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Abstract – In this paper, we present the first experimental demonstration on continuous variable
quantum key distribution using determinant Einstein-Podolsky-Rosen entangled states of optical
field. By means of the instantaneous measurements of the quantum fluctuations of optical modes,
respectively, distributed at sender and receiver, the random bits of secret key are obtained without
the need for signal modulation. The post-selection boundaries for the presented entanglement-
based scheme against both Gaussian collective and individual attacks are theoretically concluded.
The final secret key rates of 84 kbits/s and 3 kbits/s are completed under the collective attack for
the transmission efficiency of 80% and 40%, respectively.
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Quantum key distribution (QKD) allows two legitimate
parties, Alice and Bob, to establish the secret key only
known by themselves. A secret key is usually generated
by Alice transmitting the prepared quantum states to
Bob, who performs measurements on the received states
to distill the information. There are two types of QKD
systems in which the discrete or continuous quantum
variables are exploited, respectively. For discrete variable
(DV) QKD protocols the key information is encoded in
discrete quantum variables of single-photon light pulse,
such as polarization or phase [1]. In continuous vari-
able (CV) QKD protocols continuous quantum variables
of light field, such as amplitude and phase quadratures,
are used for transmitting information. Comparing with
DV QKD of single-photon schemes CV QKD promises
significantly higher secret key rates and eliminates the
need for single-photon technology. Recently, coherent state
CV QKD protocols have been experimentally demon-
strated [2–6]. These successful experiments proved that
CV QKD is a hopeful and viable path to develop quantum
cryptography for real-world applications. On the other
hand, the strictly theoretical proofs on the security of
CV QKD protocols using both coherent and non-classical
states of light have been achieved [7–10]. CV QKD proto-
cols have recently been shown to be unconditionally
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secure, that is, secure against arbitrary attacks [11] and
have been proved to be unconditionally secure over long
distance [12].
Quantum entanglement is one of the quite essential

features in quantum mechanics that has no analogue
in classical physics. It has been theoretically demon-
strated by Curty et al. that the presence of detectable
entanglement in a quantum state effectively distributed
between sender (Alice) and receiver (Bob) is a necessary
precondition for successful key distillation [13]. However,
there is no CV QKD experiment directly utilizing optical
entangled states to be presented until now, although
a variety of theoretical CV QKD protocols based on
Einstein-Podolsky-Rosen (EPR) entanglement and
squeezing of optical fields have been proposed [14–21].
Not like CV QKD protocols applying coherent states of
light [2–6], in which the bits of secret key are constructed
classically using amplitude and phase modulation, so-
called prepare-and-measure (P&M) scheme [5], in the
entanglement-based (EB) schemes proposed by refs. [16]
and [17] the bits of the random secret key are constructed
by the instantaneous measurements of the correlated
quantum fluctuations of the quadratures between two
entangled optical modes distributed at Alice and Bob. In
the EB CV QKD protocols, the quantum fluctuations of
entangled optical beams with the truly quantum random-
ness are utilized to generate the key. Due to that the
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Fig. 1: (Colour on-line) The experimental system of QKD.
NOPA: non-degenerate optical parametric amplifier, ATT:
attenuator, PBS: polarization beam splitter, LO: local oscil-
lation beam, N: vacuum noise, PZT: piezoelectric transducer,
BS: 50/50 beam splitter, D1-D4: photodetector, BPF: band-
pass filter.

classical signal modulation is not needed, the bit rates will
not be limited by the rates of the electronic modulators
and the experimental systems will be simplified.
In the presented paper, we experimentally demon-

strated the proof-of-principle CV QKD protocol using
a pair of bright EPR entangled beams produced from a
non-degenerate optical parametric amplifier (NOPA). We
concluded the post-selection boundaries of the presented
EB CV QKD scheme against both Gaussian collective
and individual attacks. By means of the post-selection,
reconciliation and privacy amplification techniques, the
final secret key was obtained through distilling the
measured data of the correlated quantum fluctuations
of quadratures. The generated raw key rate is 2Mbits/s
and the final secret key rates are 84 kbits/s and 3 kbits/s
against Gaussian collective attack for the transmission
efficiency of 80% and 40%, respectively. We believe that
this is the first experimental demonstration of CV QKD
protocols directly exploiting the EPR entanglement of
amplitude and phase quadratures of optical field. On the
physical sense this experiment intuitionally shows the
close relationship between the security of CV QKD and
the quantum entanglement.
The experimental setup of the CV QKD protocol is

