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Determination of blue-light-
induced infrared absorption based 
on mode-matching efficiency in an 
optical parametric oscillator
Yajun Wang1,2, Wenhai Yang1,2, Zhixiu Li1,2 & Yaohui Zheng1,2

Non-classical squeezed states of light at a compatible atomic wavelength have a potential application 
in quantum information protocols for quantum states delaying or storaging. An optical parametric 
oscillator (OPO) with periodically poled potassium titanyl phosphate (PPKTP) is the most effective 
method for generating this squeezed state. However, it is a challege for the nonlinear interaction in 
PPKTP crystal at the D1 line of rubidium atomic, due to a strong blue-light-induced infrared absorption 
(BLIIRA). In this paper, we report an indirect measurement method for the BLIIRA through measuring 
the mode-matching efficiency in an optical parametric oscillator. In contrast to previous works, our 
method is not limited by the absolute power variation induced from the change of frequency conversion 
loss and the impedance matching originated from the change of absorption loss. Therefore, the 
measurement process is performed at the phase-matching condition. The measured results show that 
BLIIRA coefficient is quadratic dependence of blue light intensity below 1 kW per square centimeter 
in our PPKTP device, which will provide important basis for optimizing squeezed state generation at 
795 nm.

Exceptionally high nonlinearity and good flexibility makes periodically poled potassium titanyl phosphate 
(PPKTP) crystal an attractive material candidate for frequency doubling1–3 as well as for the reverse process of 
parametric oscillation4–8 in continuous wave (CW) or pulse wave (PW). For CW operation, the latter process 
is the most effective method for generating squeezed state with the highest degree of quadrature phase squeez-
ing5–8. The nonlinear crystal is placed inside a single resonant optical cavity defined as a squeezing resonator. The 
squeezing factor is ultimately limited by optical losses for the generation of high-level squeezed state9. The optical 
loss has direct relationship with the cavity’s round-trip loss, which is partly determined by the absorption loss of 
the nonlinear crystal.

Low passive losses of PPKTP are of high interest for the efficient generation of strongly squeezed state resonant 
on the 87Rb D1 line (795 nm)10. However, in the experiments of squeezed state generation, the second harmonic 
beam at 397.5 nm (blue-UV range) is used as a pump light, which would induce color centers to increase the 
near infrared (IR) absorption in the crystal. This phenomenon is called blue-light-induced infrared absorption 
(BLIIRA)11–16, an effect of increased IR absorption in the presence of blue light. The color centers are associated 
with Ti4+/Ti3+ electron traps, O2−/O− hole traps, K+ and V(K+) traps of free carriers or Fe3+ hole traps, which 
come from the native stoichiometry defects or impurities of the cystal14,16. Based on the nature of color centers, 
the BLIIRA can be explained by two-center charge-transport model11: the traps, between the conduction and 
valence bands, are divided into deep one and shallow one. Without 397.5 nm laser illuminating, the IR photons 
can not interact with the charges in deep traps, and the shallow traps are empty. With 397.5 nm laser illuminat-
ing, the charges in the deep trap fall into the shallow trap via the valence band, which will induce the interaction 
between IR photons and charges in the shallow traps. The traps concentration depends strongly on the crystalline 
growth condtion and quality, hence should be solely considered from sample to sample. Therefore, the absorp-
tion loss in PPKTP includes not only passive loss, but also additional loss induced by BLIIRA. BLIIRA loss is a 
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serious limitation for the quantum noise reduction because of the additional absorption loss and non-optimal 
mode-matching efficiency arising from the thermal effect9,17. The squeezing factor increases with the second 
harmonic pump intensity, however, the pump intensity does also increase BLIIRA loss, which is adverse to the 
squeezing factor. There is a contradiction between increasing pump intensity and reducing BLIIRA loss. In order 
to obtain the optimal squeezing factor, it becomes urgent to find the optimum compromise between the harmonic 
pump intensity and BLIIRA loss. Additionally both parameters are sensitive to the crystal length and the cavity 
mode size, which makes it too complex to optimize the squeezing factor experimentally. It is thus necessary to 
investigate the relationship between pump intensity and BLIIRA loss experimentally in order to optimize the 
squeezing factor.

