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Establishing and storing of deterministic quantum
entanglement among three distant atomic
ensembles
Zhihui Yan 1,2, Liang Wu1, Xiaojun Jia 1,2, Yanhong Liu 1, Ruijie Deng1, Shujing Li1,2, Hai Wang1,2,

Changde Xie1,2 & Kunchi Peng1,2

It is crucial for the physical realization of quantum information networks to first establish

entanglement among multiple space-separated quantum memories and then, at a

user-controlled moment, to transfer the stored entanglement to quantum channels for dis-

tribution and conveyance of information. Here we present an experimental demonstration on

generation, storage, and transfer of deterministic quantum entanglement among three spa-

tially separated atomic ensembles. The off-line prepared multipartite entanglement of optical

modes is mapped into three distant atomic ensembles to establish entanglement of atomic

spin waves via electromagnetically induced transparency light–matter interaction. Then the

stored atomic entanglement is transferred into a tripartite quadrature entangled state of light,

which is space-separated and can be dynamically allocated to three quantum channels for

conveying quantum information. The existence of entanglement among three released optical

modes verifies that the system has the capacity to preserve multipartite entanglement. The

presented protocol can be directly extended to larger quantum networks with more nodes.
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F lying photons or bright optical beams are the best natural
quantum channels, while usually matter systems are
employed for memories at quantum nodes1, 2. Single atoms3, 4,

atomic ensembles5–10, trapped ions11–13, optomechanics14–17,
superconductors18, solid-state systems19–22, and so on have been
applied as quantum nodes. Especially, atomic ensembles are
among the best candidates for quantum nodes to store and
process quantum information due to the advantage of the col-
lective enhancement of light–atom interaction5–10.

The entanglement of discrete quantum variables between two
atomic ensembles has been experimentally achieved by means of
Raman scattering approach23, 24 or transferring quantum states of
entangled photons into two atomic systems25–27. In 2010, Kim-
ble’s group demonstrated measurement-induced entanglement
stored in four atomic memories and coherent transfer of the
atomic entanglement to four photonic channels28. For the first
time, their experiment proved that a multipartite entangled W
state of atomic ensembles can be transferred into a photonic
mode W state with the heralded entanglement and thus showed
an advance in the distribution of multipartite entanglement
across quantum networks. Besides above-mentioned schemes
based on applying discrete quantum variables of single photons
and atoms, continuous-variable (CV) regime provides another
avenue toward the realization of quantum information tasks. To
develop CV quantum information networks, CV entanglement
between two macroscopic objects, i.e., atomic ensembles, has been
investigated29, 30. CV entanglement of spin wave variances
between two atomic ensembles has been experimentally realized
via quantum non-demolition measurement29 and dissipation

mechanism of atomic systems30, respectively. For implementing
quantum computation31 and quantum communication32,
entanglement has to be stored in atomic memories and then to be
controllably released on demand. Quantum memories for
squeezing and entanglement of light have been theoretically
investigated33, 34, and the storage of CV entanglement between
two atomic ensembles has been experimentally completed35. So
far, all experiments on generation and storage of CV entangle-
ment of atomic systems are concentrated between two ensem-
bles29, 30, 35. In ref. 35, a displaced entangled state of two sideband
modes of an optical beam is used for the initial quantum resource
to create entanglement between two atomic ensembles. To extend
this method to multipartite entanglement more sidebands with
different frequency shifts have to be prepared and the number of
entangled sideband modes must be strictly restricted by the
bandwidth of optical parametric amplifier, which is the device for
generating optical entangled state in their system. On the other
hand, it is difficult to spatially separate these entangled optical
submodes with small frequency intervals. Although a narrow
band optical cavity can be utilized for separating these optical
modes, entanglement among them will be significantly reduced36.
These limitations make difficult to extend the experimental
method of ref. 35 to entangle more atomic ensembles. Up to now,
it still remains a challenge to entangle more than two remote
quantum memories in CV regime.

