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Abstract
The dependence of quantum correlations of twin beams on the pump finesse of an optical
parametric oscillator is studied via a semi-classical analysis. It is found that the phase-sum
correlation of the output signal and idler beams from an optical parametric oscillator operating
above threshold depends on the finesse of the pump field when the spurious pump phase noise
generated inside the optical cavity and the excess noise of the input pump field are involved in
the Langevin equations. The theoretical calculations can explain the previously experimental
results quantitatively.

1. Introduction

As an important device in nonlinear optics, quantum optics and
quantum information, the optical parametric oscillator (OPO)
has been extensively studied and applied since the 1960s. In
particular, it has become one of the most successful tools
for the generation of entangled states of light in continuous
variable (CV) quantum information systems [1]. Earlier, Reid
and Drummond theoretically demonstrated that the Einstein–
Podolsky–Rosen (EPR) entangled states can be generated
from a nondegenerate OPO (NOPO) operating both above
and below its threshold [2–5]. For the first time, CV EPR
entanglement was experimentally realized by Ou et al with
a NOPO below threshold in 1992 [6]. In recent years,
the optical CV entangled states with quantum correlations
of amplitude and phase quadratures of light fields produced
from OPOs or NOPOs below threshold have been used
in quantum information systems to realize unconditional
quantum teleportation [7], quantum dense coding [8], quantum
entanglement swapping [9], quantum key distribution [10, 11]
and a variety of quantum communication networks [12–14].
Although the intensity-difference quantum correlation of
twin beams from NOPO above threshold was measured
experimentally and was effectively applied by several groups
since the first experiment achieved by Heidmann et al in 1987
[15–20], their phase correlation had not been observed up
to 2005 owing to technical difficulty in measuring the phase

noise of twin beams with nondegenerate frequencies. In
2005, Laurat et al forced the NOPO to oscillate in a strict
frequency-degenerate situation by inserting a λ/4 plate inside
the optical cavity with a finesse of ≈102 for the pump laser,
and observed a 3 dB phase-sum variance above the shot noise
limit (SNL) [21]. Later, 0.8 dB phase correlation below the
SNL between twin beams with a different frequency from
a NOPO for a pump power of ≈4% above threshold was
measured by Villar et al by scanning a pair of tunable ring
analysis cavities [22]. In the experiment of [22], when the
pump power was higher than 1.07 times of the threshold, the
phase-sum noise of twin beams was larger than that of the SNL
and thus the quantum correlation of the phase quadratures
disappeared. Successively, our group detected the phase-sum
correlation of the twin beams with two sets of unbalanced
Match–Zehnder interferometers [23]. In this experiment, the
phase-sum correlation of 1.05 dB lower that the SNL was
recorded at a pump power of 230 mW which was almost twice
the threshold of 120 mW. In 2006, the phase-sum correlation
of 1.35 dB below the SNL between twin beams with a stable
frequency difference was obtained with a doubly resonant
NOPO without the resonance of the pump field [24].

To explain why the experimentally measured phase-sum
correlation of twin beams was always lower than that predicted
by theory and why it disappeared easily in some experimental
systems, the influence of the excess noise of the pump
field was theoretically and experimentally studied recently
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[25–28]. In particular, it was discovered by Villar et al [28] that
the spurious pump noise is generated inside the OPO cavity
containing a nonlinear crystal, even for a shot-noise-limited
input pump beam and without a parametric oscillation. They
analyzed the physical origin of this phenomenon and assumed
that the pump phase noise generated inside the cavity due to the
effect of the intensity-dependent index of the refraction should
be mainly responsible to the lower phase-sum correlation.
Thus, they pointed out that the phase shifts accumulated inside
the cavity with a lower finesse of pump laser should be smaller,
hence the spurious noise should probably also be smaller. Very
recently, we experimentally investigated the influence of the
excess pump noise on the entanglement of twin beams by
adding different excess phase noise on the input pump laser
outside the cavity [29]. In this experiment, the noise spectra
of the intensity difference and the phase sum of twin beams
were measured at three analysis frequencies of 2 MHz, 5 MHz
and 10 MHz under three different pump phase noises. The
experimental results showed that the measured phase-sum
correlations were still worse than those calculated with the
theoretical formula in which the excess pump phase noise was
involved. We considered this is because the possibly spurious
phase noise of the pump laser produced inside the NOPO was
not counted in the formula.