BLIIRA in KNbO3 crystal had been studied in detail. In refs 10, 11, it was measured by placing the KNbO3 
in a single resonant optical cavity (SROC), and then comparing the IR transmission of the SROC on resonance 
with and without blue light injected. In ref. 12, two beams collinearly propagate through the crystal to observe the 
additional temperature variation with and without blue light, and then BLIIRA can be calculated. In refs 13–15, 
the green-light induced IR absorption (GLIIRA) or BLIIRA in KTP and PPKTP were measured by using the 
He-Ne laser as a probe beam, then GLIIRA (or BLIIRA) can be obtained by phase distortion of the probe beam. 
They had given a clear demonstrating of the remnant absorption relaxation process, the temperature-dependent 
and blue/green intensity-dependent rules for different isomorphs. However, in these works described above, IR 
and blue light with random wavelengths do not satisfy frequency doubling condition, which is inconsistent with 
the relationship between pump and signal beams in an optical parametric oscillator (OPO). Therefore, these 
results can not characterize the BLIIRA loss in OPO.

In this work, we report on a method for the BLIIRA measurement based on a SROC, by comparing the differ-
ence of mode-matching efficiency (MME, κ00) in a SROC with and without blue light. The basis of the proposed 
mechanism is as follows: the eigenmode size of the SROC changes with the thermal focal length arising from the 
absorption, which alters the MME between the seed beam and the SROC’s eigenmode. Thus, the absorption can 
be quantified by the MME. According to the operating condition of squeezing resonator at 795 nm, we obtain the 
BLIIRA with both the fundamental and harmonic waves present in PPKTP under phase-matching condition. 
The results show that the BLIIRA coefficient is quadratic dependence of the blue light intensity below 1 kW/cm2. 
Subsequently, we do also compare the measured results of MME deviation with the non-phase-matching one. 
Due to the influence of nonlinear optical process, the result under phase-matching is a little higher than that of 
the non-phase-matching. This result is important to find the trade-off between pump intensity and BLIIRA loss, 
and obtain the best squeezing factor at 795 nm.

Results
The basic principle of BLIIRA measurement. Figure 1 shows the experimental configuration for absorp-
tion measurement of PPKTP crystal. The laser source is a home-made CW Ti:sapphire laser with a maximum 
output power of 1.27 W18, and can be finely tuned around the wavelength of 795 nm corresponding to the transi-
tion of 87Rb D1 line. A CW single frequency 532 nm laser is used as the pump source with the maximum output 
power of 18 W19,20. A part of the 795 nm laser is injected into a four-mirror enhanced-external-cavity for CW 
second harmonic generation (SHG), which is used as a laser source for the absorption measurement of 397.5 nm 
laser and the detailed SHG progress can be found in ref. 3. The remaining part of it is entered into the SROC 
for BLIIRA measurement. Both the 795 nm and 397.5 nm lasers operate in fundamental transverse and single 
longitudinal mode during the measurement process to avoid the influence of high order modes on MME meas-
urement. The SROC consists of two concave mirrors (M1 and M2) with curvature radius of 30 mm and a PPKTP 
crystal. The distance between them is 57.5 mm, which forms a waist radius of 38.9 μm at 795 nm or 27.6 μm at 
397.5 nm, which is analogue to the OPO in our squeezed state generator. The concave end face of M1 (or M2) 
is coated with high reflectivity (HR) at 397.5 nm and partly transmission T795 =  3.6% at 795 nm (or HR795 nm 

