
Quantum Information Processing (2018) 17:344
https://doi.org/10.1007/s11128-018-2118-0

Advantages of the coherent state compared with squeezed
state in unidimensional continuous variable quantum key
distribution

Xuyang Wang1,2 · Yanxia Cao1 · Pu Wang1 · Yongmin Li1,2

Received: 28 July 2018 / Accepted: 8 November 2018 / Published online: 14 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this work, a comparison study between unidimensional (UD) coherent-state andUD
squeezed-state protocols is performed in the continuous variable quantum key distri-
bution domain. First, a UD squeezed-state protocol is proposed, and the equivalence
between the prepare-and-measure and entanglement-based schemes of UD squeezed-
state protocol is proved. Then, the security of the UD squeezed-state protocol under
collective attack in realistic conditions is analyzed. Finally, the performance of the
two UD protocols is compared. Based on the uniform expressions established in our
study, the squeezed- and coherent-state protocols can be analyzed simply by varying
the squeezing parameter.

Keywords Unidimensional squeezed-state protocol · Unidimensional coherent-state
protocol · Continuous variable quantum key distribution

1 Introduction

The unconditional security of quantum key distribution (QKD) prevents information
from being eavesdropped; it is expected that this technology will be used for a wide
variety of applications in the futurewith the advent of quantum information technology.
In general, QKD technology can be categorized into discrete-variable and continuous-
variable (CV) QKD protocols [1, 2]. CV-QKD protocols encode information into
continuous quadrature components of quantum states and utilize homodyne detectors
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instead of single-photon detectors. The CV-QKD protocols typically provide a high
secret key rate at a relatively short distance; in addition, they have good compatibility
with the classical communication networks [3–25].

Based on the utilized quantum states, the CV-QKD protocols can be classified as
coherent-state protocols, squeezed-state protocols, and entanglement-state protocols.
In general, it is believed that the squeezed-state and entanglement-state protocols per-
form better than the coherent-state protocols; however, because coherent-state sources
are easy to prepare, coherent-state protocols have also beenwidely researched. To date,
many protocols to improve or simplify a QKD system have been proposed, including a
unidimensional (UD) coherent-state protocol [26], three-coherent-state protocol [27],
and method for passive state preparation [28]. The advantages of the UD coherent-
state protocol include easy modulation, low costs, and less random numbers [29, 30].
In the case of a small amount of excess noise, the UD coherent-state protocol per-
forms almost as well as the two-dimensional (TD) coherent-state protocol (GG02).
Therefore, the UD coherent-state protocol has the potential to be used for applications
in various scenarios, such as in QKD local area networks, where the transmission
distance between users is typically short and cost is a key concern.

Thus far, the UD modulation method has only focused on the coherent-state pro-
tocol. In this study, a UD squeezed-state protocol was proposed and the equivalence
between the prepare-and-measure (PM) scheme and entanglement-based (EB) scheme
of the protocol was proved. Using the uniform expression introduced in our study for
the squeezed and coherent states, we can analyze and compare the two protocols
conveniently.

The remainder of this paper is organized as follows. In Sect. 2, the proposed UD
squeezed-state protocol is presented; in addition, the equivalence of PM and EB
schemes is discussed. Section 3 presents the security analysis of theUD squeezed-state
protocol under collective attack in realistic conditions using the EB scheme. Further,
Sect. 4 presents a comparison of the performance between the UD squeezed-state and
UD coherent-state protocols. Finally, our conclusions are provided in Sect. 5.

2 UD squeezed and coherent-state protocols

2.1 PM scheme for UD squeezed or coherent-state protocols

It is well known that one of the quadrature variances of squeezed states is lower than the
vacuum fluctuation, whereas the other quadrature variance is higher than the vacuum
fluctuation. When the amplitude quadrature, which is denoted by x, is squeezed, the
covariance matrix is given by

γx �
(
e−2s 0
0 e2s

)
, (1)
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where s > 0 is the squeezing parameter. When the phase quadrature, which is denoted
by y, is squeezed, the covariance matrix is given by

γy �
(
e2s 0
0 e−2s

)
. (2)

The covariance matrix of the coherent state is

γc �
(
1 0
0 1

)
. (3)

In order to describe the three types of states uniformly in our study, the covariance
matrix is described as follows:

γ �
(
1
/
r 0

0 r

)
, (4)

where r represents the variance of the phase quadrature. For 0 < r < 1, the matrix
represents the covariance matrix of the phase quadrature squeezed state or y-squeezed
state,whereaswhen r > 1, thematrix represents the covariancematrix of the amplitude
quadrature squeezed state or x-squeezed state. Further, when r � 1, the matrix is the
covariance matrix of the coherent state. It should be noted that all the variances in
our study are normalized to the shot noise. Based on this uniform expression, we can
analyze these protocols conveniently.

