηηB
(︁
VB0 + χtot

)︁
, (11)

where
χtot=χline + χhom/η , (12)

χline=1/η − 1 + ε, (13)
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χhom=(1+νelB)/ηB − 1. (14)

Here, ηA and νelA are the detection efficiency and electronic noise of Alice’s station; ηB and νelB
are that of Bob. VA0 and VB0 are the variances of the two modulated EPR modes. χtot (χline)
denotes the total (channel) added noise of the channel input site; χhom is the added noise of the
homodyne detector for Bob’s input site. Then, the correlation coefficient between Alice and Bob
is deduced as [3]

CAB =
√
ηηAηB (Cab + VM1/2 + VM2) . (15)

Substituting with VA0,B0 = V , the symplectic eigenvalues λ1,2 of the covariance matrix γA0B1 for
the analytical formula of χBE are reduced to

λ1,2 =

√︃
1
2

(︂
∆ ±

√︁
∆2 − 4D

)︂
, (16)

where
D=η2(V χline + 1)2, (17)

∆ = V2(1 − η)2 + V
(︂
2χlineη

2
)︂
+
(︂
η2 χ2

line + 2η
)︂

. (18)

The analytical formula for the symplectic eigenvalues λ3,4,5 of the covariance matrix γXB
A0RG are

reduced to

λ3,4,5 =

√︃
1
2

(︂
A ±

√︁
A2 − 4B

)︂
, λ5 = 1, (19)

where for homodyne protocol we have

Ahom =
∆χhom + V

√
D + η (V + χline)

η (V + χtot)
, (20)

Bhom =
√

D
(ηχlineV + η) χ2

hom +
[︂√

Dη (V + χline) + V
]︂
χhom + ηV (V + χline)

[η (V + χtot)]
2 . (21)

Finally, the Holevo bound can be expressed as

χBE = G (λ1) + G (λ2) − G (λ3) − G (λ4) . (22)

In the following section, the performance of the QKD is analyzed in detail for the unbiased and
biased EPR protocols in this section.

3. Secret key rate and secure distance for biased and unbiased EPR protocols

Combining the theoretical models in section 2 and appendixes, we calculate the secure key rate
and secure distance of the CV-QKD based on a fiber channel. Firstly, without considering the
modulation schema and side-channel effect, the maximum secure distance is compared between
the biased and unbiased EPR protocols. Here the maximum distance is stipulated as the key
rate decreased to 10−8 bits/pulse. Taking the actual situation for states preparation into account,
the initial system parameters for biased and unbiased protocols are given as, originating from
Ref. [24]. With the precondition of V1(X) = V2(X), for T = 0.49, a biased entanglement is
obtained, and unbiased correlations are established for T = 0.5, and more details can be found
in our previous work [24]. Then, the differences of the secure distance between the biased and
unbiased entanglement protocols Lunbias − Lbias are demonstrated in Fig. 3, , and the parameters
for the demonstration of the six sub-graphs are listed in Table 1. With V1(X) = V2(X) in Fig. 3(a),
the secure distance for unbiased protocol is enhanced with the increasing of the squeezing level.
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Table 1. The parameters used to calculate the secure distance of Fig. 3. V1,2: the variance of two
squeezed states; β: reconciliation efficiency; ε: excess noise; α: loss coefficient of a standard

single-mode fiber; ηA: detection efficiency of Alice; ηB: detection efficiency of Bob; νelB: electronic
noise of Bob. la and lb: the trusted optical losses in the preparation part; T : beam splitting ratio;

V (Xa + Xb): the amplitude correlation variance of the entangled states; V (Ya − Yb): the phase
correlation variance of the entangled states; Note: la=0.01, lb=0.05, and ηA = 0.99. The bias

variances are calculated with equations (32) and (39) by introducing an unbalanced BS. The
unbiased entangled state V (Xa + Xb) = V (Ya − Yb) = −10.1 dB is deduced with T = 0.5, and the

biased entangled state V (Ya − Yb) = −9.5 dB and V (Xa + Xb) = −10.5 dB is deduced with T = 0.49.

Number (a) (b) (c) (d) (e) (f)