shown in fig. 1. The laser is a homemade continuous wave
intracavity frequency-doubled and frequency stabilized
Nd:YAP/KTP ring laser consisting of five mirrors [22].
The second harmonic wave output at 540 nm is used for
the pump field of the NOPA and the fundamental wave
output at 1080 nm is separated into two parts, one is for
the injected signal of the NOPA and the other is used as
the local oscillation beams of the homodyne detections
for Alice and Bob. The NOPA consists of an α-cut type-II
KTP crystal and a concave mirror. Through a parametric
down-conversion process of type-II phase match, a pair
of EPR beams with anticorrelated amplitude quadratures
and correlated phase quadratures may be produced from
the NOPA operating in the state of de-amplification,
that is, the pump field and the injected signal are out of

phase [23]. The bandwidth of the NOPA is about 20MHz,
in which the output beams are entangled. If distributing
the two beams of EPR pair to Alice (beam a) and Bob
(beam b), the instantaneous measurement outcomes of
quadrature quantum fluctuations on their respective
modes will be fairly identical due to the quantum
correlations of quadratures [24].
In the communication, Alice and Bob randomly measure

the amplitude or phase quadrature of the entangled opti-
cal beam they hold respectively, with the homodyne
detection systems. After the measurement is completed,
they compare the measurement basis in the authorized
classic channel and only remain the measurement results
of the compatible basis. Then they use post-selection
technique to select a subset from the measured raw
data to make the mutual information of Alice and Bob
advantage over Eve’s information. To implement the
post-selection, Alice publicly announce the absolute
values of the measured amplitude or phase quadratures
(|XA| or |YA|), but not publicly open their symbols [4].
Alice and Bob also choose a random subset of data to
characterize the channel efficiency and excess noise. From
these values they select the secure data and discard the
insecure data. After post-selection procedure, Alice and
Bob interpret the post-selected data into binary data. For
the correlated phase quadratures both Alice and Bob may
define the positive and negative phase fluctuations as a
binary “1” and “0”, respectively. However, for the anticor-
related amplitude quadratures if Alice define the positive
(negative) amplitude fluctuation as “1” (“0”), Bob should
defines negative (positive) amplitude fluctuation as “1”
(“0”). Then we apply the reconciliation protocol to correct
the errors of the retained data. At last, we apply a privacy
amplification procedure to distill the final secret key.
In the security analysis we assume that the quantum

channel connecting Alice and Bob is lossy with imper-
fect transmittivity of η and the Gaussian excess noise δ
on the quadrature distribution exists in the communica-
tion system. The security analyses are restricted to protect
against Gaussian attacks only. For the optimal beam split-
ter attack [25], that is, Eve takes a fraction 1− η of the
beam b at Alice’s site and sends the fraction η to Bob
through her own lossless line. In this case Eve is totally
undetected, and she gets the maximum possible infor-
mation according to the no-cloning theorem. For collec-
tive attack, Eve listens to the communication between
Alice and Bob during the key distillation procedure and
then applies the optimal collective measurement on the
ensemble of stored ancilla. The maximum information Eve
may have access to is limited by the Holevo bound χ [5].
Under the individual attack, Eve measures the intercepted
ensemble before the key distillation stage and Eve’s infor-
mation is summarized by the mutual information between
Alice and Eve, IAE , for direct reconciliation. Generally, the
information exchange is secure as long as the mutual infor-
mation between Alice and Bob (IAB) is larger than Eve’s
information. The condition of IAB > IAE for extracting
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secure key directly results in the restriction of the maxi-
mum transmission losses less than 3 dB which will limit the
possible transmission distances [25]. Fortunately, the 3 dB
loss limit for CV QKD protocols can be beaten by imple-
menting a reverse reconciliation scheme [2] or applying an
appropriate post-selection [3,4,26]. It has been shown that
there must be a lower limit of η (2η > δ) for the secure
key distillation if the excess noise exists [27]. The secu-
rity of EB scheme against collective attack with reverse
reconciliation has been proved [28]. Here, we analyze
the post-selection boundary for the EB scheme against
Gaussian collective attack and Gaussian individual attack.
For the EPR beams with anticorrelated amplitude

quadratures and correlated phase quadratures, we have
the following relations [28]:

〈X2a(b)〉= 〈Y 2a(b)〉= V N0 = (e2r + e−2r)N0/2, (1)

〈(Xa+Xb)2〉= 〈(Ya−Yb)2〉= 2e−2rN0, (2)

〈XaXb〉=−
√
V 2− 1N0, (3)

〈YaYb〉=
√
V 2− 1N0, (4)

where r is the correlation parameter, N0 = 1/4 is the
shot-noise-limited variance. These beam are entangled,
and the measurement of a quadrature of beam a (e.g. Ya)
gives Alice information on the same quadrature of the
other beam (Yb). By measuring the amplitude quadrature
Xa (phase quadrature Ya) on her beam a, Alice learns XA
(YA), and projects the Bob’s beam b onto a X-squeezed
(Y -squeezed) state of squeezing parameter s= 1/V
centered on (XA, 0) [(0, YA)] [28]. The best estimate
Alice can have on Yb knowing Ya is of the form YA = αYa
with α= 〈YbYa〉〈Y 2a 〉 , the value of α being found by minimizing
the variance of the error operator δYA = Yb−YA. The
conditional variance VYb|YA of Yb knowing YA quantifies
the remaining uncertainty on Yb after the measurement
of Ya giving the estimate YA of Yb, and we have

VYb|YA = 〈δY 2A〉= 〈Y 2b 〉−
|〈YaYb〉|2
〈Y 2a 〉

=
N0

V
. (5)

Since by measuring Ya Alice deduces YA, and since Yb =
YA+ δYA, the beam b is projected onto a Y -squeezed state
with squeezing variance Vs = VYb|YA =N0/V centered on
(0, YA). Alternatively, by measuring Xa, Alice learns
XA and projects the other beam onto a X-squeezed
state centered on (XA, 0) with the same squeezing vari-
ance Vs =N0/V . The variances of quadratures measured
by Alice and Bob are VA = α

2V N0 = (V − 1/V )N0 and
VB = (ηVA+ ηVs+1− η+ δ)N0, respectively.
The probability that Bob obtains the measurement

outcome YB is given by

PB(Y |Ψ〉) = 1√
2πV NB

exp

[
− (YB −

√
ηYA)

2

2V NB

]
, (6)

where |Ψ〉 represents the transmitted quantum state, the
noise variance V NB = (ηVs+1− η+ δ)N0 of which depends
on the squeezed variance ηVsN0, the “vacuum noise”
component due to the line losses (1− η)N0, and the ‘excess
noise’ component δN0. The corresponding Bob’s error rate
is given by

p =
PB(Y |Ψ〉)

PB(Y |Ψ〉)+PB(Y | −Ψ〉) =

1/

[
1+ exp

(
4
√
ηYA|YB |
2V NB

)]
. (7)

Based on eq. (7) we calculated the mutual information
between Alice and Bob

IAB = 1+ p log2 p+(1− p) log2(1− p). (8)

For collective attack, Eve’s knowledge of the data can
be quantified by the Holevo bound χ, which equals to [29]

χ= S(ρ)−
1∑
i=0

piS(ρi), ρ=
1∑
i=0

piρi, (9)

where S(ρ) =−trρ log2ρ is the von Neumann entropy
of a quantum state ρ. The χ includes that Eve being
allowed to measure out her ancillas collectively. After
Alice and Bob have corrected their bit stings, Eve can
use the information transmitted over the public channel
to optimize her measurements on her ancilla systems.
The quantum states in Eve’s hand, conditioned on Alice’s
data, are given by |Ψi〉E = | ±√1− ηΨ〉, where i= 0, 1
denote the encoded binary state. These states are pure,
so that we have χ= S(ρ). What remains to be calculated
are the eigenvalues of ρ= 12 (|Ψ0〉E〈Ψ0|+ |Ψ1〉E〈Ψ1|). The
symmetry allows us to write the states |Ψi〉E as

|Ψ0〉E = c0|Φ0〉+ c1|Φ1〉
|Ψ1〉E = c0|Φ0〉− c1|Φ1〉

(10)

where the |Φi〉 are orthonormal states. A short calculation
shows that is already diagonal in this basis with eigen-
values |ci|2, so that the Holevo quantity is given by