The traditional TD squeezed-state protocol in the PM scheme proposed in [5] is
described as follows: Alice randomly prepares x-squeezed states displaced along x-
or y-squeezed states displaced along y with a Gaussian distribution. The covariance
matrix of the mixed Gaussian state with the null mean value is given by

γsym �
(
VM + e−2s 0

0 e2s

)
�

(
e2s 0
0 VM + e−2s

)
�

(
V 0
0 V

)
, (5)

where VM is themodulation variance, andwe define e−2s+VM � e2s � V . It is evident
that the mixed Gaussian state has a same covariance matrix as the thermal state with
variance V , which cannot be discriminated whether it is derived from the mixture of
x-squeezed states or mixture of y-squeezed states. In this case, the information can be
safely encoded in two conjugate quadratures.

Similar to the UD coherent-state protocol, for the UD squeezed-state protocol in the
PM scheme, Alice displaces the squeezed state along one quadrature with a Gaussian
distribution. The squeezed state can be either the y-squeezed state as shown in Fig. 1a
or x-squeezed state as shown in Fig. 1b. Figure 2c presents the scheme of the UD
coherent-state protocol. The modulation variance along the amplitude quadrature is
VM . At Bob’s station, he measures the amplitude or phase quadratures by switching
the detection bases randomly with true random numbers.

After Bob has measured a series of signal pulses, the two partners perform the
sifting and post-processing steps, which are described as follows:
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Fig. 1 UD distributed squeezed states in the phase space. a Phase quadrature squeezed state. b Amplitude
quadrature squeezed state. c Coherent state

Fig. 2 Schematic of the EB scheme of the UD protocol under realistic conditions

1. Bob discloses the random measurement base of each pulse, and Alice records the
data corresponding to the cases wherein Bob measures the amplitude quadrature.

2. Bob declares publicly part of his data to estimate the channel parameters of the
amplitude quadrature, i.e., the transmission efficiency and excess noise.

3. Using the channel parameters of the amplitude quadrature and the variance of the
phase quadrature, the secret key rate is estimated.

4. Alice and Bob perform data reconciliation and privacy amplification to extract
secret keys from raw keys.

2.2 Equivalence of the PM and EB schemes in UD protocols

Most of the current experimental systems for CV-QKD protocols are based on PM
schemes because they are easy to implement in practice. However, in theory, it is
difficult to analyze the security of such protocols based on the PM schemes. On the
contrary, theoretical analysis based on the EB scheme can be performed appropriately;
the involved entangled states lead to simple and feasible calculations [2]. In particular,
in the case of the UD protocol, security analysis based on the EB scheme has more
advantages than that based on the PM scheme. The covariance matrices obtained using
the EB schemes contain the constraints of phase quadrature; however, these constraints
are difficult to obtain using the PM scheme.

In the EB scheme shown in Fig. 2, Alice prepares an Einstein–Podolsky–Rosen
(EPR) state ρAB0 with covariance matrix γAB0 as follows:

γAB0 �
(

V · I2
√
V 2 − 1 · σz√

V 2 − 1 · σz V · I2
)

, (6)
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where I2 � diag(1, 1) and σz � diag(1,−1). Then, Alice squeezes one of its modes

B0 with the squeezing parameter S � ln
√
V

/
r . The resulting covariance matrix γAS

is

γAS � (I2 ⊕ SQ)γAB0(I2 ⊕ SQ)T

�

⎡
⎢⎢⎢⎢⎢⎢⎣

V 0
√
V

(
V 2 − 1

)/
r 0

0 V 0 −
√
r
(
V 2 − 1

)/
V√

V
(
V 2 − 1

)/
r 0 V 2

/
r 0

0 −
√
r
(
V 2 − 1

)/
V 0 r

⎤
⎥⎥⎥⎥⎥⎥⎦

�
[

γA σAS

σ T
AS γS

]
, (7)

where SQ is the squeezing operator, which is given by

SQ �
[√

V /r 0
0 1/

√
V /r

]
. (8)

Here, γA and γS are the covariance matrices of the modes A and S, respectively, and
σAS is the correlation matrix of the two modes.