V1,2 (X) (dB) variable -12 -12 -12 -12 -12

β 0.99 variable 0.99 0.99 0.99 0.99

ε 0.1 0.1 variable 0.1 0.1 0.1

α (dB/km) 0.2 0.2 0.2 variable 0.2 0.2

ηB 0.843 0.843 0.843 0.843 variable 0.843

νelB 0.01 0.01 0.01 0.01 0.01 variable

The secure distance starts to surpass the coherent state protocol as the squeezing level increased
above 5 dB, and the biased protocol appears to be lower than the unbiased one. Meanwhile, the
difference of the maximum secure distance between the two EPR states becomes larger, especially
higher than 10 dB (the dotted box in Fig. 3(a)), where the bias begins to quickly weaken the secure
distance compared with the unbiased protocol. In the precondition of V1 (X) = V2 (X) = −12
dB, the reconciliation efficiency β, excess noise ε, the channel loss coefficient α, efficiency ηB,
and detection electronic noise νelB of Bob are considered as the influence factors to the biased
protocol. The magnitude of the reconciliation efficiency β amends the difference between the
biased and unbiased entanglement protocols. As showing in Fig. 3(b), Lunbias is more superior to
Lbias as β approaching the unit. And this conclusion is also suitable for a noiseless or lossless
quantum channel, i.e., in Fig. 3(c) and (d), less excess noise or channel loss is more favorable
to the unbiased protocol for secure distance enhancement. Moreover, in Fig. 3(e) and (f), the
detection efficiency ηB and electronic noise νelB in Bob’s station have no impact on Lunbias −Lbias,
which act as linear noise injection for the two protocols. From the above argument, we can
see that unbiased entanglement proves to be more preferable for long-distance communication,
especially for a squeezing level above 10 dB. The results are also supported by Ref. [23].

Before secret key rate calculation, we provide a channel estimation [36] analysis based on
current experimental conditions for EPR protocol. A standard single-mode fiber (a loss coefficient
α = 0.2 dB/km) serves as the transmission channel of the entangled states from Alice to Bob.
Assuming one of the EPR modes in Alice station is prepared with a detection efficiency ηA>99%
(an optical propagation efficiency is better than 0.2%, an interference visibility of 99.8%, a
quantum efficiency inferred by the measured squeezing level is about 99.5%) [35]. In Bob’s
station, we suppose the transmitted states from the channel are coupled by fiber devices, and
injected into space homodyne detection, which efficiency is given as ηB = 0.843 (the optical
propagation efficiency based on the fiber devices is 85.5%, homodyne detector’s visibility is
99.8%, the quantum efficiency of the photodiodes is also better than 99%) [3,4,18,29,37]. Then,
the key distribution is simulated with the schema in Ref. [4], and all the above parameters are
used to estimate the channel. Incorporating Ref. [36,38] (models of channel estimation) and the
noise variances of -10 dB, the excess noise of the protocol is estimated to be better than 0.1. In
our theoretical analysis, excess noise is chosen as 0.1 to meet the realistic situation. Imperfections
at Alice’s and Bob’s stations introduce the side-channel effects, that make the protocol more
sensitive to the channel noise and can even break the security for purely attenuating channel.
With the above parameters and the theoretical results for two-mode squeezing in Ref. [39,40],
the side-channel limits the maximum tolerable channel noise to be approximately 0.72 SNU at
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Fig. 3. Secure distances comparison with and without bias effect for different squeezing
degree, reconciliation efficiency β, excess noise ε, loss coefficient of the optical fiber α, the
efficiency ηB and electronic noise νelB of Bob. Lunbias and Lbias are the secure distances
of unbiased and biased EPR protocols. SNU: shot noise units; BHD: balanced homodyne
detector.

Alice’s station and 0.65 SNU at Bob’s station. It demonstrated that the EPR protocol was more
tolerant to the prepared and detected noises, hence we omit the side-channel effects.

In the key rate calculation, the reconciliation efficiency β=0.99 is considered as the highest
level in practical protocols [18]. Assumed an infinite number of measured samples is used
to extract the key rate. For all protocols, imperfect reconciliation efficiency β<1 limits the
modulated variances to a finite value [33]. As a consequence, there is an optimal VM to guarantee
the best performance of the QKD. Inferred from equations (32) and (39), the biased EPR can be
transformed to an unbiased one by changing the variances of the squeezed states V1,2 (X), the
trusted optical losses la,b in the preparation part or balance of the BS (1-T):T [24]. The details
for the production of unbiased entangled states were investigated in a recent paper [24]. However,
in CV-QKD, channel loss is uncontrollable. To maintain the maximum entanglement level and
secure distance, the balance of the BS is favorable compared with the other two parameters.
Figure 4(a) shows the calculated secret key rate and maximum secure distance, and the parameters
for the calculation are listed in Table 2. The results demonstrated that the unbiased EPR protocol
(curves 6 and 7) is superior to the other two protocols (biased EPR and coherent protocols) in
the maximum secure distance, and still can be improved by a finite modulation (VM2 = 4.7, the
secure distance is increased from 251 km to 263 km). The biased EPR protocol (curves 2 and 3)
is more robust compared with the coherent one (curve 1), but is less robust than the unbiased
EPR one. The unbiased EPR of curves 4 and 5 in Fig. 4(a) is obtained by substituting T = 0.49
into T = 0.5 (column number 2 and number 4 in Table 2). From curves 2-5, it can be found that
the weakness of the biased EPR protocol is able to compensate by transforming the biased EPR
into an unbiased one. The results also show that the QKD protocols presented here are unable to
beat the PLOB bound (curve 8 in Fig. 4(a)). Figure 4(b) shows a relation between the secure
distance and bias effect. It also can be seen that the bias effects weaken the secure distance,
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and the unbiased EPR represents the optimum choice for entangled states CV-QKD, which will
greatly enhance the secret key rate and secure distance compared with the biased EPR protocols.