Figure 1. Experimental configuration of the BLIIRA measurement. PD 1–3: Photodiode detector 1–3;  
BS: 50/50 beam splitter; DM: dichroic mirror; M 1–2: concave mirror 1–2; PZT: Piezoelectric transducers.
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and high transmission (HT) at 397.5 nm), and the plane face is anti-reflecting (AR) coated at both wavelengths. 
M1 plays a role as an input coupler of 795 nm beam, and M2 acts as the output coupler of 795 nm and 397.5 nm 
beams. The dimension of the flux-grown PPKTP crystal (Raicol Crystals) is 1 ×  2 ×  10 mm3 and the two end 
faces are both coated with AR795/397.5 nm, which is periodically poled using micro lithographic techniques21, 
but we have limited knowledge for the growth condition and process of the crystal. The crystal is a-cut with the 
c axis perpendicular to the cross section of 2 ×  10 mm2. The crystal is placed into a copper oven for temperature 
control, and the oven is thermally insulated from the ambient by a polyarylsulfone layer, which is fixed on an 
xyz translation stage. The temperature range of the oven is 40–160 °C. The periodically poled of the PPKTP is 
3.15 μm, with the phase-matching (PM) temperature and temperature acceptance bandwidth of 55 °C and 1.1 °C, 
respectively. PD2 detects the transmission power of 397.5 nm laser exporting from M2, and the circulating power 
in SROC can be inferred from the dichroic mirror (DM) and M2 transmittance and the measured values of PD2. 
PD3 is used for recording the MME of the cavity and reading the error signal for Pound-Drever-Hall technique22. 
The 50/50 beam splitter (BS) separates part of the reflected 795 nm beam of M1 to detect its circulating power 
in SROC by PD1. The dichroic mirror (DM) is coated with HT795 nm/HR397.5 nm and is used to separate the 
795 nm laser from the 397.5 nm one.

Before measuring the BLIIRA, a beam at 397.5 nm from the enhanced-external-cavity propagates directly 
through the PPKTP crystal without SROC, whose temperature is set as 70 °C and its polarization direction is paral-
lel to the c axis of the crystal, which is in accordance with the PM condition. The beam radius is mode-matched to 
27.6 μm at the center of PPKTP, which is identical to that used for BLIIRA measurement. The mode size was checked 
by an optical beam profiler (BP209-VIS, Thorlabs). The absorption coefficient at 397.5 nm (αBlue ≈  18.6%/cm)  
is calculated from the ratio of optical power after and before the PPKTP crystal. The optical power is measured by 
photodetector with good linearity. The measured result is an average value for 10 times measurements and is close 
to the data in ref. 15, but has minor difference, which is attributed to the different growth conditions from one 
sample to another11,16,23,24. With the change of laser power at 397.5 nm, no significant change of the absorption 
coefficient is observed. The PPKTP crystal has low passive absorption at 795 nm (less than 150 ppm/cm), which 
can be neglected3,25.

Secondly, with the same experimental condition and method above, a 397.5 nm and a 795 nm lasers are com-
bined with a DM and collinearly propagate through the center of the crystal, which are focused to the waist radius 
of 38.9 μm and 27.6 μm with a telescope system, respectively, and the temperature of the cystal is adjusted to 70 °C 
to aviod the influence of nonlinear interaction process for absorption measurement. The mode sizes are also 
confirmed by the optical beam profiler. The laser power at 397.5 nm ranges from 0 to 40 mW (corresponding to a 
maximum power intensity of 1.36 ×  103 W/cm2), and that of 795 nm is between 0 and 500 mW. For a certain blue 
beam intensity, e.g. 40 mW, we found that the IR absorption is always a constant with the IR power increasing. 
This result confirms that the IR absorption is independent of the IR power, and only dependent of the intensity of 
397.5 nm laser. This procedure is only used to check the dependence of 795 nm beam absorption on IR intensity 
for a certain blue power, but can not obtain the exact values of IR absorption.