Here we present an experimental demonstration on determi-
nistically establishing, storing, and releasing of CV entanglement
among three atomic ensembles. At first, a tripartite optical
entangled state is off-line prepared, and then the entanglement is
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Fig. 1 Schematic diagram. a Experimental set-up. It includes three parts, Part I is the generation system of tripartite optical entanglement; Part II expresses
the transportation of entanglement of optical modes to three distant atomic ensembles; Part III is the entanglement verification system. A1–3, atomic
ensemble1–3; DOPA1–3, degenerate optical parametric amplifier1–3; SHG, second harmonic generator; AOM1–7, acousto-optical modulator1–7; BS1–2, beam
splitter1–2; P1–6, Glan–Thompson polarizer1–6; F1–3, filter1–3; BHD1–3, balanced homodyne detector1–3; Amplifier, laser amplifier. b 87Rb atomic-level
configuration and relevant transitions. 5S1=2; F ¼ 1

�� �
and 5S1=2; F ¼ 2

�� �
play the roles of ground state gj i and meta-state mj i, respectively, and

5P1=2; F′ ¼ 1
�� �

is the excited state ej i. Classical control optical beam âC (solid line) and quantum probe optical beam âS (wavy line) are shown. c
Experimental time sequence for control optical beams âC1ð2;3Þ and signal optical beams âS1ð2;3Þ
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transferred into three atomic ensembles located 2.6 m apart from
each other via electromagnetically induced transparency (EIT)
interaction. After a given storage time, the preserved atomic
entanglement is controllably released into three separated quan-
tum channels consisting of three entangled optical submodes. The
dependence of entanglement among three released optical sub-
modes on systematic parameters is theoretically deduced and
multipartite entanglement transfer as well as storage are experi-
mentally proved. Since the tripartite optical entangled state is
generated by linearly optical transformation of three squeezed
states of light, its three submodes are naturally space separated37,
38. The presented scheme can be directly extended to generate
optical entangled states with more submodes if more squeezed
states of light are available. In this way, entanglement of more
atomic ensembles can be established.

Results
Experimental set-up. Figure 1a describes the experimental set-up
for generation, storage, and transfer of tripartite entanglement.
Three space separated submodes âð0ÞS1, âð0ÞS2; and âð0ÞS3 of an
optical entangled state off-line prepared in Part I interact,
respectively, with three atomic memories A1, A2, and A3 located
at three distant nodes to generate and store entanglement of spin
waves among three atomic ensembles. Then the preserved
entanglement is transferred back into an optical entangled state
with three submodes âðtÞS1, âðtÞS2; and âðtÞS3 after a storage time
t (Part II). At last, entanglement among three released optical
submodes is measured by three balanced homodyne detectors
BHD1–3 (Part III).

Three narrow band entangled optical beams tuned to the
5S1=2; F ¼ 1
�� �

↔ 5P1=2; F0 ¼ 1
�� �

transition of rubidium around
795 nm are obtained via linearly optical transformation of three
squeezed states of light, which are generated by three degenerate
optical parametric amplifiers (DOPA1–3). DOPA1 and DOPA2(3)

operating in parametric amplification and deamplification
produce phase and amplitude quadrature squeezed states âS1
and âS2ð3Þ, respectively39, 40. The squeezing parameters (r) for the
three squeezed states are assumed to be identical for simplicity. In
fact, three DOPAs used in our experiment have totally identical
configuration and thus their squeezing parameters are almost the
same. The quadrature amplitudes X̂Sj ¼ ðâSj þ âþSjÞ=

ffiffiffi
2

p
and

phases P̂Sj ¼ ðâSj � âþSjÞ=
ffiffiffi
2

p
i (j= 1, 2, 3) of output optical beams

from three DOPAs are expressed as X̂S1 ¼ erX̂ð0Þ
S1 , P̂S1 ¼ e�rP̂ð0Þ

S1 ,

X̂S2ð3Þ ¼ e�rP̂ð0Þ
S1 ; and P̂S2ð3Þ ¼ erP̂ð0Þ

S2ð3Þ
40, where X̂ðP̂Þð0ÞS1 , X̂ðP̂Þð0ÞS2 ;

and X̂ðP̂Þð0ÞS3 are amplitude (phase) quadratures of input optical

beams âð0ÞS1 , â
ð0Þ
S2 ; and âð0ÞS3 for DOPAs, respectively. By interfering

three squeezed states of light on BS1 and BS2, we obtain a
tripartite optical entangled state with quantum correlations of
both amplitude quadratures X̂ð0ÞLj ¼ ðâð0ÞSj þ âð0ÞþSjÞ=

ffiffiffi
2

p
and

phase quadratures P̂ð0ÞLj ¼ ðâð0ÞSj � âð0ÞþSjÞ=
ffiffiffi
2

p
i40. Then the

three entangled optical beams are chopped into 500 ns pulses
âð0ÞS1, âð0ÞS2; and âð0ÞS3, with three acoustical–optical mod-
ulators AOM4–6, which are used for the input signals of three
atomic ensembles, i.e., 87Rb vapor cells A1, A2, and A3.