It has been proved that in the calculations of the quantum
correlations between the output signal and idler from NOPO,
the standard full quantum theory almost leads to the same
results with those deduced with the semiclassical methods
[30–33]. For conveniently comparing with experiments, in
this paper, we present a semiclassical analysis of quantum
correlations for the intensity difference and the phase sum
of twin beams. A set of semiclassical Langevin equations
involving the excess pump phase noise and the spurious phase
noise produced inside the cavity are given. By solving the
Langevin equations, the analytic expressions for the intensity-
difference and the phase-sum noise spectra of twin beams
are obtained. The expressions are compatible with those in
[28, 30], if the excess pump phase noise and the spurious
phase noise inside the cavity are not considered. All physical
parameters in the expressions are experimentally measurable
parameters; thus we can conveniently compare the theoretical
calculations and the experimental results. The numerical
calculations based on the expressions of the noise spectra show
that the phase-sum noise spectrum of twin beams depends
on the finesse of the pump laser. Our calculations prove
quantitatively the physical analysis on this phenomenon in
[28]. The published experimental results in [21–25] can
be fit reasonably to the theoretical results if the appropriate
parameters characterizing the spurious phase noise and the
excess noise of input pump field are chosen.

2. Langevin equations involving the excess pump
noise and intracavity spurious phase noise

The semiclassical motion equations for the pump mode α0,
signal mode α1 and idler mode α2 inside a triple resonant
NOPO can be described by equations (1),

τ α̇1 = −(γ + µ)α1 + 2χα0α
∗
2 +

√
2γαin

1 +
√

2µβ in
1

τ α̇2 = −(γ + µ)α2 + 2χα0α
∗
1 +

√
2γαin

2 +
√

2µβ in
2 (1)

τ α̇0 = −(γ0 + µ0)α1 − 2χα0α
∗
2 +
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2γ0α

in
1 +

√
2µ0β

in
0

which can be obtained by adding Gaussian white noise to
classical electrodynamics [31]. In equations (1), τ is the round-
trip time, which is assumed to be the same for all three fields.
χ is the nonlinear coupling parameter. γi and µi (i = 0, 1, 2)

are the one pass losses associated with the coupling mirror of
the cavity and with all other losses, respectively. Without
losing generality, we assume that the losses of the signal
and idler modes are balanced, thus we have γ = γ1 = γ2

and µ = µ1 = µ2. αin
i and β in

i are the incoming fields,
associated with the coupling mirror and with the intracavity
loss mechanism, respectively.

Solving equations (1), the stationary state values are
obtained:

ᾱ2
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where the loss parameters γ ′ = γ + µ and γ ′
0 = γ0 + µ0.

In the case above threshold, the pump parameter σ is larger
than 1:

σ =
√

P

P0
= 2

√
2χ2γ0

γ ′2
0 γ ′2 ᾱin

0 (3)

where P,P0 and ᾱin
0 stand for the pump power, the threshold

power of the NOPO and the mean amplitude of the input field,
respectively.

In order to obtain the noise dynamic equations, a
semiclassical method is used. We define the fluctuation
operators δαi and αi = ᾱi + δαi, ᾱi is the mean value of αi .
Introducing the real and imaginary parts of the fields, we get
the noise operators of the amplitude and phase quadratures:

pi = δαi + δα∗
i

qi = −i(δαi − δα∗
i )

(4)

It is well known that the amplitude quadratures of the
output twin beams are correlated and their phase quadratures
are anticorrelated [30]. The amplitude-difference and the
phase-sum noise operators of the twin beams are expressed
by

p = 1√
2
(p1 − p2) q = 1√

2
(q1 + q2) (5)