The state ρs that Alice sending to Bob depends on the measurement of mode A.
When the modulation is performed on the amplitude quadrature of the state in the PM
scheme, Alice will conduct homodyne detection on the amplitude quadrature of the
EPR state in the equivalent EB scheme. The covariance matrix of mode S conditioned
on Alice’s measurement result xA can be derived using

γ
xA
S � γS − σAS(X · γA · X)MPσ T

AS, (9)

where X � diag(1, 0), and MP denotes the Moore–Penrose inverse of a matrix. After
a straightforward calculation, we can obtain the result

γ
xA
S �

(
1/r 0
0 r

)
. (10)

Before Alice’s measurement, the two modes of state ρAS are centered on d inA �
(0, 0) and d inS � (0, 0). The homodyne detection on mode A, denoted bym � (xA, 0),
projects the mode S to the squeezed or coherent state centered on

doutS � σAS(X · γA · X)MP
(
m − d inA

)
+ d inS , (11)

which can be simplified to

doutS �
√(

V 2 − 1
)/

rV · (xA, 0). (12)
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From the covariance matrix γA of mode A, we can observe that the variance of xA is
V . Therefore, the variance of the center value of mode S is

Var
(
doutS

) � V 2 − 1

rV
· Var(xA) � V 2

r
− 1

r
. (13)

The variance of the amplitude quadrature for mode S conditioned on Alice’s mea-
surement result xA, 1

/
r , plus the variance of the center value will give rise to the

total variance V 2
/
r . These correspond to the variance of the initial state 1

/
r , and the

modulation variance VM � (
V 2 − 1

)/
r in the PM scheme, respectively. Therefore,

the two schemes are indistinguishable for Bob and Eve, i.e., they are equivalent.

3 Security analysis of the UD coherent- and squeezed-state protocols
under realistic conditions

In this section, we present the security analysis of the UD coherent and squeezed-state
protocols with direct reconciliation (DR) and reverse reconciliation (RR).

3.1 Security analysis of the UD protocols in the RR condition

The asymptotic secret key rate against collective attacks in the RR condition can be
calculated as follows:

�I � β · IAB − χBE , (14)

where β is the reconciliation efficiency; thus far, the highest value achieved is 99.96%
[31]. IAB is the Shannon mutual information between Alice and Bob. χBE is the
Holevobound,which represents themaximum information eavesdroppedbyEveunder
collective attacks.

IAB can be calculated using Shannon’s equation as follows:

IAB � 1

2
log2

VA

VA|B
, (15)

where VA is the variance of the amplitude quadrature of Alice’s state, which can be
found at the first diagonal element of covariance matrix γAB1

γAB1 �

⎡
⎢⎢⎣

√
1 + rVM 0

√
TxVM (1 + rVM )1/ 4 0

0
√
1 + rVM 0 CB1

y√
TxVM (1 + rVM )1/ 4 0 Tx

(
VM + 1

/
r + χlinex

)
0

0 CB1
y 0 V B1

y

⎤
⎥⎥⎦. (16)

Here, χlinex � (1 − Tx )
/
Tx + εx is the channel noise in amplitude quadrature added

relative to the channel input, (1 − Tx )
/
Tx is the noise due to channel losses, and εx is

the excess noise in the amplitude quadrature. CB1
y is the unknown correlation of phase
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quadratures, and V B1
y , which could be measured experimentally, is the variance of the

phase quadrature. The conditional variance VA|B is the first diagonal element of the
conditional matrix γA|B , which can be derived as follows:

γA|B � γA − σAB(XγB X )
MPσ T

AB, (17)

where X � diag(1, 0). γA, γB , and σAB are submatrices of the covariance matrix γAB

γAB �

⎡
⎢⎢⎢⎣

√
1 + rVM 0

√
ηTxVM (1 + rVM )1/ 4 0

0
√
1 + rVM 0 CB1

y
√

η√
ηTxVM (1 + rVM )1/ 4 0 ηTx

(
VM + 1

/
r + χtotx

)
0

0 CB1
y

√
η 0 η

(
V B1
y + χhom

)