Quantum state transfer. The physical mechanism of
light–matter interaction used for the experiment is EIT, which is a
transparency phenomenon induced by optical field in an opaque
medium by means of quantum interference41. M. Fleischhauer
and M.D. Lukin have theoretically demonstrated that when
quantum fields propagate in EIT media, there are form-stable
quantum excitations associated with such propagation, named
dark-state polaritons, and in this process the quantum state of

light can be ideally transferred to collective atomic excitations and
vice versa. Therefore, EIT effects can be applied to generate
nonclassical states of atomic ensembles, to store optical quantum
states, and reversibly to release stored quantum states into optical
channels, respectively42–45. An atomic ensemble is represented by
total angular momentum operator of collective atomic spins
Ĵ ¼ P

i gj i mh j, and y, z-components of the collective atomic
angular momentum play the role of canonical variables, i.e.,

X̂A ¼ ðĴ þ Ĵ
þÞ= ffiffiffi

2
p ¼ Ĵy=

ffiffiffiffiffiffiffiffi
hĴ xi

q
,

P̂A ¼ Ĵ � Ĵ
þ� �

=
ffiffiffi
2

p
i ¼ Ĵz=

ffiffiffiffiffiffiffiffiffi
Ĵx
� �q

35. When control optical beams

are adiabatically switched off, the mapping relations of amplitude
(phase) quadratures from input optical submodes X̂ P̂

� 	ð0ÞLj to
atomic spin waves X̂ P̂

� 	ðtÞAj after a storage time t are expressed
by refs.46, 47:

X̂ðtÞAj ¼
ffiffiffiffiffi
η
M

p
X̂ð0ÞLj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η

M

p
X̂vac
Aj ;

P̂ðtÞAj ¼
ffiffiffiffiffi
η
M

p
P̂ð0ÞLj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η

M

p
P̂vac
Aj ;

ð1Þ

where the mapping efficiency from input optical submodes to
atomic spin waves is η

M
¼ η

T
η
W
e�t=τs , ηT is the optical trans-

mission efficiency, ηW is the storage efficiency of light in atomic
ensemble, and τs is the storage lifetime limited by atomic deco-
herence. The vacuum quadrature noises of atomic ensembles
X̂ P̂
� 	vac

Aj are introduced by limited mapping efficiency ηM. Since

canonical quadrature operators of atomic spin waves obey the
same commutation relation with that of Gaussian optical states,
i.e., X̂A; P̂A


 � ¼ i, using similar procedure of deducing full tri-
partite inseparability criteria provided by Loock et al.48, we can
obtain a set of analogous criterion inequalities for atomic spin
waves (see also the “Methods” section).

The stored atomic entanglement can be transferred to tripartite
entanglement among three output optical submodes âðtÞS1,
âðtÞS2; and âðtÞS3 after a storage time t by turning on control
optical beams. The quadrature amplitudes and phases of released
submodes, X̂ðtÞLj ¼ ðâðtÞSj þ âðtÞþSjÞ=

ffiffiffi
2

p
and P̂ðtÞLj ¼

ðâðtÞSj � âðtÞþSjÞ=
ffiffiffi
2

p
i in terms of quadratures for atomic spin

waves X̂ P̂
� 	ðtÞAj are expressed by refs. 46, 47:

X̂ðtÞLj ¼ �
ffiffiffiffiffiffi
η0M

p
X̂ðtÞAj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η0M

p
X̂vac
Lj ;

P̂ðtÞLj ¼ �
ffiffiffiffiffiffi
η0M

p
P̂ðtÞAj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η0M

p
P̂vac
Lj ;

