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Quantum phase estimation with a stable squeezed state?
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c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2020

Abstract. Phase estimation of optical field is a vital measurement strategy that can be used to perform
accurate measurements of various physical quantities. Phase estimation precision can be greatly enhanced
by using the nonclassical state such as squeezed state and entangled state. Therefore, we addressed the
generation of a stable squeezed state through locking the pump laser of non-degenerate optical parametric
amplifier to a high finesse Fabry–Perot cavity based on an improved cascade Pound–Drever–Hall frequency
stabilization strategy. Then the obtained squeezed state is used as the probe state of quantum phase
estimation and its precision is enhanced from 9.3 E-5 (shot-noise-limit) to 4.2 E-5 at the optimal phase
with a given average photon number.

1 Introduction

Phase estimation protocol provides a fundamental bench-
mark for quantum enhanced metrology and it is a powerful
measurement strategy to perform accurate measurements
of various physical quantities including length, velocity
and displacements [1–4]. The current studies on phase
estimation are generally divided into two scenarios [5,6].
One is an interferometer with a phase shift in one arm
and the total photon number is considered as a resource
[7–10]. Phase sensitivity is usually more concerned than
the true value of the phase shift and generally called as
phase sensing. The other is a phase shift which is unknown
and time-varying on a single-mode, the phase shift is mea-
sured by projective Von Neumann measurement relative
to a strong local oscillator. The true value of the phase
shift and phase sensitivity can be deduced, which is known
as phase tracking [11,12]. Now only the photon number
of the mode with the phase shift is considered as the
resource. These two kinds of phase estimation strategies
are both important but not equivalent.

The common measurement results for quantum mec-
hanics are statistical, and the results are affected by
the statistical error. The error comes not only from the
imperfections of experiments, but also the limit of the
uncertainty principle of quantum mechanics in essence.
In order to reduce the influence of statistical error, the
classical method is increasing the number of repeated
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measurements under the same conditions and then get
the average result. Quantum mechanics gives a limit for
parameter measurement accuracy in such process and the
fluctuation of the parameter to be measured is ∝ 1/

√
n

(where n is the mean photon number of the resource),
which is so-called standard quantum limit (SQL) [13]. This
is the attainable maximum accuracy for classical source.
The SQL is not unbreakable theoretically, it can be bro-
ken by carefully designing the estimation procedures and
many strategies have been proposed in the last several
decades.

In 1981, Caves [14] proposed that a squeezed vacuum
state can improve the phase estimation accuracy and
break the limit of granular noise. Except for the squeezed
state [15–18], an entangled state, some other state [19–21]
can also be used to break the SQL in phase estimation.
And there are lots of research groups focussing on how to
improve the measurement strategies, such as homodyne
detection [22], heterodyne detection [23], parity detection
[24,25] and so on. In addition, the introduction of non-
linear effect in the parametric coupling process can also
break the SQL and some nonlinear elements are intro-
duced in linear interferometers to enhance resolution and
sensitivity [26–28]. The fundamental property of quantum
mechanics – Heisenberg uncertainty principle, sets a lower
limit for quantum phase estimation. The lower limit is
called Heisenberg limit (HL) ∝ 1/n and it’s the ultimate
precision limit for phase estimation [29].

In this paper, we address a simple and stable scheme
of high precision phase estimation with a squeezed state
via homodyne detection. A solid state laser is locked to
a high finesse Fabry–Perot (F-P) cavity to improve the
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long-term frequency stability by an improved cascade
Pound–Drever–Hall (PDH) frequency stabilization. The
generated stable squeezed state undergoing an unknown
phase shift is detected via homodyne detection with the
help of a strong local oscillator beam. The phase estima-
tion accuracy is enhanced from 9.3 E-5 to 4.2 E-5 at the
optimal phase with a −5.99 dB squeezed state of light at
a given photon number.

2 Estimation of a phase shift

The true value of phase cannot be directly measured due
to the non Hermitian of the phase operator and a problem
is to find a proper quantum counterpart to the classical
phase observable. According to the early work of Dirac
[30], the phase of optical field φ̂ and the number operator
n̂ should be a pair of conjugate variables and the corre-
sponding uncertainty relation is ∆φ̂∆n̂ ≥ 1. The num-
ber of photon cannot be measured with infinite precision,
it goes up and down around an average value because
of the vacuum fluctuation of quantized electromagnetic
fields. This inequality can be used to estimate the accu-
racy of phase estimation. If the photon number fluctuation
is ∆n̂ =

√
n, the phase estimation accuracy is satisfied

∆φ̂ ≥ 1/
√
n. 1/

√
n is a standard to distinguish classical

from non-classical measurements.
Phase estimation theory provides the bounds of any

unbiased estimator at the given number of measured sam-
ples N in the form of Cramér–Rao theorem [2,31,32]:

∆2φ̂ ≥ 1
NF (φ)

≥ 1
NH

, (1)

where F (φ) is the Fisher information (FI), which is the
amount of information about the unknown quantity phase
shift, and the quantum Fisher information (QFI) H is the
maximized FI over all detection strategies. For coherent
state, the QFI is proportional to the number of photons,
H = 4n, and the quantum Cramér–Rao (QCR) bound of
phase estimation is V = 1/(4Nn), which is the well-known
result SQL. The more number of photons of the mode
with the phase shift, the more accurate of the estimation
results. For squeezed state or entangled state, the phase
estimation accuracy will be greatly enhanced beyond the
SQL.

3 Experimental setup and results

A schematic of our experimental setup is illustrated
in Figure 1. The laser source is a continuous wave
intra-cavity frequency-doubled tunable single-frequency
Nd:YAP/LBO solid state laser with the wavelength out-
puts of both 1080 nm and 540 nm, which is provided by
YuGuang company (CDPSSFG-VIB). The two output
beams are separated by a dichroic beam spliter (DBS)
coated with the films of high reflection (HR) at 540 nm
and antireflection (AR) at 1080 nm. The light at the wave-
length of 540 nm is transmitted through a mode cleaner

Fig. 1. Schematic of the experimental setup. Nd:YAP laser:
intra-cavity frequency-doubled tunable single-frequency laser.
DBS: dichroic beam spliter. 540 HR: high reflection at 540 nm.
1080 HR: high reflection at 1080 nm. MC: mode cleaner. ISO:
isolator. AOM: acousto-optic modulator. λ/2: half-wave plate.
λ/4: quarter-wave plate. PBS: polarization beam splitter.
EOM: electro-optic modulator. PD: power detector. PM: phase
modulator. ULE cavity: ultralow expansion cavity. NOPA:
nondegenerate optical parametric amplifier. BS: 50/50 beam
splitter. φ: electric phase controller. BHD: balanced homodyne
detector.

(MC) which is an optical ring cavity consisting of three
mirrors to reduce extra amplitude and phase fluctua-
tions. And the cleaned laser at 540 nm is injected as the
pump field of non-degenerate optical parametric ampli-
fier (NOPA). To improve the solid-state laser’ long-term
stability, we select a spherical ultra-low expansion (ULE)
F-P cavity as the frequency reference standard. Due to
the high finesse (50 000) of the ULE F-P cavity, it is nec-
essary to use a fast feedback actuator that can quickly
realize the locking of the F-P cavity based on the stan-
dard PDH frequency stabilization technique [33–35]. The
AOM is used as the fast feedback actuator to improve the
response bandwidth of the locking system. The 1080 nm
firstly passes an optical isolator (ISO) and an acousto-
optic modulator (AOM). The frequency-shifted first-order
light of the AOM is divided into two parts, one part is cou-
pled to a single-mode polarization maintaining fiber and
then injected into the ULE F-P cavity. A piezo-electric
transducer (PZT) attached on a cavity mirror of the laser
is used as a slow feedback actuator to improve the long-
term stability of the system. The laser frequency stabiliza-
tion to a high finesse F-P cavity is achieved by using the
combination of PZT and AOM as the slow and fast feed-
back actuators, respectively. The frequency drift of the
laser is less than 7.72 MHz in 4 h in this condition, which
proves an obviously improvement at frequency stability.
This helps us to obtain a stable squeezed state by the
NOPA. Through locking the laser to the ULE F-P cav-
ity, the laser system can work continuously for more than
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Fig. 2. The noise power spectra of the generated squeezed
state. The trace (i), (ii) and (iii) are the corresponding SQL,
the noise of the suppression amplitude quadrature and the
noise of the amplified phase quadrature, respectively. The anal-
ysis frequency is 3 MHz, and the noise suppression of amplitude
quadrature is measured as −5.99 dB relative to the SQL while
the variance of the phase quadrature is amplified to +10.95 dB.

4 h and the continuous working time of the entire optical
system can be significantly improved and it provides a ref-
erence for the practical of this quantum phase estimation
scheme.