⎤
⎥⎥⎥⎦

�
[

γA σAB

σ T
AB γB

]
. (18)

Here, χhom � (1 + vel)
/

η − 1 is the noise introduced by the realistic homodyne
detector relative to Bob’s input in the amplitude quadrature, and χtotx � χlinex +
χhom

/
Tx is the total noise added between Alice and Bob relative to the channel input

in the amplitude quadrature. vel is the electronic noise of the homodyne detector.
Finally, the Shannon mutual information can be derived as follows:

IAB � 1

2
log2

(
1
/
r + VM + χtot

1
/
r + χtot

)
. (19)

To obtain the covariance matrix γAB1 , it is convenient to assume that Eve holds
a purification of state ρAB1 . Considering the freedom-in-purification theorem, any
purification of ρAB1 that Eve may possess will result in the same entropy and hence
the same Holevo information χBE [32]. Here, we suppose that Eve generates an EPR
stateρEE ′ with covariancematrixγEE ′ and replaces the channelwith a lossless channel
in which she inserts a beam splitter with phase-sensitive transmission Tx and Ty (as
shown in Fig. 3). The beam splitter mixes the modes S and E

′
. Then, Eve retains one

of the output modes F for herself and passes the other mode B1 to Bob. This process
can be expressed as follows:

γAB1FE � (I2 ⊕ BSSE ′ ⊕ I2) · (
γAS ⊕ γE ′ E

) · (I2 ⊕ BSSE ′ ⊕ I2)
T . (20)

The covariance matrix γABRH can be obtained using a similar procedure as shown
below:

γABRH � (
I2 ⊕ BSB1R0 ⊕ I2

) · (
γAB1 ⊕ γR0H

) · (
I2 ⊕ BSB1R0 ⊕ I2

)T
. (21)

Inorder to analyze the security of theprotocol easily, the realistic homodynedetector
is generally modeled by a beam splitter BSB1R0 with a transmission efficiency η

and ideal homodyne detector (as shown in Fig. 2). The electronic noise vel of the
homodyne detector can be modeled by model R0 of the ERP state ρR0H with variance
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Fig. 3 Beam splitter mode of the
channel

VN � 1 + vel/(1 − η) entering the other input port of the beam splitter. Because the
detector cannot be accessed by the eavesdropper, it is considered that the detector has
phase-insensitive efficiency.

The Holevo bound that represents the maximum information eavesdropped by Eve
in the RR condition is defined as

χBE � S(ρFE ) − S
(
ρ
xb
FE

)
. (22)

Because the quantum states ρAB1FE and ρ
xb
ARHFE are all pure states, we have

S(ρAB1 ) � S(ρFE ) and S(ρxb
EF ) � S(ρxb

ARH ). χBE can be rewritten as

χBE � S(ρAB1 ) − S
(
ρ
xb
ARH

)
, (23)

where S(ρ) is the von Neumann entropy of the quantum state ρ. For an n-mode
Gaussian state ρ, this entropy can be calculated using the symplectic eigenvalues of
the covariance matrix γ characterizing ρ as follows:

S(ρ) �
∑
i

G

(
λi − 1

2

)
, (24)

whereG(x) � (x + 1) log2(x + 1)−x log2 x . In general, the symplectic eigenvalues of
covariance matrix γ with n mode can be obtained by finding the absolute eigenvalues
of the matrix iΩγ , where the matrix Ω is given by

Ω � n⊕
k�1

[
0 1

−1 0

]
. (25)

The covariance matrix γ
xb
ARH of the state ρ

xb
ARH can be derived using

γ
xb
ARH � γARH − σARH ;B(XγB X)MPσ T

ARH ;B, (26)

where γARH , γB , and σ T
ARH ;B are submatrices of the matrix γARHB as shown below:

γARHB �
[

γARH σARH ;B

σ T
ARH ;B γB

]
. (27)
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The covariance matrix γARHB is obtained by rearranging the lines and columns of the
matrix γABRH . In the above expression (23), there are two unknown variables CB1

y

and V B1
y . To find the secret key rate, we need to constraint them using the Heisenberg

uncertainty principle [33]:

