
Research Article Vol. 29, No. 15 / 19 July 2021 / Optics Express 24315

Precise control of squeezing angle to generate
11 dB entangled state

WENHUI ZHANG,1 NANJING JIAO,1 RUIXIN LI,1 LONG TIAN,1,2

YAJUN WANG,1,2,3 AND YAOHUI ZHENG1,2,4

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,
Shanxi University, Taiyuan, 030006, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3YJWangsxu@sxu.edu.cn
4yhzheng@sxu.edu.cn

Abstract: The strength of the quantum correlations of a continuous-variable entangled state is
determined by several relative phases in the preparation, transmission, and detection processes of
entangled states. In this paper, we report the first experimental and theoretical demonstrations of
the precision of relative phases associated with the strength of quadrature correlations. Based
on the interrelations of the relative phases, three precisely phase-locking methodologies are
established: ultralow RAM control loops for the lengths and relative phases stabilization of the
DOPAs, difference DC locking for the relative phase between the two squeezed beams, and
DC-AC joint locking for the relative phases in BHDs. The phase-locking loops ensure the
total phase noise to be 9.7±0.32/11.1±0.36 mrad. Finally, all the relative phase deviations are
controlled to be in the range of −35 to 35 mrad, which enhances the correlations of the amplitude
and phase quadratures to −11.1 and −11.3 dB. The entanglement also exhibits a broadband
squeezing bandwidth up to 100 MHz. This paves a valuable resource for experimental realization
and applications in quantum information and precision measurement.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Continuous variables (CV) quantum entanglement has been widely approved to be a valuable
resource in quantum information networks [1–5], quantum computation [6,7], quantum commu-
nication [8–14], and quantum precision measurement [15–19]. In these applications, a strong
entangled state has been proposed or applied to enhance the performance of the quantum protocols.
For example, with −10 dB quantum correlations for the amplitude and phase quadratures, the
secure distance of CV quantum key distribution (QKD) can be increased from 190 km (with
−3.5 dB two-mode squeezing in the experiment) to 320 km under an excess noise of 0.1 and
a modulation of 100 shot-noise units (SNU) [8]; the fidelity of quantum state transmission
with quantum teleportation can be promoted from 0.7 (−5.2 dB squeezing) to 0.87 [11]; the
non-classical sensitivity of simultaneous measurement of two non-commuting observables in
quantum-dense metrology (QDM) can be improved from 6 dB (−7 dB squeezing) to 10 dB
[16,20]; the signal-to-noise ratio (SNR) in multiplexing quantum communication can be improved
from 7.8 dB (−8 dB squeezing) to 10 dB beyond the shot noise limit (SNL) [12].

Although the need for strong quantum correlations is enormous, it is a complex and tough
task to implement an entanglement of more than 10 dB. To achieve the ultimate goal, squeezing
factors, the balance of the beam splitter, channel losses, and multiple relative phases in the
generation and detection processes of the entangled state must be globally considered. The first
three influence factors had been detailly analyzed in an unbiased entangled state preparation with
two single-resonant optical parametric amplifiers (OPAs) [21]. However, the multiple relative
phases being associated with the squeezing angles are more critical for establishing a more robust
entangled state.
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Recently, the maximum quantum correlations had been fabricated with the optical parametric
oscillator (OPO) [22] or OPA [21] technology. In preparation of the entangled state, two single-
mode squeezed states are coupled on a 50/50 beam splitter (BS), which are also accompanied by
at least five electronic servo control loops of the relative phases: the signal and pump beam of the
OPO or OPAΦ1 (orΦ2), the two squeezed beams on the 50/50 BS φS, and the entangled beam and
local oscillator φA (φB) in the balanced homodyne detection (BHD). For all of the relative phases,
arbitrary deviation from the ideal phase angle will weaken the quantum correlations as well as
introduce an asymmetric noise variance for the two quadrature components [21,23]. Moreover,
the impact of phase angle deviation becomes acute as the optical loss being reduced to produce
an entangled state of more than 10 dB. Currently, entangled quantum correlations have been
experimentally or theoretically demonstrated without considering the influence and interrelations
of phase angles. To achieve the requirements for stronger entangled states preparation, the
precise and stable control of the phase angles is an essential prerequisite. Stable control of the
squeezing angle was already feasible and had been demonstrated by using a coherent control
technology with the OPO [24,25] or by reducing the residual amplitude modulation (RAM)
[26,27] downstream the phase modulator before and after the OPA [28].