χ= S(ρ) =−
1∑
i=0

|ci|2 log2 |ci|2. (11)

The normalization of ρ, |c0|2+ |c1|2 = 1, and the over-
lap |c0|2− |c1|2 =E 〈Ψ0|Ψ1〉E give the expressions for the
coefficients,

|c0|2 = 1
2
(1+E 〈Ψ0|Ψ1〉E),

|c1|2 = 1
2
(1−E 〈Ψ0|Ψ1〉E).

(12)

The overlap of the two states can be calculated by
|E〈Ψ0|Ψ1〉E |2 = π

∫
W (X,−Y )W (X,Y )dXdY if Y -

quadrature is measured, where W (X,Y ) is the Wigner
function of the projected squeezed states centered on
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(X0, Y0). If Y -quadrature is measured by Alice, the
correlation matrix of the projected Y -squeezed state can
be written as

Vc =
1

4

[
V 0

0 1/V

]
. (13)

Using the expression of Wigner function for Gaussian
states with one-dimensional vector [30]

W (X,Y ) =
1

2π
√
detVc

exp

{
−1
2
(X,Y )[Vc]

−1(X,Y )T
}
,

(14)

we can write out the corresponding Wigner function of the
projected Y -squeezed state

W (X,Y )=
2

π
exp

[
−4(X −X0)

2

e2r+e−2r
− (e2r + e−2r)(Y−Y0)2

]
.

(15)

If Y -quadrature are measured, then Eve’s state is
displaced to Y0 =

√
1− ηYA, so the overlap between the

two states W (X,Y ) and W (X,−Y ) is

f =E 〈Ψ0|Ψ1〉E = exp
[
− (1− η)Y

2
A

2Vs

]
. (16)

So, the Holevo quantity can be directly calculated. From
eqs. (8) and (11), we can obtain the secret key rates
K = IAB −χ against collective attack.
For the individual attack, the mutual information

between Alice and Eve is expressed by [26]

IAE =
1

2
(1+
√
1− f2) log2(1+

√
1− f2)

+
1

2
(1−
√
1− f2) log2(1−

√
1− f2). (17)

The secret key rate against individual attack is ∆I =
IAB − IAE . Of course, the security boundary can also be
directly applied to the anti-correlated amplitude quadra-
ture X, for that we only need to change the signs of the
measured amplitude values.
In the communication, at first Alice separates the EPR

entangled beams generated by the NOPA with a polar-
ized beam splitter (PBS) and then sends one of them
(beam b) to Bob while keeps the other one (beam a)
within her own station. The beam b is transmitted in
air about 2meter. We simulated the QKD communication
in two cases respectively with the transmission efficiency
of 80% and 40%, which were completed by inserting an
appropriate attenuator into the optical path. For making
the balance attenuation of two optical and implement-
ing simultaneous measurements of the correlated quantum
fluctuations, we insert an attenuator (ATT) with trans-
mission efficiency 89% or 45% into the optical path of
the EPR beams before they are separated. In addition
to the detection efficiency of 90%, the total transmis-
sion efficiency between Alice and Bob is 80% (89%× 90%)