Finally, to analyze the total absorption feature of the PPKTP crystal with BLIIRA, we perform the experiment 
under PM and NPM with configuration in Fig. 1 by measuring the MME of the SROC3,26, respectively. The MME 
represents the spatial mode overlap efficiency between the fundamental mode of the injected IR beam and the 
TEM00 eigenmode of the SROC. The principle of the absorption measurement is as follows. The absorption pro-
cess of PPKTP is associated with the generation of heat. The combination of volumetric heating and surface tem-
perature controlling leads to a temperature gradient and forms a thermal lens in the PPKTP crystal27,28. Thermal 
lens alters the eigenmode size of SROC, which deteriorates MME between IR beam mode and the cavity mode3. 
Thus, the relationship between the deviation of MME (Δ  =  1 −  κ00) and the IR absorption coefficient αIR is estab-
lished by two intermediate quantities (thermal lens and cavity eigenmode). Then, we can begin the absorption 
measurement with the total thermal lens ftotal, which is the combined action of IR and blue light absorption, and 
can be expressed to refs 27, 28,
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where fIR is TFL induced by infrared absorption, and fBlue is TFL due to blue absorption which has a common 
expression with fIR; ω0 and ω0Blue are the waist radius of IR and blue light in the PPKTP crystal, respectively; PIR 
and PBlue are the circulating powers of IR and blue light in the cavity3, which can be inferred experimentally from 
the measured value of PD1 and PD2, respectively; ηIR and ηBlue are the absorption efficiencies of IR and blue light 
(η =  1 −  e−αl), respectively; l, Kc and dn/dT are the length, thermal conductivity and thermo-optical coeffecient of 
the crystal, respectively. If the total and blue beam induced thermal lenses are known, we can obtain the thermal 
lens of IR light. Then, for IR beam, expression (2) can be transferred into,
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For an OPO similar to Fig. 1, there are three optical elements (M1, M2, PPKTP) in the cavity. Based on ABCD 
matrix method, the total TFL ftotal can be referred from the cavity eigenmode size. In our SROC, the IR beam 
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oscillates in the optical cavity, which can be used to observe the MME between the injected IR beam and the 
cavity eigenmode. During the measurement process, the mode size of the injected IR beam remains constant, and 
the MME is only dependent of the cavity eigenmode size. The MME ultimately infers the total thermal lens. The 
eigenmode waist radius of IR laser ω0e relates to the MME (κ00) according to the expression below3,26,
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where Lc is the cavity length; ω(z) and ωe(z) are the beam radius of the incident light and cavity eigenmode at the 
position of z, respectively; ω0 (a constant waist radius of 38.9 μm) and ω0e are the waist radius of IR beam and 
cavity eigenmode; zα is the beam waist position; πω λ=z /0 0

2 , πω λ=z /e e0 0
2 . In a word, ftotal can been deduced 

from the measured value of MME (κ00 →  ω0e →  ftotal); Subsequently, we can extract the IR thermal lens fIR from 
ftotal with formula (1) and (2), the measured blue power, blue light absorption coefficient and other constants in 
the equations; At last, αIR is figured out by formula (3) (fIR, ω0 →  αIR). Due to the lower linear absorption of 
795 nm laser25, αIR is approximately equal to BLIIRA coefficient, i.e., αBLIIRA ≈  αIR.

Based on the above analysis, we can establish the relationship between IR absorption and MME with the 
formulas (1)–(5), which is shown in Fig. 2. In the analysis procedures, the TFL of blue light is experimentally 
inferred from the absorption coefficient (a measured value of αBlue ≈  18.6%/cm) and the SHG circulating power 
(inferring from the detected value of PD2) in the crystal with formula (2). With the increasing of IR power, the 
blue light is generated gradually (the optical power (intensity) ranges from 3.2 mW (0.3 kW/cm2) to 9.6 mW 
(0.9 kW/cm2)). As shown in Fig. 2, if BLIIRA is present at a certain input power, it will give rise to more absorp-
tion of IR and more deviation of MME. Therefore, we can deduce the IR absorption coefficient based on the devi-
ation of MME from the initial value. It is worth mentioning that MME is a ratio of the TEM00 eigenmode power 
and the total eigenmodes power of the oscillating modes in the cavity26, which is mainly influenced by the TFL 
induced TEM00 eigenmode evolution. The nonlinear process makes the thermal gradient deviate from theoretical 
analization along the a-axis of the crystal, which would weakly affect the measured results.

Experimental results of BLIIRA. We bought the three PPKTP samples of the same batch from the Raicol 
Crystal Ltd, and all of them were not used in any experiments beforehand. One of the crystals is randomly 
selected for SHG and the result is shown in ref. 3, which is prepared for the absorption measurement of blue light. 
By carefully moving the PPKTP crystal over the aperture of 1 ×  2 mm2 the output power of the SHG is no obvious 
changes, which shows that the crystal’s feature is uniform.

