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Abstract The continuous variable multicolor entangled state of optical modes is one
of the essential quantum resources for constructing quantum information networks
composed of many nodes and channels. It has been well proved that the cascaded non-
degenerate optical parametric oscillators (CNOPOs) are the most successful devices
to produce bright entangled optical beams with different wavelengths. Here, we dis-
cuss the dependence of the possibly obtained largest-size multicolor entangled state
and the entanglement degree on optical parameters of CNOPOs. Each NOPO in the
cascaded system is operated above its oscillation threshold. One of two output optical
beams produced by a NOPO is used for the pump light of the subsequent one, and the
remained another beam serves as a submode of the multicolor entangled state. The
obtainable maximal number of entangled submodes and the multicolor entanglement
degree are numerically calculated under experimentally accessible conditions. The
calculated results provide direct references for the design of generation systems of
multicolor entangled optical beams.
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1 Introduction

The concept of entanglement has been of great interest since the early days of quantum
mechanics and has become of central importance in a variety of discussions on the
fundamental aspects of quantum theory [1,2]. Nowadays, entanglement is receiving
a lot of new attention in the rapidly developing quantum information science and
technology [3,4]. Various continuous variable (CV) quantum information protocols,
such as quantum teleportation [5], quantum key distributions [6], quantummemory of
squeezed states [7,8] and quantum entanglement swapping [9], have been experimen-
tally achieved based on utilizing optical entangled states. Different types of physical
systems, for example atom ensembles [7,8], quantum dots [10] and trapped ions
[11], will probably be used in nodes of a quantum network to implement information
processing and storing. All these systems have own especial resonance frequencies,
and thus, corresponding multicolor entangled optical beams are required to distribute
entanglement and transmitting quantum information among nodes [12].

The multipartite CV entangled states with an identical frequency for all submodes
have been produced by combining squeezed states of light in linear optical systems
[13,14]. The multicolor entangled optical beams with several different wavelengths
have been also generated by single or cascaded nondegenerate optical parametric
oscillators (NOPOs) above the threshold [15–25]. In Ref. [26], the quantum limits for
cascaded optical parametric amplifiers used for enhancing quantum noise reduction
and efficiently producing high-quality squeezed and entangled states are theoretically
analyzed. To prepare large-size multicolor entangled state with the submodes of more
than three colors, we have to cascaded NOPOs more than two. In the cascaded NOPO
system, one of two entangled optical beams produced by a NOPO is used for the
pump light of the subsequent NOPO and quantum entanglement is transferred among
all cascaded NOPOs in this way. Since the quantum fluctuation of the pump field of
the subsequent NOPO depends on that of the output optical beams from the NOPO
before it, the property of the multicolor entanglement generated by a cascaded sys-
tem relates to the nonlinear process happened in all NOPOs. When we design the
experimental system, we should comprehensively consider the operation conditions
of all cascaded NOPOs and choose the cavity parameters of each NOPO to obtain the
optimal multicolor entanglement.

In this paper, we theoretically analyze generation system of CV multicolor entan-
gled state of optical modes composed by the cascaded NOPOk (k = 1, 2, 3, . . . , n).
Based on solving Langevin equations for the evolution of the field fluctuations inside
NOPOk [24,27] and applying the sufficient condition for the quantum entanglement
among amplitude and phase quadratures of optical modes proposed by van Loock and
Furusawa [28], we demonstrate that the determinate CVmulticolor quantum entangle-
ment possibly exists among n+1 submodes produced by the n cascadedNOPOs. Since
one of the output signal and idler beams fromNOPOk (k = 1, 2, 3, . . . , n−1), say sig-
nal, is used for the pumpfield ofNOPOk+1, its quantumcorrelationwith another output
beam, say idler,will directly be coupled into the signal and the idlermodes ofNOPOk+1
through the intracavity nonlinear interaction. We search the limit of the number of the
obtainable multicolor entangled beams under given parametric conditions of NOPOk

and analyze the influences of experimental parameters on the limit with the numerical
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calculation.Wealso discuss the dependences of the correlation variances among ampli-
tude and phase quadratures on the pump parameters, the transmissivities of the output
mirrors of NOPOk and the analysis frequency. The possiblemaximal cascaded number
ofNOPOk and the optimal cavity parameters are found.All values of the physical para-
meters used in the calculations are taken within the experimentally reachable regions.