This paper theoretically and experimentally demonstrates the associations between the relative
phases and quadrature correlations in the OPA process for the first time. By designing three
phase-locking methodologies, the interrelations between the relative phases are destroyed and
can be individually controlled to high precision, i.e., in the range of −35 to 35 mrad. This paves
a way to experimental realization for the −11.1 and −11.3 dB correlations of the amplitude and
phase quadratures, and its squeezing bandwidth can be up to 100 MHz.

2. Theoretical analysis for the interrelations of the phase angles

The entanglement [20,22] can be prepared by mixing two amplitude squeezed states Ŝ1 and Ŝ2
with relative phase φS= π

2 on a 50/50 beam splitter (BS), which outputs are two entangled modes
A (â) and B (b̂)
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Ŝ2eiϕS , b̂ =
√︃

1
2
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Ŝ2eiϕS , (1)

â and b̂ are experimentally characterized by the subtracting of the photocurrents of the BHD and
can be expressed as
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Ŝ1e−iϕA+Ŝ+1 eiϕA

)︂
+

√︃
1
2

(︂
Ŝ2eiϕSe−iϕA + Ŝ+2 e−iϕSeiϕA

)︂
,

(2)

ib=ib1 − ib2 = b̂+eiϕB + b̂e−iϕB

=
√︃

1
2

(︂
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where the relative phase φA (or φB) between the local oscillator and entangled mode A (or
B) determines the variance of the measured quadrature. If φA=φB=0 or π
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be deduced as
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)︂
(cos φA cos φS ∓ cos φB cos φS + sin φA sin φS ∓ sin φB sin φS)

]︂
+√︃

1
2

[︂
i
(︂
Ŝ+
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The correlation variances of the entanglement can be given as the square of iA ± iB

V(A ± B)=
1
2
[︁
VS1 (X) (cos φA ± cos φB)

2+VS1 (Y) (sin φA ± sin φB)
2]︁ +

1
2
[︁
VS2 (X) (cos φA cos φS ∓ cos φB cos φS + sin φA sin φS ∓ sin φB sin φS)

2]︁ +

1
2
[︁
VS2 (Y) (sin φA cos φS ∓ sin φB cos φS − cos φA sin φS ± cos φB sin φS)

2]︁ ,

(5)
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are the noise variances of the amplitude and phase quadratures for squeezed mode Ŝ1 (or Ŝ2),
respectively. Apparently, squeezing variances directly determine the maximum entanglement
strength, while the rotation of the squeezed angle θ1,2 has a negative function on the quadrature
variances [28,29]

VS1,2 (X) = V10,20 (X) cos
(︃
θ1,2

2

)︃2
+ V10,20 (Y) sin

(︃
θ1,2

2

)︃2
, (6)

VS1,2 (Y) = V10,20 (Y) cos
(︃
θ1,2

2

)︃2
+ V10,20 (X) sin

(︃
θ1,2

2

)︃2
, (7)

The squeezed angle θ1,2 is associated with the relative phase between the signal and pump
beams Φ1,2 [28–30]. Φ1,2=π corresponds to the de-amplification of the OPA. Here, V10 (X),
V10 (Y) and V20 (X), V20 (Y) are the initial variances of the amplitude and phase quadratures of
the two squeezed states [28,29,31–33]
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Here ν is the full-width at half-maximum (FWHM) linewidth of the OPA, f is the analysis
frequency, and η is the total detection efficiency. P1,2 is the pump power, and Pth1,2 is the
threshold pump power of the OPA. θrms is fluctuation in the squeezing angle and is referred
to the root-mean-square (rms) of the total phase noise, which makes the amplified noise in
orthogonal quadrature couple into the observed squeezed quadrature. Losses and phase noises
finally codetermine the measured squeezing level.