Fig. 4. (a) Key rate versus distance for coherent state, biased and unbiased entangled
states protocols. The solid line represents no modulation protocol, and the dotted line
is that with modulation. (b) Maximum secure distances versus the bias correlations
∆V=V (Ya − Yb) − V (Xa + Xb) of the entanglement. (1) coherent state with VM2 = 10.8; (2)
biased entangled state with the noise variances of -10.5 dB and -9.5 dB for the amplitude and
phase quadratures without modulation; (3) biased entangled state with the noise variances
of -10.5 dB and -9.5 dB for the amplitude and phase quadratures with VM2 = 4.4; (4) -9.3
dB unbiased entangled state without modulation; (5) -9.3 dB unbiased entangled state with
VM2 = 6.7; (6) -10.1 dB unbiased entangled state without modulation; (7) -10.1 dB unbiased
entangled state with VM2 = 4.7; (8) PLOB bound.

Table 2. The parameters used to calculate the secure distance of Fig. 4. V1,2:
the variance of two squeezed states; la and lb: the trusted optical losses in the

preparation part; T : beam splitting ratio; V (Ya − Yb): the phase correlation
variance of the entangled states; V (Xa + Xb): the amplitude correlation variance

of the entangled states; VM2: optimum modulation variance; β: reconciliation
efficiency; ε: excess noise; α: loss coefficient of a standard single-mode fiber;
ηA: detection efficiency of Alice; ηB: detection efficiency of Bob; νelB: electronic

noise of Bob.

States Coherent states Biased EPR Unbiased EPR

Number 1 2 3 4 5 6 7

V1,2 (X) (dB) 0 -12 -12 -12 -12 -12 -12

la 0.05 0.01 0.01 0.05 0.05 0.01 0.01

lb 0.05 0.05 0.05 0.05 0.05 0.05 0.05

T \ 0.49 0.49 0.5 0.5 0.5 0.5

V (Ya − Yb) (dB) 0 -9.5 -9.5 -9.3 -9.3 -10.1 -10.1

V (Xa + Xb) (dB) 0 -10.5 -10.5 -9.3 -9.3 -10.1 -10.1

VM2 10.8 0 4.4 0 6.7 0 4.7

Secure distance (km) 92 209 221 229 253 251 263

Note: β=0.99, ε=0.1, α=0.2 dB/km, ηA=0.99, ηB=0.843, νelB=0.01.

For a hundred-kilometer standard optical fiber channel, the visibility of the homodyne detection
remains the same compared with free space, but introduces a differential phase fluctuation and
excess noise between the two quantum channels. It forms the main challenge in implementing
the EPR based CV-QKD, because an entangled state is more sensitive to the phase and excess
noise. Although a stable controlling of the phase fluctuation is available in local EPR sources
[20,35,41–43], more effort should be done to meet the long-distance optical fiber communication.
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Although a rigorous experiment proof for hundred-kilometer standard optical fiber distribution is
beyond the scope of this paper, this result with a bias effect analysis constitutes a fundamental
advance in EPR based CV-QKD.

4. Conclusion

We compare the secret key rate and secure distance of CV-QKD in three distribution protocols:
coherent state, biased entangled states, and unbiased entangled states. The theoretical results
show that the weakness of the biased EPR protocol in long-distance communication can be
lowered by transforming it into an unbiased one, and the unbiased EPR protocol is superior to
other protocols for long-distance distribution, especially the noise reduction goes beyond 10 dB.
And the QKD protocols presented here are unable to beat the PLOB bound. By considering the
practical imperfections (original squeezing variance, trusted optical loss, and non-ideal BS) in
the preparation, transmission, and detection processes of entangled states, we provide a feasible
proposal for constructing unbiased entangled states protocol. With the improvement of the phase
control technique, an unbiased entanglement source [24] will be expected to apply to a practical
available CV-QKD protocol and further boost the secret key rate and distance.