The paper is organized as following. In Sect. 2, the physical system of the cascaded
NOPOs is briefly described and the fundamental formulas of the field fluctuation evolu-
tion are deduced based on the Langevin equation for standardNOPOs. Then the fluctu-
ation of the amplitude and phase quadratures of the output signal and idler fields are cal-
culated by means of the input–output relation of NOPOs. The quantum characteristics
of the multicolor entangled optical beams are numerically analyzed under given con-
ditions in Sect. 3. In Sect. 4, the limit of the obtainable number of multicolor entangled
optical beams and the dependences of the limit number on experimental parameters are
analyzed through the numerical calculation. Finally, a brief summary is given inSect. 5.

2 Description of cascaded NOPO systems

The schematic of the physical system is shown in Fig. 1. The system consists of
n cascaded NOPOs. Each of NOPOk (k = 1, 2, . . . , n) is composed of the input
and output optical couplers, between which a type-I I phase-matched χ(2) nonlinear
crystal is placed. The parametric interaction is enhanced by the feedback of the optical
cavity, in which the three intracavity modes of signal (â1k), idler (â2k) and pump fields
(â0k) resonate simultaneously. âin0k and â

in
1k (â

in
2k) (k = 1, 2, . . . , n) stand for the pump

field amd the injected vacuum signal (idler) fields of NOPOk , respectively. The output
signal light âout1k from NOPOk (k = 1, 2, . . . , n − 1) is used for the pump field of the
subsequent NOPOk+1 (âout1k = ain0,k+1), and the idler light âout2k from the NOPOk (k =
1, 2, . . . , n − 1) is retained as a submode of the resultant multicolor entangled states.

Using the operator linearizationmethod, i.e., â = 〈â〉+δâ, where 〈â〉 and δâ are the
average value and the fluctuations of the operator â, respectively. The Langevin equa-
tions describing the evolution of the field fluctuations inside NOPOk (k = 1, 2, . . . , n)
are given by [24]

τk
·

δâ0k = −γ ′
0kδâ0k −

√
γ ′
0kγ

′
1k(σk − 1)δâ1k

−
√

γ ′
0kγ

′
2k(σk − 1)δâ2k + √

2γ0kδâ
in
0k + √

2μ0kδβ̂
in
0k (1)

τk
·

δâ1k =
√

γ ′
0kγ

′
1k(σk − 1)δâ0k − γ ′

1kδâ1k +
√

γ ′
1kγ

′
2kδâ

∗
2k

+√
2γ1kδâ

in
1k + √

2μ1kδβ̂
in
1k (2)

τk
·

δâ2k =
√

γ ′
0kγ

′
2k(σk − 1)δâ0k +

√
γ ′
1kγ

′
2kδâ

∗
1k − γ ′

2kδâ2k

+√
2γ2kδâ

in
2k + √

2μ2kδβ̂
in
2k (3)

γ j depends on the amplitude reflection coefficients r jand the transmission coefficients
t j by γ j = 1− r j , γ j = t2j /2. μ j relates to other intracavity loss mechanism, such as
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Fig. 1 The schematic of n cascaded NOPOs

the crystal absorption, surface scattering, imperfection of cavity mirrors of NOPO and
so on. Combining the two loss parameters together, the total loss coefficient equals to
γ ′
j = γ j + μ j . σk is the pump parameters of the NOPOk and β̂ in

j ( j = 0k, 1k, 2k)
stands for the vacuum noises coupled to the intracavity optical modes by the internal
loss mechanism inside NOPOk (k = 1, 2, . . . , n).

The amplitude (X̂ ) and the phase (Ŷ ) quadrature operators are defined by the field
annihilation operator â, i.e., â = eiθ (X̂ + i Ŷ ), where θ is an arbitrary phase. Gen-
erally, θ is chosen to make the average value of the imaginary of â to be zero,
that is, 〈Ŷ 〉 = 0. In this case, X̂ and Ŷ are associated with the amplitude and the
phase components of the optical field, respectively. We denote δ X̂ j = (δâ+

j + δâ j )/

2 ( j = 0k, 1k, 2k corresponding to the pump, signal and idlermode ofNOPOk , respec-
tively) as the quadrature amplitude fluctuation of light and δŶ j = (i(δâ+

j − δâ j ) )/2
( j = 0k, 1k, 2k) as the quadrature phase fluctuation of light. From Eqs. (1–3), we can
obtain the quadrature amplitude and phase fluctuation equations of motion