From equations (1) and using the input and output relation

pout(ω) =
√

2γp(ω) − pin(ω) (6)

we obtain the correlation spectrum pout(ω) of the amplitude
difference:

pout(ω) = 1

2γ ′ + iωτ
[
√

2γpin(ω) + p′in(ω)] (7)

where ω is the analysis frequency; and pin(ω) are p′in(ω) are
the vacuum noises associated with the cavity mirror and the
intracavity loss respectively, both of which can be normalized
to 1. We see that any parameter of the pump mode is not
involved in the right side of equation (7). That is to say, the
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amplitude-difference noise of the output twin beams does not
depend on the pump intensity and the pump noise. The noise
power spectrum of the amplitude difference is given from
equation (7):

Sp(ω) = 1 − T T ′

T ′2 + ω2τ 2
(8)

where T ′ = T + δ, T = 2γ is the transmission coefficient of
the output mirror and δ = 2µ is the intracavity loss of twin
beams in the NOPO. Equation (8) is totally the same with the
result deduced in [30] which has been extensively applied.

However, for the phase sum we have to consider the
influence of the pump noises since it cannot be eliminated.
It has been pointed out in [28] that the phase noise of the pump
field in a NOPO with a nonlinear crystal will increase. Thus the
crystal in an optical cavity can be regarded as a gain medium
for the phase noise of the pump field [28]. We introduce a gain
factor ε in the Langevin equation for the phase quadrature q0

to characterize the effect of the spurious phase noise which is
continuously gained in the crystal. Substituting equations (4)
and (5) into equations (1), we obtain the Langevin equations
for the phase motion:
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where q in
i and q in

βi (i = 0, 1, 2) are the phase quadratures of
the incoming fields associated with the cavity mirror and the
intracavity loss mechanism respectively, both of which can be
normalized to 1. Solving these equations, we get
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Assuming that the excess noise of the input pump field at
a frequency ω is E(ω), i.e., 〈|δq in(ω)|2〉 = 1 +E(ω), the noise
power spectrum formula of the phase sum is obtained:

Sq(ω)
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(11)

where T ′
0 = T0 + δ0, T0 is the transmission coefficient of the

input mirror of the NOPO and δ0 = 2µ0 is the intracavity loss
of the pump laser in the NOPO. If there is no spurious noise
inside the cavity (ε = 0), equation (11) goes to

Sq(ω) = 1 − T T ′T ′2
0 + 4T T ′ω2τ 2

(T ′T ′
0σ − 2ω2τ 2)2 + ω2τ 2(T ′
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0 + 2T ′)2
E(ω) (12)

Figure 1. Phase-sum noise versus pump finesse and pump
parameters for given ε = 0.04 and E = 0.

If the cavity finesse of the pump field is much lower than that
of signals (T ′

0 � T ′), equation (12) can be simplified as:

Sq(ω) = 1 − T T ′

T ′2σ 2 + ω2τ 2
+

2T T ′(σ − 1)

T ′2 + ω2τ 2
E(ω) (13)

which is the same with that in [29] where the spurious pump
phase noise was not considered. If the pump light is an
ideal coherent laser without the excess noise, i.e., E(ω) = 0,
equation (13) can be further simplified as:

Sq(ω) = 1 − T T ′

T ′2σ 2 + ω2τ 2
(14)

This equation is totally equivalent to equation (25) in [30]
which was deduced under the condition without the pump
excess phase noise and the intracavity spurious pump phase
noise. Thus the equation (11) is a general formula which is
compatible with that obtained under the specific requirements.

3. Numerical analysis on the phase-sum correlation
of twin beams

In a practical experimental system, the efficiency of the
detector is always imperfect. Accounting for the detection
efficiency of η < 1, the noise power spectrum equation (11)
of the phase sum becomes

Sq(ω) = 1 − η
T T ′(T ′2

0 + 4ω2τ 2) + 4T ε(2T ′ε − T ′T ′2
0 σ 2 − T ε − δε)

(T ′T ′
0σ − 2ω2τ 2 − 2T ′ε)2 + ω2τ 2(T ′

0 + 2T ′ − 2ε)2

+ η
2T T ′T ′

0T0(σ − 1)

(T ′T ′
0σ − 2ω2τ 2 − 2T ′ε)2 + ω2τ 2(T ′

0 + 2T ′ − 2ε)2
. (15)

From equation (15), we can see that the noise power spectrum
of the phase sum depends on a variety of physical parameters.
The 3D figures 1–3 show the dependences of the phase-sum
noise spectrum (Sq) on the finesse (F) of the pump field as well
as the pump parameter (σ ) with ε = 0.04 and E = 0 (figure 1),
the excess pump noise (E) with σ = 1.1 and ε = 0 (figure 2)
and the intracavity spurious noise (ε) with σ = 1.1 and E = 0
(figure 3), respectively. The other parameters in the three
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Figure 2. Phase-sum noise versus pump finesse and excess pump
phase noise for given σ = 1.1 and ε = 0.