γAB1 + iΩ ≥ 0. (28)

Then, the following parabolic equation can be derived:

(
CB1
y − C0

)2 ≤ V 2 − 1

V

χlinex

1
/
r + χlinex

(
V B1
y − V0

)
, (29)

where

C0 � −
√(

V 2 − 1
)
/r

√
TxV

(
1
/
r + χlinex

) and V0 � 1

Tx
(
1
/
r + χlinex

) . (30)

Figure 4 shows a black parabolic curve betweenCB1
y and V B1

y . The parameter r is set to
1.1, which indicates that 1-dB x-squeezed states are generated. The other parameters
are set as β � 0.99, VM � 3, Tx � 0.1, εx � 0.01, η � 0.6, and υel � 0.1. The
entire plane is divided into physical and unphysical regions by the parabolic curve. In
particular, the physical region is contained in the parabolic curve. In the unphysical
region, the values of CB1

y and V B1
y cannot be satisfied simultaneously. The cyan curve

with the secret key rate of zero separates the entire physical region into secure and
unsecure regions. The secret key rate in the secure region is larger than zero, whereas
it is less than zero in the unsecured region. For a fixed value V B1

y , there is a group

of secret key rates with different values of CB1
y . To find the minimum secret key rate

�Imin, C
B1
y is scanned in the secure region to find the specific correlation of phase

quadratures CB1
ymin. It is evident that different values of V

B1
y result in differentCB1

ymin.

The red and green lines in Fig. 4 record the trajectory of CB1
ymin in the secure region,

where the red line indicates that the points with minimum secret key rate lie on the
parabolic curve. When the value of V B1

y increases, the points with the minimum secret
key rate gradually separate from the parabolic curve, which is denoted by the green
line. The minimum secret key rate as a function of V B1

y is shown in Fig. 5.
When the transmission efficiency Ty and the excess noise εy in the phase quadra-

ture equal the transmission efficiency Tx and the excess noise εx in the amplitude
quadrature, the variance of the phase quadrature V B1

y can be derived as follows:

V B1
y

∣∣Tx�Ty � Tx (r + χlinex). (31)

It is depicted as the black virtual line in Figs. 4 and 5. The minimum secret key rate
for the phase quadrature variance V B1

y
∣∣Tx�Ty is used to estimate the secret key rate for

a typical quantum channel using a single-mode fiber.
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Fig. 4 Regions of the UD 1-dB
x-squeezed-state protocol under
realistic detection conditions

Fig. 5 The minimum secret key

rate versus the V B1
y

3.2 Security analysis of the UD protocols in the DR condition

The minimum secret key rate �Imin in the DR condition can be calculated using the
following equations:

{
�I � β · IAB − χAE

γAB1 + iΩ ≥ 0
. (32)

Here, the mutual information IAB and the covariance matrix γAB1 are the same as
those in the RR condition. The information eavesdropped by Eve in the DR condition
is denoted by Holevo bound χAE , which can be calculated by

χAE � S(ρEF ) − S
(
ρ
xa
EF

)
. (33)
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Fig. 6 Minimum secret key rate versus channel losses at different squeezing parameters. a RR condition. b
DR condition. The other parameters are set to β � 0.99, εx � 0.01, η � 0.6, vel � 0.1, and the modulation
variances are optimized

Because the states ρAB1EF and ρ
xa
BRHFE are pure states, we can rewrite χAE as

χAE � S(ρAB1 ) − S(ρxa
BRH ). (34)

Notably, state ρ
xa
B1EF is also a pure state; thus, S

(
ρ
xa
EF

) � S
(
ρ
xa
B1

)
. Therefore, Eq. (34)

can be simplified to

χAE � S(ρAB1 ) − S(ρxa
B1
). (35)

The remaining calculations and analysis are similar to the procedures in the RR
condition. We directly present the comparison results of the UD protocols in the RR
and DR conditions in the next section.

4 Performance comparison of the UD coherent- and squeezed-state
protocols

The secret key rate�Imin versus distance for different squeezing parameters is plotted
in Fig. 6 in which (a) and (b) present the cases in the RR and DR conditions, respec-
tively. The black solid line represents the squeezed parameter r � 1 (coherent state).
The blue dash and blue dot lines represent the phase quadrature squeezed states with
squeezing parameters of r � 0.8 and r � 0.6, respectively. The squeezed parameters
of the red dash-dot and red dash-dot-dot lines are r � 1.2 and r � 1.4, respectively,
both of which represent the amplitude quadrature squeezed state.