τk
dδ X̂(Ŷ )0k

dt
= −γ ′

0kδ X̂(Ŷ )0k −
√

γ ′
0kγ

′
1k(σk − 1)δ X̂(Ŷ )1k (4)

−
√

γ ′
0kγ

′
2k(σk −1)δ X̂(Ŷ )2k+

√
2γ0kδ X̂(Ŷ )in0k +√

2μ0kδ X̂(Ŷ )inβ0k
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τk
dδ X̂(Ŷ )1k

dt
=

√
γ ′
0kγ

′
1k(σk − 1)δ X̂(Ŷ )0k − γ ′

1kδ X̂(Ŷ )1k

±
√

γ ′
1kγ

′
2kδ X̂(Ŷ )2k + √

2γ1kδ X̂(Ŷ )in1k + √
2μ1kδ X̂(Ŷ )inβ1k (5)

τk
dδ X̂(Ŷ )2k

dt
=

√
γ ′
0kγ

′
2k(σk − 1)δ X̂(Ŷ )0k ±

√
γ ′
1kγ

′
2kδ X̂(Ŷ )1k

− γ ′
2kδ X̂(Ŷ )2k + √

2γ2kδ X̂(Ŷ )in2k + √
2μ2kδ X̂(Ŷ )inβ2k (6)

The ± symbols in Eqs. (5) and (6) correspond to quadrature amplitude (+) and phase
(−), respectively. From the Fourier transformations of Eqs. (4–6), we can get the
fluctuation spectra of quadrature amplitude and phase of the intracavity modes â1k
and â2k :

δ X̂1k(Ω) =
[√

2γ0k A
+
k δ X̂ in

0k(Ω) + √
2γ1k Kkδ X̂

in
1k(Ω)

]
/N+

k

+
[√

2γ2k F
+
k δ X̂ in

2k(Ω) + √
2μ0k A

+
k δ X̂ in

β0k
(Ω)

]
/N+

k

+
[√

2μ1k Kkδ X̂
in
β1k

(Ω) + √
2μ2k F

+
k δ X̂ in

β2k
(Ω)

]
/N+

k

δ X̂2k(Ω) =
[√

2γ0kC
+
k δ X̂ in

0k(Ω) + √
2γ1k F

+
k δ X̂ in

1k(Ω)
]
/N+

k

+
[√

2γ2k Hkδ X̂
in
2k(Ω) + √

2μ0kC
+
k δ X̂ in

β0k
(Ω)

]
/N+

k

+
[√

2μ1k F
+
k δ X̂ in

β1k
(Ω) + √

2μ2k Hkδ X̂
in
β2k

(Ω)
]
/N+

k

δŶ1k(Ω) =
[√

2γ0k A
−
k δŶ in

0k (Ω) + √
2γ1k KkδŶ

in
1k (Ω)

]
/N−

k

+
[√

2γ2k F
−
k δŶ in

2k (Ω) + √
2μ0k A

−
k δŶ in

β0k
(Ω)

]
/N−

k

+
[√

2μ1k KkδŶ
in
β1k

(Ω) + √
2μ2k F

−
k δŶ in

β2k
(Ω)

]
/N−

k

δŶ2k(Ω) =
[√

2γ0kC
−
k δŶ in

0k (Ω) + √
2γ1k F

−
k δŶ in

1k (Ω)
]
/N−

k

+
[√

2γ2k HkδŶ
in
2k (Ω) + √

2μ0kC
−
k δŶ in

β0k
(Ω)

]
/N−

k

+
[√

2μ1k F
−
k δŶ in

β1k
(Ω) + √

2μ2k HkδŶ
in
β2k

(Ω)
]
/N−

k

where

A±
k =

√
γ ′
0kγ

′
1k(σk − 1)(iΩ + γ ′

2k) ±
√

γ ′
0kγ

′
2k(σk − 1)

√
γ ′
1kγ

′
2k

C±
k =

√
γ ′
0kγ

′
2k(σk − 1)(iΩ + γ ′

1k) ±
√

γ ′
0kγ

′
1k(σk − 1)

√
γ ′
1kγ

′
2k

F±
k = −

√
γ ′
0kγ

′
1k(σk − 1)