The BLIIRA measurement is performed with the other two samples by using the configuration in Fig. 1. The 
measurement process is as follows: Firstly, a 795 nm laser of approximately 1 mW in pure TEM00 mode, with the 
polarization direction parallel to the PM direction, is aligned and mode-matched to the SROC. The low power 
level induces little heat contribution to the material, and we assume that the mode size of the injected IR beam is 
approximately equal to the initial TEM00 eigenmode of the SROC. The mode-matching efficiency, between 

Figure 2. MME deviation Δ versus the absorption coefficient of IR αIR at different incident powers. 
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795 nm laser mode and the TEM00 eigenmode of the SROC, can be obtained by the intensity ratio of the main 
transmission peak to the whole transmission peaks among a free spectral range (FSR) of the SROC. The initial 
mode-matching efficiency (κ initial

00 ) is optimized to 99.2%. The intensity of the transmission peaks is recorded by 
an oscilloscope using PD3. Subsequently, the PPKTP temperature is tuned to 70 °C deviating from PM condition, 
and the input IR power is increased to 60 mW with no obvious blue laser generated. We record the MME (under 
non-phase-matching (NPM) at 60 mW input power, κ NPM

00 ) from the acquired data of the oscilloscope. Thirdly, 
the temperature is tuned to 55 °C to satisfy the PM condition. When the optical cavity length is locked on the laser 
frequency by an electronic feedback circuit, the blue laser is continuously exported, whose intensity is inferred 
from the detected power of PD2. The operating time for the cavity locking should be more than the BLIIRA 
build-up15, until the detected power of PD2 achieves the stable value. After 20 min, the cavity is unlocked and 
scanned, and we immediately record the transmission peaks by PD3 within the BLIIRA relaxation time15 to cap-
ture the MME (under PM at 60 mW input power, κ PM

00 ). At last, according to the deviation value 
κ κ∆ = −( )initial PM

00 00  of the MME, the BLIIRA at this power can be obtained from the results of Fig. 2. In order 
to remove the remnant BLIIRA, the PPKTP temperature is raised gradually to 155 °C before the next BLIIRA 
measurement. Then, we observe the MME in real-time, till the MME returns to κ NPM

00 , which is too important to 
overcome the influence of the remnant BLIIRA on the following measurements. It is worth mentioning that the 
relaxation time of the remnant BLIIRA can be shortened by increasing the PPKTP temperature, as a result of 
reducing the charges concentration of long-lived color centers16. The operating steps are repeated over again at 
each power point, the one-to-one correspondence relationship between the BLIIRA and laser power at 397.5 nm 
is built. With the results of κ NPM

00  at each power levels, we can also obtain the linear absorption coefficient of IR 
light without blue beam, which is lower than 150 ppm/cm, and the sensitivity of the measuring device is evaluated 
to be better than 10−5/cm. Limited by the real-time recording capacity of our method, it is unable for us to provide 
the exact BLIIRA buid-up and relaxation time.

The two samples are adopted in turns to investigate the BLIIRA. For each sample, the BLIIRA measurements 
were repeated 10 times at each IR power to reduce the experimental error. The BLIIRA of the two samples has a 
tiny difference, hence we only show the results for one of them in Fig. 3 (column diagram). At very onset, the 
MME of the resonator is 99.2% with 1 mW IR input power under PM condition. With the increase of IR input 
power, the MME gradually decreases. To observe remarkable MME variation, the IR input power is increased 
from 60 mW to 165 mW, and the MME of the cavity decreases from 98.8% to 81.5%, which are shown using the 
blue squares in Fig. 4. Based on the detected power of PD1 (or PD2) and mirrors transmittance, the correspond-
ing intensity in the crystal at 795 nm (or 397.5 nm) is obtained in the range of 1.26 kW/cm2 to 3.47 kW/cm2  
(or 0.3 kW/cm2 to 0.9 kW/cm2). By excluding the absorption of blue light contribution to MME, the BLIIRA absorp-
tion αBLIIRA can be figured out by the experimental data with the results of Fig. 2, which lies between 0.18%/cm and 
1.87%/cm. We estimate that the overall system uncertainty is about 10%, which arises from the BLIIRA relaxation 
after unlock, the measurement error of MMEs, the light intensity, the original passive loss of IR and blue light. 
Inferring from the measurement results in Fig. 3, the variation tendency of the IR absorption is supported by the 
assumption of a quadratic dependence of green/blue light intensity29,30. BLIIRA coefficient can be fitted with the 
expression α = . × − . ×I I2 29 0 025 %/cmBLIIRA blue blue