And the other part of fundemental wavelength from the
laser is used as the injected signal of NOPA and the local
oscillator (LO) beams of the balanced homodyne detec-
tors (BHD). The NOPA consists of an α-cut KTP crystal
and a concave mirror, which can realize type-II noncriti-
cal phase matching without walk-off effect [36]. The front
face of the KTP is coated with the films of HR at 1080 nm
while the transmittance is 18% for 540 nm, which serves as
the input coupler. The end face of the crystal is cut to 1◦
along y–z plane of the crystal to satisfy the simultaneous
resonance of the pump, signal and idler modes. The output
coupler with a radius of curvature of 50 mm is coated with
the transmittance 12.5% for 1080 nm and HR for 540 nm
which is mounted on a piezoelectric transducer (PZT)
to actively lock the cavity length of NOPA. The triple-
resonance of pump, signal and idler modes in the NOPA
is realized by adjusting the temperature of KTP around
the phase-match point and moving the wedged KTP crys-
tal transversally in the optical cavity. Nonlinear interac-
tions can occur when the triple-resonance is realized and
then the parametric down-conversion modes can be gener-
ated. The two output subharmonic fields from the NOPA
operated at the parametric deamplification condition are
an EPR entangled state with perpendicular polarization.
The generated entangled state is coupled into two single-
mode squeezed states with a half-wave plate at 22.5◦ and
a polarization beam splitter (PBS) after the NOPA cavity.
The obtained two single-mode squeezed states are orthog-
onal amplitude squeezed state and the orthogonal phase
squeezed state respectively. This is also the advantage of
the NOPA cavity, two types of nonclassical optical states
can be generated by controlling the angle of the half-wave

Fig. 3. Estimation variance results. Estimation variance versus
twelve phase shifts with fixed number of homodyne samples.
The blue curve and the red dots correspond to the SQL and
the estimation results, respectively.

plate after the cavity. The EPR entangled state of light
at 1080 nm can be generated when the angle of the half-
wave plate is at 0◦. By controlling the half-wave plate
at 22.5◦, two single-mode squeezed states of light with
orthogonal polarizations can be obtained. We choose the
quadrature amplitude squeezed state as the probe beam
in our experiment. The noise power spectra of the gen-
erated squeezed state by BHD are shown in Figure 2. In
actual experimental generation processing, there is some
inevitably extra noise in antisqueezing component of the
squeezed state due to the extra noise and phase fluctu-
ation in its generation system. The noise suppression of
one quadrature is measured as −5.99 dB relative to the
SQL while the variance of the orthogonal quadrature is
amplified by +10.95 dB.

The generated squeezed state undergoes an unknown
phase shift φ and then combined with a strong local oscil-
lator at a 50/50 beam splitter (BS) for homodyne detec-
tion to obtain the quadrature component associated with
the phase shift φ. The true value of the phase can be
infered by Bayesian inference from the homodyne mea-
surements. The estimation variances measured at twelve
different phase shifts in [0, π/2] range are marked as cir-
cles in Figure 3. It is obvious that the estimation accu-
racy beyond the SQL can be realized in a phase interval
near the optimal phase shift without any feedback control.
The phase estimation accuracy is enhanced from 9.3 E-5
to 4.2 E-5 at the optimal phase with the squeezed state at
a given photon number. We experimentally prove a sim-
ple and convenient scheme for quantum phase estimation
of any unknown phase shift on a single-mode based on
homodyne detection.

4 Conclusion

As an important non-classical light field, squeezed state is
closely related to precision measurement due to its spe-
cial characteristics that the noise of one quadrature is
reduced relative to the SQL. We experimentally realize a
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simple and stable scheme of high precision phase estima-
tion with squeezed state. The higher level of the squeezed
state, the more accuracy of the phase estimation preci-
sion in a certain range. The squeezed state has been used
in many situations such as phase precision estimation,
displacement measurement, magnetic field measurement,
time measurement and gravitational wave detection. With
the development of science and technology, high precision
measurements are more and more important and precision
measurements with squeezed state will have a wider appli-
cations. In particular, the recent advances in the genera-
tion of high quality squeezed state and the development
of the new squeezed source [37] will further promote the
rapidly development of quantum precision measurement.

Our work was supported by the Key Project of the National
Key R&D program of China (grant No. 2016YFA0301402),
the National Natural Science Foundation of China (grants No.
61925503, No. 61775127, No. 11654002, No. 11804246, and
No. 11834010), the Program for Sanjin Scholars of Shanxi
Province, and the fund for Shanxi “1331 Project” Key Subjects
Construction.

Author contribution statement

X.J. conceived the original idea. X.J. and J.Y. designed
the experimental scheme. J.Y., Y.Q. and J.Q. constructed
and performed the experiment. X.J., J.Y. and Z.Y. wrote
the paper.

Publisher’s note The EPJ Publishers remain neutral
with regard to jurisdictional claims in published maps and
institutional affiliations.

References

1. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photonics 5,
222 (2011)

2. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439
(1994)

3. LIGO Scientific Collaboration, Nat. Photonics 7, 613
(2013)

4. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233
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