or 40% (45%× 90%), respectively. During the commu-
nication, Alice and Bob randomly and instantaneously
measure the amplitude or phase quadratures of their
own beam with a homodyne detection system, which is
completed by randomly switching the phase difference
between the local oscillation and the EPR beam from
0 for the amplitude quadratures to π/2 for the phase
quadratures. The time interval ∆t in which Alice and Bob
switch the quadrature measurement is 5ms in our experi-
ment. The long interval of 5ms for switching the measure-
ment bases was limited by the phase locking technology of
the homodyne detection systems we held in the proof-of-
principle experiment. Indeed, to ensure the security the
time interval ∆t should be as short as possible which
should be only confined by the storage time of photons in
the NOPA. (It equals the reciprocal of the optical cavity
bandwidth. For our NOPA the minimal ∆tmin may reach
∼ 5× 10−8 s in principle.) Of course, we also can enhance
the security by lengthening the communication period to
be much longer than ∆t [31]. We choose the sideband
frequency of Ω= 2MHz as the centre frequency for Alice’s
and Bob’s measurements because the highest entangle-
ment is obtained at this frequency with our system. The
measured initial correlation variances of the amplitude
sum and phase difference between the signal and idler
beams from the NOPA were 3.08 dB and 3.01 dB below
the corresponding shot-noise-level (SNL) at 2MHz, which
corresponding to the correlation parameter r= 0.355 and
r= 0.347 for amplitude and phase quadratures, respec-
tively. The output photocurrent from the negative power
combiner (−) passes through a low-noise amplifier of 30 dB
and a band-pass filter (BPF) with the central frequency of
2MHz and the bandwidth of 600 kHz, then it is recorded
by a storage oscilloscope (Agilent 54830B) at Alice and
Bob, respectively. The recorded data are transferred to
a computer for the further data processing. Before the
communication, Alice and Bob should synchronize their
clocks and agree on the time interval ∆t and the instan-
taneous measurement time ∆T in which a data point is
taken. Only when the instantaneous measurement time
∆T is longer than the storage time of the NOPA, the
measured correlations between the quadratures of signal
and idler beams have a stable value [32]. The sample rate
of 10MHz was chosen in the experiment. Since a band-
pass filter is placed before the storage oscilloscope in order
to extract the highly correlated quantum fluctuations, the
real communication bandwidth is reduced. Thus, in the
data processing we digitally re-sample the recorded data
at 2MHz (which corresponds to ∆T = 5× 10−7 s).
After having recorded a string of data which include

many data sets (each set is measured within a phase
switching time interval of 5ms), Alice and Bob communi-
cate through an authenticated public channel to discard
the sets measured on the incompatible bases and to
remain the compatible measured sets corresponding
to the same bases. The measured normalized vari-
ances of Alice’s and Bob’s amplitude quadratures are
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Fig. 2: (Colour on-line) The “global” perspective of Alice’s
and Bob’s data. (a) Amplitude quadrature for 80% transmis-
sion efficiency. (b) Phase quadrature for 40% transmmision
efficiency. I: post-selection boundary for collective attack. II:
post-selection boundary for individual attack. Green data
points: data that is error-free. Blue data points: data that has
bit-flip errors. Red data points: data that has a negative net
information rate.

6.78N0 and 7.02N0 for 80% transmission efficiency,
respectively. Considering the influence of transmis-
sion efficiency, the variance measured by Alice is
VA′ = (ηVA+1− η)N0 = 6.78N0 for the transmission
efficiency 80%, so we have VA = 8.23N0. Since VA =
(V − 1/V )N0 and Vs =N0/V , we obtained V = 8.35N0
and Vs = 0.12N0. From VB = (ηVA+ ηVs+1− η+ δ)N0
and Bob’s variance value we obtained the corresponding
excess noise of δ1 = 0.14N0 for 80% transmission efficiency.
In the same way, from the normalized variances of Alice’s
and Bob’s phase quadratures 3.89N0 and 4.05N0 for 40%
transmission efficiency, we calculated the excess noise of
δ2 = 0.11N0. Figure 2 shows the “global” perspective of
Alice’s and Bob’s results measured on compatible bases,
fig. 2(a) shows the function of the amplitude quadra-
tures (XB vs. XA) for 80% transmission efficiency and
fig. 2(b) shows that of the phase quadratures (YB vs. YA)
corresponding to 40% transmission efficiency. The anti-
correlation of the amplitude quadratures (±Xa ∼∓Xb)
and the correlation of the phase quadratures (±Ya ∼±Yb)
are clearly exhibited in the perspective. The quadrature

measurements are normalized to the SNL of the measured
beam. Each one of fig. 2(a) and (b) contains 50000 data
points.
For extracting the secure data of IAB >χ(IAB > IAE)