√
γ ′
0kγ

′
2k(σk − 1) ±

√
γ ′
1kγ

′
2k(iΩ + γ ′

0k)

Kk = (iΩ + γ ′
0k)(iΩ + γ ′

2k) + γ ′
0kγ

′
2k(σk − 1)

Hk = (iΩ + γ ′
0k)(iΩ + γ ′

1k) + γ ′
0kγ

′
1k(σk − 1)
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N±
k = (iΩ + γ ′

0k)(iΩ + γ ′
1k)(iΩ + γ ′

2k) + (iΩ + γ ′
2k)γ

′
0kγ

′
1k(σk − 1)

+(iΩ + γ ′
1k)γ

′
0kγ

′
2k(σk − 1) − (iΩ + γ ′

0k)γ
′
1kγ

′
2k

± 2
√

γ ′
0kγ

′
1k(σk − 1)

√
γ ′
0kγ

′
2k(σk − 1)

√
γ ′
1kγ

′
2k

Using the input–output relation δâout = √
2γ δâ − δâin for an optical cavity, the

fluctuations of the quadrature amplitude and phase of the output field from NOPOk

are obtained in terms of their input field

δ X̂out
1k (Ω) = 2

√
γ1kγ0k A

+
k

N+
k

δ X̂ in
0k(Ω) + 2γ1k Kk − N+

k

N+
k

δ X̂ in
1k(Ω)

+
√
2γ1k
N+
k

[√
2γ2k F

+
k δ X̂ in

2k(Ω) + √
2μ0k A

+
k δ X̂ in

β0k
(Ω)

+√
2μ1k Kkδ X̂

in
β1k

(Ω) + √
2μ2k F

+
k δ X̂ in

β2k
(Ω)

]
(7)

δ X̂out
2k (Ω) = 2

√
γ2kγ0kC

+
k

N+
k

δ X̂ in
0k(Ω) + 2γ2k Hk − N+

k

N+
k

δ X̂ in
2k(Ω)

+
√
2γ2k
N+
k

[√
2γ1k F

+
k δ X̂ in

1k(Ω) + √
2μ0kC

+
k δ X̂ in

β0k
(Ω)

+√
2μ1k F

+
k δ X̂ in

β1k
(Ω) + √

2μ2k Hkδ X̂
in
β2k

(Ω)
]

(8)

δŶ out
1k (Ω) = 2

√
γ1kγ0k A

−
k

N−
k

δŶ in
0k (Ω) + 2γ1k Kk − N−

k

N−
k

δŶ in
1k (Ω)

+
√
2γ1k
N−
k

[√
2γ2k F

−
k δŶ in

2k (Ω) + √
2μ0k A

−
k δŶ in

β0k
(Ω)

+√
2μ1k KkδŶ

in
β1k

(Ω) + √
2μ2k F

−
k δŶ in

β2k
(Ω)

]
(9)

δŶ out
2k (Ω) = 2

√
γ2kγ0kC

−
k

N−
k

δŶ in
0k (Ω) + 2γ2k Hk − N−

k

N−
k

δŶ in
2k (Ω)

+
√
2γ2k
N−
k

[√
2γ1k F

−
k δŶ in

1k (Ω) + √
2μ0kC

−
k δŶ in

β0k
(Ω)

+√
2μ1k F

−
k δŶ in

β1k
(Ω) + √

2μ2k HkδŶ
in
β2k

(Ω)
]

(10)

Since aout1k = ain0,k+1, δ X̂ in
0k(Ω) and δŶ in

0k (Ω) in δ X̂out
1k (Ω), δ X̂out

2k (Ω), δŶ out
1k (Ω)

and δŶ out
2k (Ω) can be replaced by δ X̂out

1,k−1(Ω) and δŶ out
1,k−1(Ω), all retained outputs

of each NOPOk , âout21 (Ω), âout22 (Ω), âout23 (Ω), . . . , âout2,n−1(Ω), âout2n (Ω) and âout1n (Ω)

can be deduced.
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3 Entanglement characteristics

There are two types of the inseparability criteria for optical modes are used to verify
the quantum entanglement among the obtainedmodes [28–30]. One criterion based on
positivity under partial transposition is the sufficient and necessary condition for CV
entanglement of Gaussian optical modes [29,30]. Another and more easily identified
criterion is the inseparability criterion proposed by vanLoock and Furusawa for optical
modes in Ref. [22,28]. Here we select the second one in our theoretical analysis.When
the vacuum noise of each submode is normalized to 1, it is easy to directly write the
criterion inequalities of the quantum entanglement among the output submodes of the
cascaded NOPO system as following:

〈
Δ

(
δ X̂out

2k (Ω) − δ X̂out
2,k−1(Ω)

)2〉 +
〈
Δ

⎛
⎝

n∑

q=1

δŶ out
2q (Ω) + δŶ out

1n (Ω)

⎞
⎠

2〉
< 4,

(11)

for k = 2, 3, . . . , n, and

〈
Δ

(
δ X̂out

1n (Ω) − δ X̂out
2n (Ω)

)2〉 +
〈
Δ

⎛
⎝

n∑

q=1

δŶ out
2q (Ω) + δŶ out

1n (Ω)

⎞
⎠

2〉
< 4,

(12)

where “4” is the limit of the normalized vacuum noise. When the left side of the
equations is smaller than “4,” the quantum correlations exist among these quadratures.
If the n inequalities in Eqs. (11) and (12) are simultaneously satisfied, the n+1 modes
are in an inseparable entangled state [28], and thus, these inequalities give the sufficient
conditions for justifying the multicolor entanglement of optical modes.

For simplicity and without losing generality, we assume that the signal and idler
mode inside NOPO have the same losses and transmission factors, i.e., μ1k = μ2k =
μk , γ1k = γ2k = γk and γ ′

1k = γ ′
2k = γ ′

k for each NOPOk . The fluctuations of the
quadrature amplitude and the quadrature phase of the output field from NOPOk in
Eqs. (7–10) can be simplified as

δ X̂out
1k(2k)(Ω) = a+

k δ X̂ in
0k(Ω) + b+

k δ X̂ in
1k(2k)(Ω) + c+

k δ X̂ in
2k(1k)(Ω)

+ d+
k δ X̂ in

β0k
(Ω) + e+

k δ X̂ in
β1k(2k)

(Ω) + f +
k δ X̂ in

β2k(1k)
(Ω) (13)

δŶ out
1k(2k)(Ω) = a−

k δŶ in
0k (Ω) + b−

k δŶ in
1k(2k)(Ω) + c−

k δŶ in
2k(1k)(Ω)

+ d−
k δŶ in

β0k
(Ω) + e−

k δŶ in
β1k(2k)

(Ω) + f −
k δŶ in

β2k(1k)
(Ω) (14)

where, for simplicity, we denote

a±
k = 2

√
γkγ0k A

±
k

N±
k

, b±
k = 2γk Kk − N±

k

N±
k

, c±
k = 2γk F

±
k

N±
k
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d±
k = 2

√
γkμ0k A

±
k

N±
k

, e±
k = 2

√
γkμk Kk

N±
k

, f ±
k = 2

√
γkμk F

±
k

N±
k

Since the output signal beam from NOPOk (k = 1, 2, . . . , n−1 ) is used for the pump
field of NOPOk+1, we can substitute aout1k = ain0,k+1 into equations (13–14) and get the
output field expression in term of the initial input field

δ X̂out
1k(2k)(Ω) =

n∏

q=1

a+
q δ X̂ in

01(Ω) +
k−1∑

p=1

k∏

q=p+1

a+
q

(
b+
p δ X̂ in

1,p(Ω) + c+
p δ X̂ in

2,p(Ω)

+ d+
p δ X̂ in

β0,p
(Ω) + e+

p δ X̂ in
β1,p

(Ω) + f +
p δ X̂ in

β2,p
(Ω)

)

+ b+
k δ X̂ in

1k(2k)(Ω) + c+
k δ X̂ in

2k(1k)(Ω) + d+
k δ X̂ in

β0k
(Ω)

+ e+
k δ X̂ in

β1k(2k)
(Ω) + f +

k δ X̂ in
β2k(1k)

(Ω) (15)

δŶ out
1k(2k)(Ω) =

n∏

q=1

a−
q δŶ in

01 (Ω) +
k−1∑

p=1

k∏

q=p+1

a−
q

(
b−
p δŶ in

1,p(Ω) + c−
p δŶ in

2,p(Ω)

+ d−
p δŶ in

β0,p
(Ω) + e−

p δŶ in
β1,p

(Ω) + f −
p δŶ in

β2,p
(Ω)