ð2Þ
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Fig. 2 The dependence of combinations of normalized quantum correlation
variances among three released submodes after a storage time of 1000 ns
on the squeezing parameter r of three DOPAs and the total mapping
efficiency η, where the gains g′L1�L3 are taken as the optimal gain g′optL1�L3.
The dot corresponds the experimental result of I(t)L= 0.96± 0.01, where
the squeezing parameter r is 0.38 and total mapping efficiency η is about
16%
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where the mapping efficiency from atomic spin waves to optical
submodes η0

M
is the retrieval efficiency from atomic ensembles to

light. The vacuum quadrature noises of optical submodes X̂ P̂
� 	vac

Lj

are introduced by the read process.
The full tripartite inseparability criteria for released optical

modes are given by ref.48:

IðtÞL1 ¼ δ2 X̂ðtÞL2 � X̂ðtÞL3
� 	� �

=2þ δ2 g 0L1P̂ðtÞL1
��

þP̂ðtÞL2 þ P̂ðtÞL3
	�
=2≥ 1;

IðtÞL2 ¼ δ2 X̂ðtÞL1 � X̂ðtÞL3
� 	� �

=2þ δ2 P̂ðtÞL1
��

þg 0L2P̂ðtÞL2 þ P̂ðtÞL3
	�
=2≥ 1;

IðtÞL3 ¼ δ2 X̂ðtÞL1 � X̂ðtÞL2
� 	� �

=2þ δ2 P̂ðtÞL1
��

þP̂ðtÞL2 þ g 0L3P̂ðtÞL3
	�
=2≥ 1:

ð3Þ

If any two in the three inequalities are simultaneously
violated, the three submodes form a tripartite
Greenberger–Horne–Zeilinger-like (GHZ-like) entangled state
of light, where g 0L1, g

0
L2; and g 0L3 are the gain factors for optimizing

the correlation variances for released submodes. From Eqs. (1)
and (2), it can be seen that entanglement is limited by total
mapping efficiencies η ðη ¼ η

M
η0
M
Þ as well as squeezing parameter

r. When the squeezing parameters r for three DOPAs and the
total mapping efficiencies η for three atomic memories are the
same, the values of left sides of three inequalities (3) are identical,
I(t)L1= I(t)L2= I(t)L3= I(t)L. The smaller I(t)L is, the higher the
entanglement is. Figure 2 shows the dependence of correlation
variance combinations for three released submodes on the
squeezing parameter r of initial squeezed states and the total
mapping efficiency η with the storage time of 1000 ns. We can see
that the combinations of correlation variance are reduced with
the increase of squeezing parameter r and total mapping
efficiency η (see also the “Methods” section).

When the control optical beams âC1, âC2; and âC3, which are
tuned to 5S1=2; F ¼ 2

�� �
↔ 5P1=2; F0 ¼ 1

�� �
transition of rubidium,

are adiabatically switched off, optical entanglement among three
input submodes âð0ÞS1, âð0ÞS2; and âð0ÞS3 is transferred to atomic
entanglement of spin waves according to Eq. (1) via EIT
interaction. After a storage time of 1000 ns, control optical beams
âC1, âC2; and âC3 are switched on again, three optical submodes
âðtÞS1, âðtÞS2; and âðtÞS3 are released. The combinations of
correlation variances in inequalities (3) are measured with three
time domain BHD1–3. The intensive coherent light âL1, âL2; and
âL3 are utilized as local oscillators of BHD1–3. The control and
signal optical beams with orthogonally linear polarizations are
combined on Glan–Thompson polarizers (P1–3) before
atomic cells, and control optical beams are filtered out from the
signal optical beams by Glan–Thompson polarizers (P4–6) and
etalon filters (F1–3). In storage and retrieval procedures 10,000
traces of BHD output signals with 20 G samples/s are digitally

filtered with a bandpass filter of 2.5 MHz and averaged to obtain
the optimal entangled degree. In this case, the low-frequency
sideband noises resulting from pumping laser of DOPAs and
atomic ensembles, as well as high frequency noises coming from
parametric conversion in DOPAs and EIT process in atomic
ensembles have been filtered out. When both control and signal
optical beams are blocked and only the local oscillators are
remained, outputs of BHDs stand for the corresponding vacuum
noise level49.