In the RR condition, we observe that neither the amplitude quadrature nor the phase
quadrature squeezed state performs better than the coherent state when the channel
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Fig. 7 Minimum secret key rate versus parameter r at different transmission efficiencies in RR and DR
conditions. The parameters are set to β � 0.99, εx � 0.01, η � 0.6, and vel � 0.1. The modulation
variances at different transmission efficiencies are optimized. a RR condition. The red, blue, yellow, green
lines correspond to the transmission efficiencies Tx � 0.1 (50 km), 0.6 (10 km), 0.3 (26 km), and 0.8 (5 km),
respectively. b DR condition. The red, blue, yellow, green lines correspond to the transmission efficiencies
Tx � 0.83 (4 km), 0.87 (3 km), 0.91 (2 km) and 0.96 (1 km), respectively (Color fiure online)

loss is higher than 2 dB. In general, the larger the degree of squeezing, the lower
the performance. This phenomenon is different from the TD protocols in which the
squeezed-state protocol performs better than the coherent-state protocol [2, 34]. In the
DR condition, it is clear that the amplitude squeezed state still has a lower performance
than the coherent state.Different from theRRcondition, the phase quadrature squeezed
state presents a better performance than the coherent state. However, strong squeezing
is not necessarily beneficial to the system, as shown by the green line in Fig. 6b.

In order to investigate the performance of the UD protocol in detail, the minimum
secret key rate �Imin versus parameter r at different transmission efficiencies is
plotted in Fig. 7. Four curves correspond to four different transmission efficiencies.
The performance in both the RR (a) and DR (b) conditions is analyzed. For all curves,
theminimum secret key rate reaches its peak value at the region of r < 1 i.e., the phase-
squeezed states have the best performance at a special r . In contrast, the amplitude
squeezed states always present a lower performance than the coherent states. For each
curve, we denote the peak point as “best r” and the range of r , which has a secret key
rate larger than that of the coherent state, as “better r.”

In the RR condition, when the distance increases, the range of better r decreases and
the value of the best r moves closer to 1. Owing to the relatively flat top of the curve, the
minimum secret key rate at the point of best r approximately equals the value at point
r � 1 or the coherent state. In the DR condition, when the distance increases, the range
of better r also decreases; however, the value of the best r increases at first, and then
moves farther from 1. When Tx � 0.83 (corresponding to a transmission distance of
4 km in telecom single-mode fiber), the coherent-state protocol is no longer available
in the DR condition. However, the coherent-state protocol in the RR condition at a
longer distance (Tx � 0.8, green line in Fig. 7a) is available and has a higher secret key
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rate than that of the squeezed-state protocol at best r in the DR condition (Tx � 0.83,
red line in Fig. 7b).

5 Conclusions

In this work, we proposed a UD squeezed-state protocol. A uniform expression is
designed to analyze the UD squeezed-state protocol and UD coherent-state protocol
conveniently by simply varying a parameter r . The equivalence of the PM and EB
scheme of the UD protocols is proved based on this uniform expression. Then, the
security of UD protocols under collective attacks is proved in both the RR and DR
conditions.

In contrast to the two-dimensional squeezed-state protocol, where higher squeezing
usually obtains a better performance, in the UD protocol, the phase-squeezed state
can present a better performance than the coherent state for a relatively long distance
(RR condition); however, the improvement and the required optimal squeezing level
are small. In the DR condition, the improvement due to the phase-squeezed state is
more obvious than that in the RR condition. However, the distance is limited, and
its performance is inferior to that of the coherent state in the RR condition except
that Tx is very close to 1. Considering the coherent state is easy to prepare than the
squeezed state and the performance improvement arising from the squeezing effect
is not significant, the coherent state is still appealing and has advantages in the UD
domain from a practical viewpoint.

For future research and experiments, an integration of CV-QKD in the deployed
optical-network-based UD coherent-state protocol is expected [35], particularly, when
the cost is a key concern. In theory, the composable security [36, 37] of the UD
coherent-state protocol will be considered.
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