)

+ b−
k δŶ in

1k(2k)(Ω) + c−
k δŶ in

2k(1k)(Ω) + d−
k δŶ in

β0k
(Ω)

+ e−
k δŶ in

β1k(2k)
(Ω) + f −

k δŶ in
β2k(1k)

(Ω) (16)

Generally, the initial pump light is in the coherent state, and thus, the noise variances
of its quadrature amplitude and quadrature phase fluctuations should be normalized to
“1,” i.e., 〈Δ[δ X̂ in

01(Ω)]2〉 = 〈Δ[δŶ in
01 (Ω)]2〉 = 1. In each NOPO, the vacuum noise is

also injected into the signal and idler mode, i.e., 〈Δ[δ X̂ in
1k(Ω)]2〉 = 〈Δ[δ X̂ in

2k(Ω)]2〉 =
〈Δ[δŶ in

1k (Ω)]2〉 = 〈Δ[δŶ in
2k (Ω)]2〉 = 1, (k = 1, 2, · · · , n). β̂ in

j ( j = 0k, 1k, 2k)
is the vacuum noise produced by the internal loss mechanism in a NOPO, so we
have 〈Δ[δ X̂ in

β0k
(Ω)]2〉 = 〈Δ[δ X̂ in

β1k
(Ω)]2〉 = 〈Δ[δ X̂ in

β2k
(Ω)]2〉 = 〈Δ[δŶ in

β0k
(Ω)]2〉 =

〈Δ[δŶ in
β1k

(Ω)]2〉 = 〈Δ[δŶ in
β2k

(Ω)]2〉 = 1, (k = 1, 2, . . . , n). Except NOPO1 (k = 1),
which is pumped by the coherent state of light from a laser source, all other NOPOk

(k = 2, 3, · · · , n) are pumped by the thermal state of the optical field, which is the
signal light produced by NOPOk−1 before it. We will consider that except NOPO1, all
other NOPOk have the same physical parameters (γ , μ, γ0, μ0 and σ ) for simplicity
and not loss generality. The following results are obtained in this case.

Figure 2 shows the quantum correlation variances for n = 4 (S1: 〈Δ(δ X̂out
22 −

δ X̂out
21 )2〉 + 〈Δ(

∑4
q=1 δŶ out

2q + δŶ out
14 )2〉, S2: 〈Δ(δ X̂out

23 − δ X̂out
22 )2〉 + 〈Δ(

∑4
q=1

δŶ out
2q + δŶ out

14 )2〉, S3: 〈Δ(δ X̂out
24 − δ X̂out

23 )2〉 + 〈Δ(
∑4

q=1 δŶ out
2q + δŶ out

14 )2〉, S4:

〈Δ(δ X̂out
24 − δ X̂out

14 )2〉 + 〈Δ(
∑4

q=1 δŶ out
2q + δŶ out

14 )2〉〉 vary with the analysis frequen-
cies, where the parameters γ1 = 0.016, γ = 0.042, γ0 = 0.4, γ01 = 0.15, σ1 = 1.04,
σ = 1.944, μ = μ1 = μ0 = μ01 = 0.001 and the round-trip time τ = 3.45×10−10s.
It can be seen that the bright five-color entanglement can be generated from this system
when the analysis frequency ( f ) is chosen in the range of 0.6MHz< f <11MHz.

123



Quantum limits for cascaded nondegenerate optical parametric…

Fig. 2 The quantum correlation variance (S1: 〈Δ(δ X̂out
22 − δ X̂out

21 )2〉 + 〈Δ(
∑4

q=1 δŶ out
2q + δŶ out

14 )2〉, S2:
〈Δ(δ X̂out

23 − δ X̂out
22 )2〉 + 〈Δ(

∑4
q=1 δŶ out

2q + δŶ out
14 )2〉, S3: 〈Δ(δ X̂out

24 − δ X̂out
23 )2〉 + 〈Δ(

∑4
q=1 δŶ out

2q +
δŶ out

14 )2〉, S4: 〈Δ(δ X̂out
24 − δ X̂out

14 )2〉 + 〈Δ(
∑4

q=1 δŶ out
2q + δŶ out

14 )2〉〉 vary with the analysis frequencies.
The line of variance 4.0 is the limit of the inseparability criterion

It has been theoretically proved that in the frequency range lower than 0.6MHz, the
correlation variance is slightly sensitive to the noise existing on the each single output
beam, and the good correlation is not easy obtained for the NOPO above the threshold
[27]. The five-color entanglement beam does not exist when f > 11MHz due to the
limitation of bandwidth of NOPO cavity. There is an optimum value of the analysis
frequency ( f = 3MHz) where the best five-color entanglement is obtained.