Consequently, five phase angles (Φ1, Φ2, φS, φA, φB) determine the final correlations measured
by BHDs, and the upstream phase deviations are also accumulated in the downstream as showing
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in Fig. 1(a). To quantify the accumulated phase deviation effect, we redefine the relative
phases as Φ1,2=Φ10,20+∆Φ1,2, φS=φS0+∆φS, and φA,B=φA0,B0 + ∆φA,B. As showing in Fig. 1(b),
∆Φ1,2 results in a rotation of the squeezed angle (θ1,2=θ10,20+∆θ1,2) during the preparation of
squeezed state, meanwhile leads to an increased output power Pout1 of the OPA (operating on
de-amplification), and the power ratio R of Pout1 to the initial one Pout0 can be deduced as [34]

R=
1 + P1,2

Pth1,2
+ 2 cos

(︁
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)︁ √︂ P1,2
Pth1,2
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+ 2 cos

(︁
Φ10,20

)︁ √︂ P1,2
Pth1,2

, (9)

Fig. 1. Building blocks of the relative phase angles and the principle of phase deviation
during entanglement generation: relationship of the relative phases for (a) the squeezed
state, entangled state preparation and measurement, (b) squeezed state preparation, (c)
entanglement preparation, (d) BHD measurement.

In this case, if the error signal for φS locking is extracted from the amplitude of the interference
of the two squeezed beams, ∆Φ1,2 induced power variation will lead to a phase deviation to
φS (Fig. 1(c)), because of the zero point of the error signal deviates from the middle of the
interference fringe. Combining the equation of R and the quantitative equation of the interference
intensity, φS can be modified as

φS=φS0+∆φS = arccos
I2
2 − R2 + 2I1I2 cos φS0

2I1R
, (10)

If the initial power of the two squeezed beams is normalized to 1 (I1=I2=1), then φS is
simplified to φS = arccos 1−R2

2R . With this methodology, the deviation of φS related to ∆Φ1,2
can be quantitatively demonstrated as describing in Fig. 2(a). For example, a 20 mrad phase
deviation of Φ1 results in a 13 mrad deviation of φS, i.e., Φ1=π ± 0.02 rad, φS= π

2 +0.013 rad.
Furthermore, as showing in Fig. 1(d), ∆φA,B will also introduce a squeezing angle rotation
between the measurement base of the BHDs and entanglement quadratures.

We comprehensively illustrate the influence of ∆Φ1,2, ∆φS, and ∆φA,B on entanglement corre-
lations in Fig. 2(b)-(d) by simultaneous equations (5)-(10). Figure 2(b) shows the entanglement
correlations noise power individually and independently relating to the deviations of the relative
phases. It is clear from the figure that all the deviations of the relative phases excite phase angle
rotation and contribute to the noise power growth, but we note that the dominant contributor to
the magnitude of the noise power is the phase deviation of φS (red line in Fig. 2(b)), while ∆Φ1,2
will exacerbate this contribution in practical entangled states preparation (blue line in Fig. 2(b)).