2  (Iblue: kW/cm2) below 1 kW/cm2. Due to the different 
absorption properties from sample to sample, this result is only responsible for the current PPKTP and power 
levels. The measurement result is helpful to optimize the pump intensity and generate high-level squeezed state 
with this crystal, in an actual OPO for squeezed state generation at 795 nm. The approximately quadratic depend-
ence of blue light intensity can be explained by the two-center charge-transport model: the stronger blue light 
intensity increases the concentration of holes in the valence band, which increases the interaction possibility 
between shallow traps and IR photons11. The strong BLIIRA in this PPKTP is attributed to the shorter 

Figure 3. BLIIRA coefficient αBLIIRA as a function of the intensity of 397.5 nm laser Iblue; the data is fitted 
with α . .= × − ×I I2 29 0 025 % cm/BLIIRA blue blue

2  (Iblue: kW/cm2).
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wavelength13, larger ionic conductivity in KTP16 and ferroelectric domain inversion induced spatial redistribution 
of the K+ and V(K+)14. Since the MME intensely changes at higher harmonic wave power density, the measure-
ment result is more sensitive at a higher SHG intensity, which is verified by the error bars in Fig. 3. Limited by the 
quality of the PPKTP, increasing further the blue light intensity, the strong photoionization induces in the occur-
rence of gray-tracking, which affects the measured results of BLIIRA loss.

In order to experimentally quantify the influence of the nonlinear process on the measurement results, we also 
measured the MME deviation under NPM condition. The temperature of the crystal is tunned to 70 °C, which 
is far away from the PM temperature. Both the fundamental and harmonic waves are mode-matched into the 
SROC. Except for the operating temperature of the sample, the other conditions of the measurement are the same 
as the former measurement process. The result is shown in Fig. 4 with red circles, and the corresponding MME 
deviation under PM condition is also presented with blue squares. Knowing from Fig. 4, the measured values 
under PM condition are a little higher than that of under NPM condition. Moreover, the difference between them 
increases with the increase of the harmonic wave intensity. The phenomenon can be attributed to the absorption 
gradient along the a-axis, originating from nonlinear interaction process.

Discussion
In summary, the BLIIRA coefficient in PPKTP under PM condition is reported here for the first time to our 
knowledge, with the fundamental and harmonic waves passing through the crystal simultaneously. The absorp-
tion loss is calculated through the change of MME in a SROC, which arises from the thermal lens induced absorp-
tion heating. The measured results show that BLIIRA coefficient is quadratic dependence of blue light intensity 
below 1 kW/cm2. Differing from other works by comparing the absolute transmission power after and before 
blue laser injected, this method is not limited by absolute power variation induced from the change of frequency 
conversion loss and impedance matching originated from the variation of absorption loss. The measurement is 
performed under PM condition, with two beams satisfying frequency doubling relationship, which is completely 
similar to the operating condition of OPO. Subsequently, the MME under NPM condition is also measured to 
quantify the influence of nonlinear process. Comparing with the measured value under NPM condition, the 
measured deviation of MME under PM condition is a little higher, which can be explained as the absorption 
gradient along the optical a-axis, coming from nonlinear interaction process.

The results will spur us to find an optimum compromise between the harmonic pump intensity and BLIIRA 
loss to provide important basis for the optimizing of squeezing resonator. However, the method is only suitable to 
measure the BLIIRA in moderate blue light intensity. For high blue light intensity, severe thermal effect introduces 
transmission peaks distortion of OPO to increase the measurement error of MME, which increases the measured 
uncertainty. We hope to overcome the intensity limitation for satisfying much more possible applications.
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