We can find that the quantum correlation variance of S1 = 〈Δ(δ X̂out
22 − δ X̂out

21 )2〉+
〈Δ(

∑4
q=1 δŶ out

2q + δŶ out
14 )2〉 is higher than others, and thus, if S1 < 4, all others

will also smaller than 4. Thus, in the following, we just give the dependences of
the quantum correlation variances of S1 on the cavity parameters. Figure 3 shows
the influences of various parameters on the correlation variances when the number
of cascaded NOPO is four. Figure 3a is the function of the correlation variances
versus the pump parameter σ1 of NOPO1 and the pump parameter σ of the NOPOk

(k = 2, 3, · · · , n)for γ1 = 0.016, γ = 0.042, γ01 = 0.15 and γ0 = 0.4. We can
see that the smaller the value of the pump parameter σ1 of NOPO1 is, the higher the
degree of entanglement of the output five-color entangled beam is, and we cannot get
the five-color entangled beam when σ1 > 2.5. The optimum value of pump parameter
of NOPO1 should be 1.0 in principle; however, the NOPO is very unstable in this
condition. So, we take the value of σ1 to be 1.04 hereinafter.When the pump parameter
of all other NOPOs is taken at 1.7 < σ < 2.5, the bright five-color entanglement can
be generated. The optimum value of the pump parameter σ is σ = 1.944 where the
best five-color entangled light is obtained. When σ < 1.5 or σ > 2.8, the correlation
variances are higher than “4”, the five-color entanglement does not exist.

Figure 3b is the function of correlation variances versus the transmissivities γ01
and γ0 of the input mirrors of the NOPO1 and NOPOk (k = 2, 3, · · · , n) for the pump
light with γ1 = 0.016, γ = 0.042, σ1 = 1.04 and σ = 1.944. It shows that the
five-color entanglement cannot be obtained when the transmissivity γ0 < 0.077. The
transmissivity γ01 of NOPO1 hardly affects the multicolor entanglement property.

123



W. Liu, X. Jia

(a)

1.0

1.2

1.4

σ 1

1.6
1.8

2.0
2.2

2.4

σ

2
3
4
5
6

S1

(b)

0.0

0.2

0.4γ

γ γ γγ

γ
0 0.0

0.2

0.4

01

2
3
4
5
6

S1

(c)

0.00
0.02

0.04
0.06

0.08
1

0.0
0.1

0.2

0.3

2
3
4
5
6

S1

(d)

0.1
0.2

0.3
0.4

0.5
0 0.02

0.04
0.06

0.08
0.10

2
3
4
5
6

S1

Fig. 3 The quantum correlation variances change with various parameters. a Correlation variance (S1)
versus the pump parameter of NOPO1 (σ1) and the NOPOk (σ ); b correlation variance (S1) versus the
transmissivity of the input mirrors for the pump light of the NOPO1 (γ01) and the NOPOk (γ0); c correlation
variance (S1) versus the transmissivity of the output mirrors for the signal (idler) mode of the NOPO1 (γ1)
and the NOPOk (γ ); d correlation variance (S1) versus the transmissivity γ and the transmissivity γ0

Figure 3c is the dependence of the correlation variances on the transmissivities γ1
and γ of the output mirrors of the NOPO1 and NOPOk (k = 2, 3, · · · , n) for the signal
(idler) mode with γ01 = 0.15, γ0 = 0.4, σ1 = 1.04 and σ = 1.944. It shows that the
five-color entanglement cannot be generated in these regions of γ < 0.009, γ > 0.25
and γ1 < 0.001 or γ1 > 0.07. When 0.015 < γ < 0.23, 0.004 < γ1 < 0.049, the
five-color entangled state can be obtained. Taking γ = 0.042 and γ1 = 0.016 the
lowest correlation variance, i.e., the best entanglement is achieved.