Experimental results. The normalized correlation variances for
different combinations of quadrature components are given in
Table. 1, where gain factors (g1, g2, and g3) are chosen as the
optimal gains for minimizing the corresponding correlation
variances. The correlation variances of input and released
submodes are directly measured with three sets of BHDs. The
normalized correlation variances among three atomic ensembles
are inferred from Eq. (2), where the mapping efficiency η0

M
is

about 68% for our experimental system. The measured
normalized quantum correlation variances are shown in Fig. 3.
The squeezing parameter r is 0.38 and total mapping efficiency
η is about 16%. The combination of correlation variances for
three released submodes is I(t)L= 0.96± 0.01, which is less than
1, thus according to criterion inequalities (3) the entanglement
among released submodes is verified. The value is in
agreement with the theoretically calculated result, which is
marked with a black dot in Fig. 2. Because of the limitation of
total mapping efficiency, the correlation variances of released
entangled state are much higher than that of input state.
However, correlation variances below the corresponding vacuum
noise level in Fig. 3 and the violation of criterion inequalities (3)
certainly prove the existence of tripartite entanglement
among three optical submodes released from atomic spin waves
of three atomic ensembles. Thus the tripartite GHZ-like
entanglement among three atomic ensembles is experimentally
demonstrated.

Discussion
In summary, deterministic quantum entanglement among three
spatially separated quantum nodes is experimentally generated,
stored, and transferred. Within storage lifetime, the multipartite
entanglement is preserved in three space separated atomic
ensembles, and then at a desirable time the stored atomic
entanglement can be controllably converted into three optical
submodes to be quantum channels. Our work shows that mul-
tipartite CV entanglement can be established among remote
macroscopic objects by transferring off-line prepared entangle-
ment of optical beams into atomic ensembles via EIT interaction.
Since unconditional CV entanglement among multipartite optical
modes has been experimentally accomplished37, 50, 51, mature
quantum optical technology can be used for realizing entangle-
ment of more nodes in a quantum networks. The obtained

Table 1 The values of normalized correlation variances for different combinations

Correlation variances for different combinations Values for input submodes
(dB)

Values for atomic spin
waves (dB)

Values for released submodes
(dB)

hδ2ðX̂2 � X̂3Þi −3.30± 0.05 −0.56± 0.03 −0.37± 0.03
hδ2ðg1P̂1 þ P̂2 þ P̂3Þi −2.93± 0.05 −0.15± 0.02 −0.10± 0.02
hδ2ðX̂1 � X̂3Þi −3.25± 0.05 −0.53± 0.03 −0.35± 0.03
hδ2ðP̂1 þ g2P̂2 þ P̂3Þi −2.91± 0.05 −0.15± 0.02 −0.10± 0.02
hδ2ðX̂1 � X̂2Þi −3.25± 0.05 −0.52± 0.03 −0.34± 0.03
hδ2ðP̂1 þ P̂2 þ g3P̂3Þi −2.90± 0.05 −0.14± 0.02 −0.09± 0.02
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entanglement among atomic ensembles depends on mapping
efficiency and initial squeezing parameter. The higher the
squeezing and the mapping efficiency are, the better the entan-
glement among atomic ensembles is. In the presented experi-
mental system, the total mapping efficiency is mainly limited by
the optical transmission loss and memory (storage and retrieval)
efficiency. The transmission loss (about 18%) comes
from the optical losses of atomic cells, etalon filters,
Glan–Thompson polarizers and other optical components, which
can be further reduced if better optical elements with lower losses
are available.

The increased excess noises in released submodes from mem-
ories originate from fluorescence and coherent emission as well as
spurious fluctuations in signal channels induced by the control
optical beam44. On the other hand, since both EIT and four-wave
mixing (FWM) effects are simultaneously generated in an
ensemble of hot atoms52, the control optical beam acts as a far-
detuned field on the signal transition in the undesired FWM
process and spontaneously generates an “ idler” field, which also
can form excess noises. These mechanisms resulting in excess
noises always exist in EIT light–matter interaction for any input
state (vacuum state, squeezed vacuum state, entangled state or
others). Therefore, some schemes used for improving EIT
memory efficiency of classical signals52–54, such as decreasing
detuning of probe and control optical beams, increasing the
power of control optical beam and enhancing the temperature of
atomic vapor, will unavoidably introduce more excess noises into
atomic media and reduce quantum correlations among atomic
ensembles. However, by optimizing experimental parameters,
excess noises can be minimized for a given EIT experimental
system43, 44, 52.