Whereafter assuming a precise locking of φS as a prerequisite, ∆Φ1,2 and ∆φA,B are considered
to demonstrate the relation of the relative phase deviation and entanglement noise power. As
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Fig. 2. Demonstration that in relating the phase deviation to entanglement noise power is
necessary for high degree entangled states generation. (a)∆φS versus∆Φ1,2, (b) entanglement
degree versus ∆Φ1,2 with (blue line) and without (blue dotted line) the influence of ∆Φ1,2 on
∆φS, ∆φS (red line), ∆φA,B (green line), (c) ∆φA,B versus ∆Φ1,2 for different entanglement
degree with the influence of ∆Φ1,2 on ∆φS, (d) the optimal value of ∆φA,B (black prismatic)
and maximum entanglement available (red circle) versus ∆Φ1,2 with the influence of ∆Φ1,2
on ∆φS. The squeezing degree used to calculate the entanglement is −12 dB.

showing in Fig. 2(c), the deviation range of the relative phase should be more and more narrow
with the degree of entanglement increasing. For example, both ∆Φ1,2 and ∆φA,B should be
precisely controlled to 0.1 mrad for 12 dB entanglement (red line in Fig. 2(c)), while relax to
+30/−20 mrad for the 11.7 dB one. From Fig. 2(c), it also can be found an optimum ∆φA,B for a
certain ∆Φ1,2, and the results are shown in Fig. 2(d). Clearly, with the increasing of ∆Φ1,2, the
available maximum degree of the entanglement gradually decreases. Therefore, ∆Φ1,2 and ∆φS
are more harmful for high degree entanglement generation, which should involve stepping up
more effort to suppress.

3. Experimental setup and result

The schematic of our experimental setup is illustrated in Fig. 3. The laser source is a continuous-
wave single-frequency fiber laser with an output power of 2 W at 1550 nm wavelength (E15,
NKT Photonics). The mode cleaners (MCs) are employed to ensure the quadrature noises of the
fundamental and second harmonic waves meet SNL above 5 MHz [30]. Here one of the 1550 nm
MCs is omitted in Fig. 3. The fundamental wave serves as the seed beams of the degenerate
OPAs (DOPAs) and local oscillators (LO, 10 mW) of the BHDs. Meanwhile, it is also applied to
produce an up-conversion wave of 105 mW by the second harmonic generator (SHG), which is
used as the pump laser of the DOPAs. Both of the DOPAs are semi-monolithic double-resonant
cavities and their parameters are the same as Ref. [30], in which the pump beams are modulated
with 42.5 MHz and used for cavity length sensing and locking. The outputs of the DOPAs are
coupled on a 50/50 BS to prepare the entangled beams. The SHG has similar parameters with
DOPA, except for a concave mirror with a transmissivity of 12%±1.5% for 1550 nm and high
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transmission for 775 nm. The resonant conditions of the DOPAs and MCs are maintained by
Pound-Drever-Hall (PDH) technique [35].

Fig. 3. Schematic of the entangled light source and feedback control loops for relative
phase. MC, mode cleaner; SHG, second harmonic generator; DOPA, degenerate optical
parametric amplifier; DBS, dichroic beam splitter; BS: beam splitter; EOM, electrooptical
modulator; PD, photodetector; BHD, balanced homodyne detector.

The major concern of a robust entangled state in this work is the precise control of the relative
phases as stating in section 2. To satisfy the requirement of ultralow phase deviation, we have
developed an ultralow RAM control loop in previous researches [27,28,36], and upgrade the
phase-locking technologies in this work are summarized in Table 1. The ultralow RAM control
loops make sure the stable and precise locking of the cavities and Φ1,2. With this method, the
squeezing phase noise could be controlled to 1.4±0.26 mrad in a double-resonant OPA process
[30], and the zero-baseline offset of the error signals was reduced to +70/−50 ppm, about 1/50
without the ultralow RAM design.

Table 1. Summary of the locking technique of the relative phase. See main text for further
discussion.