Figure 3d is the dependence of the correlation variance on γ and γ0 with γ1 = 0.016,
γ01 = 0.15, σ1 = 1.04 and σ = 1.944. It shows that the five-color entanglement
cannot be generated in the regions of γ and γ0 is very small. With the increasing of
γ and γ0, the correlation variance becomes more and more smaller; when γ = 0.042
and γ0 = 0.5, the lowest correlation variance is reached.

4 The limit of the number of cascaded NOPOs

Figure 4a–f shows the functions of the correlation variances versus the number
of NOPOs for different σ , γ1 and f = Ω/2π , respectively, in which we take
μ = μ1 = μ0 = μ01 = 0.0005 that are the parameters used in the experimental
system of Ref. [31].
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Figure 4a shows the dependence of n onσ with γ1 = 0.016, γ01 = 0.15, γ = 0.042,
γ0 = 0.4, σ1 = 1.04 and f = 3.0MHz. The cascade number n firstly increases and
then decreases with the increase in σ . When σ = 2 and σ = 1.5, the correlation
variances are smaller than 4 for n < 5 and n < 2; i.e., we can realize six-color (n = 5)
and three-color (n = 2) entanglement, respectively.

Figure 4b shows the relationship between the number n and σ1 with γ1 = 0.016,
γ01 = 0.15, γ = 0.042, γ0 = 0.4, σ = 1.944 and f = 3.0MHz. It shows that the
cascade number increases with the decrease in the pump parameter. The optimal value
of σ1 appears around the threshold of NOPO1 (σ1 ∼ 1), which just is the optimal
operation condition of a standard NOPO used for the generation of squeezed and
entangled states [21,22,27].

Figure 4c gives the dependence of the number n on γ with γ1 = 0.016, γ01 = 0.15,
γ0 = 0.4, σ1 = 1.04, σ = 1.944 and f = 3.0MHz. The cascade number first
increases and then decreases with the increase in the transmissivity γ . When γ = 0.02
and γ = 0.042, the maximal cascaded number of NOPOs for generating multicolor
entanglement is n = 4 and n = 5, respectively. However, if the value of γ is higher
than 0.042, the possible number of cascaded NOPOs will decrease, and thus, the six-
color entanglement is the obtainable largest-size entangled state under above given
parameter condition.

Figure 4d shows the dependence of the limit n on γ1 with γ01 = 0.15, γ0 = 0.4,
γ = 0.042, σ1 = 1.04, σ = 1.944 and f = 3.0MHz. Similarly, the cascade number
firstly increases and then decreases with the increase in γ1. An optimal γ1 can be found
for a given system.

Figure 4e shows the dependence of the numbern onγ0 withγ1 = 0.016,γ01 = 0.15,
γ = 0.042, σ1 = 1.04, σ = 1.944 and f = 3.0MHz. It shows that the higher the γ0
is, the better the entanglement among the output beams is, and the more the cascade
number is. However, when transmission of the input mirror is higher, the required
pump power is also higher. When γ0 > 0.5, the possible number of cascaded NOPOs
almost does not increase, and thus, the value of γ0 may be choose about 0.5 which is
easily realized in the experiment.

Figure 4f shows that the number n varies with the analysis frequencies f for γ1 =
0.016, γ01 = 0.15, γ = 0.042, γ0 = 0.4, σ1 = 1.04 and σ = 1.944. The cascade
number of the NOPOs decreases with the increase in the measured frequencies. Thus,
due to the limitation of the bandwidth of the NOPO cavity, the measured frequency
should be selected in a optimal region.

5 Summary

In conclusion, we design a generation system of CV multicolor entangled states in
which multiple cascade NOPOs are used. The quantum entanglement characteristics
among the resultant submodes are theoretically analyzed. Based on the inseparability
criterionproposedbyvanLoock andFurusawa, the dependences of the correlationvari-
ances on the system parameters are numerically calculated. We also comprehensively
consider the interconnection among the physical parameters of the cascade NOPOs
and find the optimal operation condition for generating multicolor entanglement. The
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Fig. 4 Entanglement versus number of NOPOs under different experimental parameters [a the pump
parameter σ ; b the pump parameter σ1; c the transmissivity γ ; d the transmissivity γ1; e the transmissivity
γ0; f the measurement frequencies f ]. The line of variance 4.0 is the limit of the inseparability criterion

results calculated based on the physical parameters used in really experimental sys-
tems provide valuable references for designing multicolor entanglement generation
systems of optical modes.
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