It has been demonstrated that mapping efficiency can be sig-
nificantly improved by means of the technology of optical cavity
enhancement without introducing excess noise55, 56 and that the
storage lifetime can be dramatically increased if thermal atomic
ensembles are replaced by cold atoms confined in three-
dimensional optical lattice55. Generation systems of optical
squeezed states with squeezing up to 15 dB are available today57,
providing initial high quality quantum resources for establishing
better multipartite entanglement among atomic memories. The
presented scheme opens up a new possibility for constructing
future quantum internet1 and implementing distributed quantum
computation based on the use of deterministic CV entanglement
resources of light and atomic memories58.

Methods
Tripartite entangled state of light. A Ti:sapphire laser (Coherent MBR-110)
pumped by green laser (Yuguang DPSS FG-VIIIB) outputs 3W laser at about 795
nm, which is used for pumping light of second harmonic generator (SHG) and seed
lights of DOPAs. The configuration of optical cavities for SHG and three DOPAs is
identical bow tie-type ring cavity with a 1 × 2 × 10 mm periodically poled
KTiOPO4 (PPKTP) crystal. Three DOPAs are pumped by the second harmonic
fields at about 398 nm from SHG and the fundamental waves from SHG are
utilized as three injected seed fields âð0ÞS1 , â

ð0Þ
S2 ; and âð0ÞS3 . DOPA1 and DOPA2(3) are

operated at parametric amplification and deamplification to produce quadrature
phase- and amplitude-squeezed state of light, respectively8. The three squeezed
optical beams are interfered on two optical beam splitters. The quadrature phase-
squeezed field from DOPA1 âS1ð Þ and the quadrature amplitude-squeezed field
from DOPA2 âS2ð Þ are first interfered on a beam splitter (BS1) with the ratio of R:T
= 1:2 (R: reflectivity and T: transmissivity). Then, one of two output optical beams
from BS1 and the quadrature amplitude-squeezed light from DOPA3 âS3ð Þ are
interfered on BS2 with the ratio of R:T= 1:1. The relative phase between the two
input optical beams on BS1(2) is kept at 2kπ (k is integer). Finally, three entangled
optical beams are chopped into three optical pulses âð0ÞS1, âð0ÞS2; and âð0ÞS3 by
three AOM4–6. The three optical pulses are, respectively, injected into three atomic
ensembles to be the input optical submodes. The quadrature’s amplitudes and
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Fig. 3 Measured normalized correlation variances of input and released optical submodes. Trace (1) is the vacuum noise level. Trace (2) is the correlation
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phases of input optical submodes are expressed by ref. 40:
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r
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ð4Þ

respectively.
The inequalities of full inseparability criteria for input tripartite entangled states

of light are ref. 48:

Ið0ÞL1 ¼ δ2 X̂ð0ÞL2 � X̂ð0ÞL3
� 	� �

=2þ δ2 gL1P̂ð0ÞL1 þ P̂ð0ÞL2 þ P̂ð0ÞL3
� 	� �

=2≥ 1;

Ið0ÞL2 ¼ δ2 X̂ð0ÞL1 � X̂ð0ÞL3
� 	� �

=2þ δ2 P̂ð0ÞL1 þ gL2P̂ð0ÞL2 þ P̂ð0ÞL3
� 	� �

=2≥ 1;

Ið0ÞL3 ¼ δ2 X̂ð0ÞL1 � X̂ð0ÞL2
� 	� �

=2þ δ2 P̂ð0ÞL1 þ P̂ð0ÞL2 þ gL3P̂ð0ÞL3
� 	� �

=2≥ 1:

ð5Þ

If any two in the three inequalities are simultaneously violated, the three submodes
form a tripartite GHZ-like entangled state, where gL1, gL2, and gL3 are gain factors
for minimizing correlation variances of the input tripartite entangled state of light.