Phase angle Brief description Locking technique

Φ1 (Φ2) π phase in de-amplified status of the DOPAs PDH via reflection of the DOPAs, 47 MHz [30]

ϕS π/2 phase between two squeezed beams DC locking

ϕA (ϕB) 0 or π/2 phase of the LO beams DC-AC joint locking, 47 MHz

Subsequently, 1% powers of the two entangled modes are leaked from the two BSs in the
optical paths of the entangled beams. The two dc interference signals read by PD-φS are mutually
subtracted to produce an error signal centered around zero. This zero-crossing can be directly
used to produce an error signal for π/2 phase locking between the two squeezed beams [14]. It
has an advantage to cancel the power fluctuations from the outputs of the DOPAs, and breaks the
relevance between R and φS.
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Finally, to measure the maximum correlations of the entanglement quadratures, i.e., eliminate
the deviation of the relative phase φA,B as much as possible, we utilize a DC and AC joint locking
technology for arbitrary phase control. The 47 MHz modulated sidebands on the seed beams are
demodulated to produce the AC signals − sin θ for BHD1 and BHD2, which can be used for 0
phase locking. The demodulated AC signal adds with the DC interference signal cos θ (used
for π/2 phase locking) exporting from the same BHD, then forms the final error signal of φA,B
as εϕA,B = − sin

(︁
θ − φA,B

)︁
= k cos θ − sin θ, where k = tan φA,B. Therefore, the error signal of

φA,B can be calibrated by modifying the coefficient k, which can be expediently adjusted by the
amplitude of the DC part. In our experiment, an attenuator acts as an amplitude adjuster for the
DC signal, which is equivalent to modify the value of k. It can be found that φA,B can be locked
to 0∼ π/2 by changing the value of k from 0 to ∞. This joint locking method is superior to the
individual AC or DC locking technology, because it can conveniently calibrate the relative phases
to the exact value by adjusting k and promote us to read out the optimum quadrature correlations.

By optimizing the feedback control loops of the relative phases with the above methodologies,
an entanglement, with quadrature amplitude and phase correlations of −10.9±0.2 dB and
−11.1±0.2 dB at 5 MHz (Agilent N9020A), was directly observed by joint measurements of
BHD1 and BHD2. Figure 4 presents the measured results at the pump power of 13.5 mW, and the
detailed experimental parameters are also given in Table 3. All traces are normalized to the SNL
corresponding to a 10 mW LO. Trace (I) corresponds to the SNL with entangled light blocked.
Trace (II) and (III) are the variances of the quadrature amplitude and phase correlations. The
electronic noise (Trace (IV)) of the BHD is 21 dB below SNL. Figure 4(a) shows the directly
observed quadrature amplitude and phase correlations at 5 MHz with an inseparability criterion

of the correlations of
√︃

V
(︂
X̂a + X̂b

)︂
V
(︂
Ŷa − Ŷb

)︂
=0.079. By subtracting the contribution of the

electronic noise, the amplitude and phase correlations are amended to −11.1 dB and −11.3 dB.
Figure 4(b) presents a broadband quantum noise correlation in the frequency range from 5 to 100
MHz. The quadrature amplitude and phase correlations are −2.4±0.2 dB and −2.6±0.2 dB at

100 MHz with an inseparability criterion of the correlations of
√︃

V
(︂
X̂a + X̂b

)︂
V
(︂
Ŷa − Ŷb

)︂
=0.56.

Fig. 4. Variances of the sum V
(︂
X̂a + X̂b

)︂
of the amplitude and difference V

(︂
Ŷa − Ŷb

)︂
of

the phase quadratures. (a) Variances at analysis frequency of 5 MHz and (b) between 5
MHz and 100 MHz with a resolution bandwidth (RBW) of 300 kHz and a video bandwidth
(VBW) of 200 Hz.