Appendixes: theoretical models of the biased entanglement

The entangled states are prepared by coupling two equivalent squeezed states S1 and S2 on a
beam splitter (BS) with transmittance T . Considering the phase difference φ between the two
squeezing beams, the output operators of the BS are

a =
√

1 − TS1 +
√

TS2eiϕ , (23)

b =
√

TS1 −
√

1 − TS2eiϕ . (24)

The amplitude quadrature operators for Alice and Bob are

X′
a = a + a+=

√
1 − T

(︁
S1+S1

+
)︁
+
√

T
(︂
S2eiϕ + S2

+e−iϕ
)︂

, (25)

X′
b = b + b+=

√
T
(︁
S1+S1

+)︁ − √
1 − T

(︂
S2eiϕ+S2

+e−iϕ
)︂

. (26)

Subsequently, introducing the trusted optical losses la and lb in the preparation part, the amplitude
quadratures for Alice and Bob becomes

Xa =
√︁

1 − laX′
a +

√︁
la, (27)

Xb =
√︁

1 − lbX′
b +

√︁
lb. (28)

The variances of amplitude quadrature for Alice and Bob can be expressed as

Va (X)= (1 − la) (1 − T)V1 (X) + (1 − la)T
(︂
V2(X)cos2φ + V2(Y)sin2φ

)︂
+ la, (29)

Vb (X)= (1 − lb)TV1 (X) + (1 − lb) (1 − T)
(︂
V2(X)cos2φ + V2(Y)sin2φ

)︂
+ lb. (30)

Furthermore, the sum of the amplitude quadrature operator readouts from the detection process
can be deduced as

Xa+Xb =
√︁

1 − laXa +
√︁

la+
√︁

1 − lbXb +
√︁

lb

=
(︂√︁

1 − la
√

1 − T+
√︁

1 − lb
√

T
)︂

X1

+
(︂√︁

1 − la
√

T −
√︁

1 − lb
√

1 − T
)︂ (︂

S2eiϕ + S2
+e−iϕ

)︂
+
√︁

la +
√︁

lb.

(31)
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(34) Finally, the amplitude correlation variance of the entangled states can be obtained as:

V (Xa+Xb)=
(︂
(1 − la) (1 − T)+ (1 − lb)T+2

√︁
1 − la

√︁
1 − lb

√
T
√

1 − T
)︂ ⟨︁
δ2X1

⟩︁
+
(︂
(1 − la)T+ (1 − lb) (1 − T) − 2

√︁
1 − la

√︁
1 − lb

√
T
√

1 − T
)︂

(︂
cos2φ

⟨︁
δ2X2

⟩︁
+ sin2φ

⟨︁
δ2Y2

⟩︁)︂
+ la + lb

=α1V1(X) + β1
(︂
V2(X)cos2φ + V2(Y)sin2φ

)︂
+la+lb,

(32)

where V (Xa+Xb)=Va (X)+Vb (X)+2Cab (X), X1=S1+S+
1 , X2=S2+S+

2 , Y2=1/i
(︁
S2 − S+

2
)︁

are the
amplitude and phase operators of the two squeezed states. α1 and β1 are the coefficients related
to losses (la and lb) and beam splitting ratio T , which can be expressed as

α1= (1 − la) (1 − T) + (1 − lb)T + 2
√︁
(1 − la) (1 − lb)

√
T
√

1 − T , (33)

β1= (1 − la)T + (1 − lb) (1 − T) − 2
√︁
(1 − la) (1 − lb)

√
T
√

1 − T . (34)

The correlation coefficient of amplitude quadrature is

Cab (X)=
√︁
(1 − la) (1 − lb)

√
T
√

1 − T
(︂
V1(X) − V2(X)cos2φ − V2(Y)sin2φ

)︂
. (35)

With the same method, the variance of phase quadrature for Alice and Bob can be expressed as

Va (Y)= (1 − la) (1 − T)V1 (Y) + (1 − la)T
(︂
V2(Y)cos2φ + V2(X)sin2φ

)︂
+ la, (36)

Vb (Y)= (1 − lb)TV1 (Y) + (1 − lb) (1 − T)
(︂
V2(Y)cos2φ + V2(X)sin2φ

)︂
+ lb. (37)

The correlation coefficient of phase quadrature is

Cab (Y)=
√︁
(1 − la) (1 − lb)

√
T
√

1 − T
(︂
V1(Y) − V2(Y)cos2φ − V2(X)sin2φ

)︂
. (38)

The phase correlations can be deduced as

V (Ya − Yb) = α2V1(Y) + β2
(︂
V2(Y)cos2φ + V2(X)sin2φ

)︂
+la+lb, (39)

where
α2= (1 − la) (1 − T) + (1 − lb)T − 2

√︁
(1 − la) (1 − lb)

√
T
√

1 − T , (40)

β2= (1 − la)T + (1 − lb) (1 − T) + 2
√︁
(1 − la) (1 − lb)

√
T
√

1 − T , (41)

V (Ya − Yb)=Va (Y)+Vb (Y) − 2Cab (Y) . (42)

The bias correlations for the two quadrature correlations is defined as

∆V=V (Ya − Yb) − V (Xa + Xb) . (43)
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