from the measured raw data in the CV QKD, we used a
post-selection technique, that is, to select a subset from
the measured raw data points to make the mutual infor-
mation of Alice and Bob advantage over Eve’s informa-
tion. According to the way described before, Alice and
Bob select the secure data and discard the insecure data.
The dashed hyperbolas I and II in fig. 2 correspond to
the secure boundaries for collective attack and individ-
ual attack, respectively. The regions at the outside of the
hyperbolas I (II) are secure K > 0 (∆I > 0) for the collec-
tive (individual) attack, while the regions between the
hyperbolas are insecure (red points), the data in which
should be discarded. The green data points correspond to
error-free bits, whilst the blue data points correspond to
that with bit-flip errors.
After post-selection procedure, Alice and Bob interpret

the post-selected data into binary data according to
the way described above. Then we apply the “Cascade”
reconciliation protocol [33] to correct the errors of the
retained data. At the stage of the error correction, the data
are arranged into many random subsets and the error data
are corrected. The efficiency of reconciliation is about 80%.
At last, we apply a privacy amplification procedure based
on universal hashing functions to distill the final secret
key [34,35]. First, Alice and Bob calculate a conservative
upper bound for Eve’s knowledge about their key, then
Alice and Bob compute the parities of random subsets
of the error-corrected key bits. The obtained parity bits
are kept as the final secret key. The results for different
stages of the QKD protocol used to distill the secret
key are shown in table 1. The cost of these secret key
distillation processes is a reduction in the size of the secret
key. With the existence of the Gaussian collective attack,
after the privacy amplification procedure the final secret
key rates of 84 kbits/s and 3 kbits/s are obtained for the
transmission efficiencies of 80% and 40%, respectively. To
the Gaussian individual attack only, the final secret key
rates of 109 kbits/s and 10 kbits/s are obtained for the
transmission efficiencies of 80% and 40%, respectively.
In conclusion, we accomplished the first experimental

demonstration of CV QKD protocol using the bright
EPR entangled optical beams. The quantum entanglement
between two beams and the random quantum fluctuations
of amplitude and phase quadratures of respective optical
mode provide the physical mechanism for the CV QKD
protocol without the signal modulation. The security of
the EB CV QKD protocol against Gaussian collective
and individual attack using post-selection technique is
analyzed. Although, as an example, the binary coding
scheme is utilized for simplification, Alice and Bob can
agree on a higher-dimensional coding by dividing their
results into intervals corresponding to more than two bits
values, in principle. The presented CV QKD experiment
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Table 1: Experimental results for the different stages of the QKD protocol used to distill the final secret key. Each step
shows Alice’s and Bob’s mutual information (IAB bits/symbol), Eve’s information (χ bits/symbol for collective attack and IAE
bits/symbol for individual attack), the corresponding net information rate (K bits/symbol and ∆I bits/symbol) and the secret
key rate (kbits/second) for 80% and 40% transmission efficiency, respectively.

80% Transmission efficiency
Collective attack Individual attack

IAB χ K Rate IAB IAE ∆I Rate
Raw data 0.36 0.35 0.01 2000 0.38 0.23 0.15 2000
Post-selection 0.64 0.44 0.20 508 0.52 0.26 0.26 679
Reconciliation ∼ 1 0.68 0.32 346 ∼ 1 0.51 0.49 436
Privacy amplification ∼ 1 ∼ 0 ∼ 1 84 ∼ 1 ∼ 0 ∼ 1 109

40% Transmission efficiency
Collective attack Individual attack

IAB χ K Rate IAB IAE ∆I Rate
Raw data 0.18 0.44 −0.26 2000 0.18 0.33 −0.15 2000
Post-selection 0.69 0.63 0.06 46 0.44 0.35 0.09 180
Reconciliation ∼ 1 0.89 0.11 34 ∼ 1 0.80 0.20 115
Privacy amplification ∼ 1 ∼ 0 ∼ 1 3 ∼ 1 ∼ 0 ∼ 1 10

intuitionally and directly demonstrated the importance of
the quantum entanglement for the secure communication.
It is possible to develop the more complicated CV QKD
networks by using the multipartite CV optical entangled
states based on this demonstrated scheme.
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