Figure 3. Phase-sum noise versus pump finesse and spurious pump
phase noise for given σ = 1.1 and E = 0.

figures are the same: T = 5%, δ = δ0 = 0.5%, η = 90% and
ωτ = 0.025. It is obvious from figure 1 that the phase-sum
noise increases along with increasing pump parameter (i.e.
increase the pump power when other parameters are constant)
and for the higher finesse F the noise increase is significant.
For higher pump power and larger finesse, the quantum
correlation of the phase-sum disappears, i.e., the phase-sum
noises are larger than the normalized SNL (Sq = 1). The
results can be used to explain the experimental phenomena
in [28], in which a critical pump parameter for the phase-
sum correlation was measured (see curve ii of figure 4). It is
pointed out from figure 2 that for a given finesse the phase-sum
noise increases when E increases. However, the influence of
the excess pump phase noise on the phase-sum noise of twin
beams monotonously degrades as the pump finesse increases if
the intracavity spurious pump noise is not considered (ε = 0).

Figure 4. Phase-sum noise versus pump finesse for matching the
experimental values. Curves i to v correspond to [21, 28]
(σ = 1.28), [28] (σ = 1.07), [24, 29]. Stars stand for the
experimental values.

The physical reason for the effect is that in the NOPO with
low pump finesse, the transmission of the input mirror for the
pump field is quite high, so the incoming phase noise together
with the pump field is also larger if E �= 0. Figure 3 shows that
the phase-sum noise increases when ε increases. For a given
finesse, the phase-sum correlation cannot be observed if the
intracavity spurious phase noise is higher than a critical value
even without the existence of the excess pump noise (E = 0).
Due to the fact that the phase-sum noise depends on a variety
of physical parameters of both pump field and subharmonic
fields (see equation (15)), the dependence of the phase sum
correlation on the finesse of the pump field is not identical for
different NOPOs. The function curves of the phase-sum noise
versus the pump finesse will change if other cavity parameters
are changed. Generally, there is a maximum on the function
curves if ε �= 0 (see figures 1 and 3). At first the phase-sum
noise increases when the pump finesse increases from zero due
to the effect of the intracavity spurious noise. However, the
intracavity intensity of the pump field is also raised when the
pump finesse increases under a given pump power. Thus,
the effective nonlinear conversion efficiency in the NOPO will
be enhanced, which must result in the increase of the quantum
correlation between the signal and idler modes. When the
positive effect increasing the intracavity intensity of the pump
field is superior to the negative effect gaining the spurious
noise, the phase-sum noise will start to decrease if the pump
finesse continuously increases. Comparing figures 2 and 3, it
is obvious that the influence of the intracavity spurious noise
(ε) the dependence of the phase-sum noise on the pump finesse
is stronger than the influence of the excess phase noise of the
input pump field (E).