When the squeezing parameter r r≥ 0ð Þ for three DOPAs is the same, the gain
factors in inequalities (5) should be the same, i.e., gL1= gL2= gL3= gL, and the
values of left sides of three inequalities are identical, i.e., I(0)L1= I(0)L2= I(0)L3=
I(0)L. Using Eq. (4), the combination of normalized quantum correlation variances
for input optical beams is obtained:

Ið0ÞL ¼ 12e�2r þ 2 gL þ 2ð Þ2e�2r þ 4 gL � 1ð Þ2e2r
24

: ð6Þ

Calculating the minimum value of Eq. (6), we get the optimal gain factor goptL :

goptL ¼ 2e4r � 2
2e4r þ 1

: ð7Þ

If squeezing parameter r is larger than 0, the combination of correlation variances
will be less than 1 with the optimal gain factor, and the input optical submodes of
atomic ensembles are in a tripartite GHZ-like entangled state.

Establishing tripartite atomic ensemble entanglement. In EIT memory med-
ium, quantum state can be mapped from input optical submode âð0ÞS into atomic
spin wave Ĵ and vice versa under the interaction with a strong control optical beam
âC41, 42. The control optical beam is treated as classical optical beam AC because it
is much more intensive than the signal optical modes. In EIT process, the effective
interaction Hamiltonian ĤEIT between signal optical mode âð0ÞS and atomic spin
wave Ĵ is given by refs. 2, 46:

ĤEIT ¼ i�hκACâð0ÞS Ĵþ � i�hκACâð0ÞþS Ĵ; ð8Þ

which is similar to a beam splitter interaction, where κ stands for the interaction
constant between light and atoms.

By solving Heisenberg motion equations with the Hamiltonian ĤEIT (Eq. 8), we
obtain the expressions of quantum storage process and the mapping relations
(Eq. 1) of amplitude and phase quadratures from input optical submodes X̂ P̂

� 	ð0ÞLj
to atomic spin waves X̂ P̂

� 	ðtÞAj after a storage time t.
When the control optical beams are turned on, the input signal submodes are

compressed in atomic ensembles due to the slow propagation under EIT
interaction. On the moment of simultaneously shutting off three control optical
beams, quantum entanglement among three pulse submodes will be mapped into
atomic spin waves in the three ensembles, where the control optical beam plays the
role of writing process. Using Eqs. (1) and (4), the amplitude (phase) quadratures
of atomic spin waves X̂ P̂

� 	ðtÞAj after a storage time t are obtained:
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ð9Þ

respectively.
Since canonical quadrature operators of atomic spin waves obey the same

commutation relation with that of Gaussian optical states, i.e., X̂A; P̂A

 � ¼ i, using

similar procedure of deducing full tripartite inseparability criteria provided by
Loock et al.48, we obtain a set of analogous criterion inequalities for atomic spin
waves:

IðtÞA1 ¼ δ2 X̂ðtÞA2 � X̂ðtÞA3
� 	� �

=2þ δ2 gA1P̂ðtÞA1 þ P̂ðtÞA2 þ P̂ðtÞA3
� 	� �

=2≥ 1;

IðtÞA2 ¼ δ2 X̂ðtÞA1 � X̂ðtÞA3
� 	� �

=2þ δ2 P̂ðtÞA1 þ gA2P̂ðtÞA2 þ P̂ðtÞA3
� 	� �

=2≥ 1;

IðtÞA3 ¼ δ2 X̂ðtÞA1 � X̂ðtÞA2
� 	� �

=2þ δ2 P̂ðtÞA1 þ P̂ðtÞA2 þ gA3P̂ðtÞA3
� 	� �

=2≥ 1:

ð10Þ

When any two in three inequalities are violated, the three atomic ensembles are in
an entangled state of GHZ-like type, where gA1, gA2, and gA3 are gain factors for
atomic ensembles.