The data in Fig. 4(b) are fitted with the model of Eq. (5) (the black and blue dotted lines) [37],
and it gains a total optical loss of 6.5%±0.14%, and a phase noise of 9.7±0.32 or 11.1±0.36
mrad for phase or amplitude quadrature, respectively. Table 2 lists all known sources of loss
and phase noise in the entanglement preparation [31–33,38]. With one of the OPAs, the total
phase noise for one-mode squeezing had been confirmed to be 1.4±0.26 mrad [30]. For phase
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noise measurement in DC-AC joint locking of the BHDs, the seed beam exits the OPA with
the temperature of PPKTP far away from the phase matching condition, and the phase noise
was determined to be 1.7±0.2 mrad. The phase noise between the two squeezed beams limits
the noise to be 9.9±0.3 mrad, which is attributed to the lower signal-to-noise ratio for weak
signal extraction in the photodetector. Finally, the total loss and phase noise codetermine the
measured squeezing level. The impact of phase noise becomes more acute as the losses are
reduced (Fig. 1 of [32]). Compared with the results of the fitted curves in Fig. 4(b), it concludes
that the maximum squeezing can reach to -11.6 dB with 0 phase noise (the pink dotted line in
Fig. 4(b)). Therefore, loss is the dominating limitation for the enhancement of the squeezing
level, and should be furtherly reduced.

Table 2. Loss and Phase Noise Budget for our entangled light source.

Source of Loss Value (%)

OPO escape efficiency 98±0.47

Propagation efficiency 98±0.2

Three 99.7% interference visibility 99.4±0.2

Photodiode quantum efficiency 99±0.2

Total efficiency 93.5±0.14

Source of Phase Noise Value (mrad)
MC length noise 0.1±0.1

SHG length noise 0.2±0.1

OPO detuning noise 0.23±0.1

Noise for π phase in de-amplified status of the DOPAs 0.52±0.2

Noise for π/2 phase between the two squeezed beams 9.9±0.3

Noise for 0 or π/2 phase of the LO beams 1.7±0.2

Total phase noise 9.7±0.32 (phase) 11.1±0.36 (amplitude)

Fig. 5. Simulated results of the phase deviation∆Φ1,2 and∆φA,B of the−11 dB entanglement
based on the experimental parameters in Table 3 and theoretical models in section 2.
Extracting the error signal of φS from (a) one of the entangled modes or (b) the difference of
the two entangled modes.
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With the results in Fig. 4(a) and Table 3, the phase-locking accuracy is calculated as showing in
Fig. 5. When extracts the error signal of φS from one of the entangled modes, our phase-locking
technology controls ∆φA,B in the range of −35 to 80 mrad (Fig. 5(a)). When the difference of the
two entangled modes is applied to lock the φS, it can be found that ∆φA,B is reduced to the range
of −35 to 35 mrad (Fig. 5(b)), due to the elimination of the influence of ∆Φ1,2 to ∆φS. In the two
cases, ∆Φ1,2 always keeps in the locking range of -35 to 35 mrad. Therefore, the precise control
of the relative phases in our entanglement light source is established.

Table 3. The experimental parameters used for the calculation of Fig. 5.

Parameterν1,2 MHzf1,2 MHzη1,2 %P1,2 mWPth1,2 mWϕS radV10,20 (X) dBV
(︂
X̂a + X̂b

)︂
dBV

(︂
Ŷa − Ŷb

)︂
dB

Value 110 5 95 13.5 16.6 π
2 −12.3 −10.9 −11.1

4. Conclusion

The experimental and theoretical analyses of the influence of relative phases for enhancing the
correlations of entanglement were first demonstrated. The experimental results well agree with
the theoretical ones, that take into account the internal relations of the relative phases (Φ1, Φ2, φS,
φA and φB) during the preparation, transmission, and detection of entangled states. To ensure a
high degree of entanglement, three precisely phase-locking technologies are established: ultralow
RAM control loops for the lengths and relative phases of the DOPAs, difference DC locking for
the relative phase between the two squeezed beams, and DC-AC joint locking for the relative
phases in BHDs. The phase-locking loops ensure the total phase noise to be 9.7±0.32/11.1±0.36
mrad. Attributing to the accuracy control of the relative phases to the range of −35 to 35 mrad,
the amplitude and phase correlations of the entangled state are enhanced to −11.1 and −11.3 dB,
and also owns a broadband squeezing with bandwidth more than 100 MHz. We envision that the
valuable entanglement resource will widen the applications of quantum information networks,
quantum computation, quantum communication, and quantum precision measurement.
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