4. Comparison of theoretical calculations and
previous experiments

After considering the influence of E and ε, the theoretical
calculations based on the real system parameters can match
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with the experimental results if appropriate values of ε and
E are selected. In [21], the phase-sum correlation was not
observed. We estimate E was probably higher in their system.
If taking ε = 0.015 and E = 5, the function curve of the
phase-sum noise versus the pump finesse according to the
experimental parameters of [21] is shown in the curve i of
figure 4. The star symbol denotes the experimental result
(also for the other curves in figure 4), where the pump finesse
is about 102 and the normalized phase-sum noise is about 2.1
corresponding to 3.2 dB above the SNL. The function curves
for the experimental system of [28] are drawn as curves ii and
iii in figure 4. Since they experimentally proved that the excess
noise of the input pump field can be neglected at the analysis
frequency of f = ω/(2π) = 27 MHz [28], we take E = 0
and ε = 0.06. The curves ii and iii correspond to σ = 1.28
and σ = 1.06 respectively according to their experimental
measurements. Under the low pump power (σ = 1.06), the
phase-sum correlation always exists (all phase-sum noises are
smaller than those of the SNL). But under the higher pump
power (σ = 1.28), the phase-sum noises are larger than those
of the SNL in the range of the pump finesses from 17 to 76. The
theoretical curves are perfectly matched with the experimental
results. The star on curve ii corresponds to the critical pump
power for the phase-sum correlation in their experiment. In
[24], the pump field did not resonate, so we can consider the
pump finesse was very low (close to 1). The curve iv is drawn
with the parameters of the system of [24] where ε = 0.06
and E = 5.6 are taken for matching the experimentally
measured phase-sum noise of 0.69 corresponding to 1.6 dB
below the SNL. For our experimental system of [29] with
the low finesse of ≈12, if taking ε = 0.005 and E = 0.06,
the measured phase-sum noise of 0.75 (1.25 dB below the
SNL) will perfectly match with the theoretical curve (see
curve v).

Although the values of ε and E in figure 4 are
not experimentally measured, these estimated values are
reasonable. The excess pump noise depends on the quality
of the pump laser, thus it can change in a large range. In
figure 2, the values of E are taken from 0 to 10. Generally,
the pump noise can be degraded by means of some technical
implements, such as adding a mode-cleaner in the path of the
pump laser to filter the excess pump noise. For matching
the experimental results in [28], we take E = 0 since they
experimentally proved that the excess noise can be neglected
at f = 27 MHz. The spurious noise depends on the quality
of the non-linear crystal and it would be quite small for a
qualified commercial crystal. So the taken values of ε are
a few orders smaller than those of E (0.005–0.06). At least
these calculations tell us that the previous experimental results
on twin-beam generations from NOPOs above threshold
achieved by different groups can be explained by means of
the semiclassical theory if the intracavity spurious phase noise
and the excess phase noise of the input pump field are involved
in the Langevin equations.

5. Conclusion

By solving the semiclassical Langevin equations involving
the intracavity spurious pump phase noise and the excess

noise of the input pump field, we obtained the expressions
of the intensity-difference and the phase-sum noise spectra
between the output signal and idler modes from a NOPO
above threshold. The phase-sum quantum correlation of
twin beams not only depends on the cavity parameters of
the subharmonic field, but also depends on the finesse and
the noises of the pump field. In particular, the phase-sum
noise significantly increases when the spurious pump noise
produced inside the cavity with a nonlinear crystal becomes
higher. The dependence of the phase-sum correlation of
twin beams on the system parameters of the NOPO is more
complex. Our calculations provide a useful reference for the
design of the NOPO serving as a source of optical entangled
states. The expressions of the noise spectra presented in this
paper are compatible with those obtained previously under
the condition without considering the pump noises if taking
ε = 0 and E = 0. Using the extended expressions, the
previously experimental results can be reasonably explained
if appropriate parameters characterizing pump noises are
applied.

The NOPO above threshold is a helpful device to produce
bright tunable entanglement optical beams which could be
used to transfer quantum information from one frequency
to another and to implement the quantum memory. The
entanglement of twin beams with directly detectable intensity
can be measured with a pair of analysis cavities [22], or
unbalance M–Z interferometers [23, 29] without the need
of a local oscillator, thus it might be conveniently applied
to realize the quantum key distribution protocols based on
entangled states of light [11, 34, 35]. Clearing the excess
pump phase noise, minimizing the intracavity spurious phase
noise of the pump field and selecting appropriate parameters
of optical cavity are the key factors for obtaining twin beams
with higher phase-sum correlation. In the design of the NOPO
optical system, to add a mode cleaner in the way of the pump
laser is necessary to reduce the excess noise. For a given
nonlinear crystal with larger ε, we should choose the NOPO
with lower pump finesse to decrease the effect of the intracavity
phase noise gain. If ε is very small, we may appropriately
increase the pump finesse to reduce the threshold pump power
and raise the effective nonlinear conversion efficiency inside
the NOPO.
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