If the mapping efficiencies ηM for three atomic memories are the same, the gain
factors in inequalities (10) should be the same, i.e., gA1= gA2= gA3= gA, and the
values of three inequalities are also identical, i.e., I(t)A1= I(t)A2= I(t)A3= I(t)A.
According to Eq. (9), the combination of normalized quantum correlation
variances for atomic spin waves after a storage time t is obtained:

IðtÞA ¼ 12e�2r þ 2 gA þ 2ð Þ2e�2r þ 4 gA � 1ð Þ2e2r
24

η
M
þ 1þ 1

4
gA

� 
1� η

M

� 	
:

ð11Þ

Similarly, by minimizing I(t)A we get the optimal gain factor goptA :

goptA ¼ 2η
M
e4r � 2η

M

3e2r þ η
M
� 3η

M
e2r þ 2e4rη

M

: ð12Þ

The smaller I(t)A is, the better the atomic entanglement is. Figure 4 shows the
dependence of correlation variance combination for three atomic ensembles on the
squeezing parameter r of initial squeezed states and the mapping efficiency ηM with
the storage time of 1000 ns. We can see that the combination is reduced with the
increase of squeezing parameter r and mapping efficiency ηM. In our experiment,
the squeezing parameter r and the mapping efficiency ηM are about 0.38 and 23%,
respectively.

Quantum state transfer of stored entangled state. The control optical beams of
read process enable to map quantum state from the atomic spin waves to released
optical submodes. Using Eqs. (2) and (9), the amplitude (phase) quadratures
X̂ P̂
� 	ðtÞLj of released optical submodes after a storage time t are calculated. We
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Fig. 4 The dependence of combination of normalized quantum correlation
variances among three atomic ensembles after a storage time of 1000 ns
on the squeezing parameter r of three DOPAs and the mapping efficiency
ηM, where the gains are taken as the optimal gain goptA1�A3
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have:
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ð13Þ

In this case of g 0L1 ¼ g 0L2 ¼ g 0L3 ¼ g 0L, I(t)L in inequalities (3) can be calculated
from Eq. (13):

IðtÞL ¼ 12e�2r þ 2 g 0L þ 2
� 	2

e�2r þ 4 g 0L � 1
� 	2

e2r

24
ηþ 1þ 1

4
g 0L

� 
ð1� ηÞ: ð14Þ

The optimal gain factor g′optL

� 	
for read out process equals to:

g′optL ¼ 2ηe4r � 2η0
M

3e2r þ η� 3ηe2r þ 2e4rη
: ð15Þ

Figure 2 is obtained from Eq. (14), where the optimal gain in Eq. (15) is applied.

Atomic ensemble. The atomic energy levels of rubidium used for quantum
memory medium is illustrated in Fig. 3b. The collective coherence of the ground
state 5S1=2; F ¼ 1

�� �
and meta-state 5S1=2; F ¼ 2

�� �
is used to store nonclassical state

of light. For balancing the storage efficiency and excess noises from atoms, the
frequencies of both signal and control optical beams are detuned by Δs= 700 MHz
(the detuning of signal optical beam from the transition between energy levels g
and e) and Δc = 700.5 MHz (the detuning of control optical beam from the tran-
sition between energy levels m and e), respectively. The detuning is realized by two
sets of double-pass 1.7 GHz acousto-optical modulators (AOM1–2). Three rubi-
dium vapor cells of 7.5 cm-long with 10 torr of neon buffer gas in a μ metal
magnetic shielding are used as atomic media, where the neon buffer gas prevents
thermal diffusion to increase the atomic coherence. The three rubidium atomic
cells are heated to around 65 °C in our experiment.

Experimental time sequence. In the beginning of each period, the laser is turned
on for 2 ms by AOM3 and split into three optical beams âð0ÞS1 , â

ð0Þ
S2 ; and âð0ÞS3 , which

are used as input signals of DOPAs, respectively, for persistently locking the length
of optical cavities. Then the input signals of DOPAs are turned off for 20,000 ns by
AOM3 to generate three squeezed vacuum states of light. Within the locking period
the three entangled optical submodes are chopped into 500 ns pulses with AOM4–6,
which are used for input submodes âð0ÞS1, âð0ÞS2; and âð0ÞS3 of three atomic
ensembles. Once the signal pulses enter into the atomic cell, the control optical
beams âC1, âC2; and âC3 are switched off by AOM7 to complete the quantum
storage. At a user-controlled moment (1000 ns for our experiment) within storage
lifetime, the control optical beams âC1, âC2; and âC3 are turned on again by AOM7

at to obtain three released optical pulses âðtÞS1, âðtÞS2; and âðtÞS3.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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