Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System *

ZHANG Peng-Fei(张鹏飞)1, ZHANG Yu-Chi(张玉驰)1, LI Gang(李刚)1, DU Jin-Jin(杜金锦)1, ZHANG Yan-Feng(张艳峰)1, GUO Yan-Qiang(郭亚强)1, WANG Jun-Min(王军民)1, ZHANG Tian-Cai(张天才)1*, LI Wei-Dong(李卫东)2

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
2Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006

(Received 6 January 2011)

We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magento-optical trap positioned at 5mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be $\Omega = 2 \times 23.9 \text{ MHz}$. The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.

PACS: 42.50.Pq, 37.10.Gh

Sensitive detection of single atoms has always been a difficult task during the development of atomic physics. Fortunately, cavity quantum electrodynamics (CQED) in strong coupling regimes provide a powerful tool to detect single atoms sensitively. In the early period, Kimble et al. observed the atoms from a thermal atom beam by means of a high-finesse optical cavity. In the experiment the average atom number $N < 110$ was detected, however a deterministic single atom could not be observed due to the large velocities of thermal atoms. The durations of thermal atoms in the cavity are only several microseconds. This situation has changed until the naissance of the cold atom technology. In 1996, Mabuchi et al. investigated the real-time detection of individual atoms falling through a high-finesse optical Fabry–Perot cavity. Later, Hood et al. observed the single atoms passing through a cavity with various detunings and the “vacuum-Rabi” splitting was obtained. Other schemes such as optical fountain were also used to launch cold atoms into micro-cavities to reach the strong coupling between atoms and photons. Although in free space the substantial extinction of a light beam by a single atom was observed, which could be used to sense the single atom, the strongly coupled cavity QED can greatly enhance the ability of single atom sensing, not only for the sensitivity of a single atom but also for the spatial resolution. With the help of spatial symmetry breaking of the tilted high-order transverse cavity mode, the measurement of spatial resolution of single atoms can be essentially improved. The detection of individual atoms can be used to investigate the statistical properties of the thermal atoms or an atom laser.

As an important and subtle system, cavity quantum electrodynamics in the strong coupling regime has greatly promoted the development of quantum optics and quantum information science during the past two decades. Besides the single atom detection, it has been used in diverse areas such as the generation of deterministic and controllable single-photon sources. Strongly coupled CQED has comprehensively improved the performance of single atom detection and quantum state control. By using the vacuum-stimulated Raman adiabatic passage (v-STIRAP), quantum states can be generated, such as the well-defined single photon state and quantum entangled state between atoms and photons. The strong coupling is also necessary to achieve the reversible mapping of quantum states between atoms and photons, which provides the basis for quantum optical interconnects and is a fundamental primitive for networks.

A common and effective method to achieve strong coupling is to reduce the effective mode volume of cavity. The optimal coupling coefficient g_0 between atoms and photons is $g_0 = d \sqrt{\hbar \omega_0} V_m^{1/2}$, where d is the atomic dipole decay rate γ.
and the cavity decay rate κ. When the coupling coefficient g_0 is larger than the decay rates γ and κ, the strong coupling between atoms and cavity is achieved. The detuning between cavity and atom is described by $\Delta_{ca} = \omega_{\text{cavity}} - \omega_{\text{atom}}$ and the detuning between probe and atom is $\Delta_{pa} = \omega_{\text{probe}} - \omega_{\text{atom}}$. The cavity transmission in the weak-field limit of small excitation is

$$T(x, y) = \kappa^2 (\gamma^2 + \Delta^2_{pa}) \times \left\{ g_{\text{eff}}(x, y)^2 - \Delta^2_{pa} \right\}$$

$$+ (\kappa \Delta_{pa} + \gamma \kappa)^2$$

$$+ (\kappa \Delta_{pa} + \gamma \Delta_{pa} - \gamma \Delta_{ca})^2, \quad (1)$$

where the effective coupling coefficient is $g_{\text{eff}}(x, y) = g_0 \Psi_{m, n}(x, y, z)/\Psi_{0, 0}(0, 0)$. The mode functions read

$$\Psi_{m, n}(x, y) = C_{m, n} \exp\left(-\frac{x^2 + y^2}{w_0^2} \right)$$

$$\times H_m\left(\frac{\sqrt{2} x}{w_0} \right) H_n\left(\frac{\sqrt{2} y}{w_0} \right), \quad (2)$$

where $C_{m, n} = (2^m m! n!)^{-1/2} (w_0^0 \pi/2)^{-1/2}$ and H_m, H_n are the corresponding Hermite polynomials of order m and n; w_0 is the waist of the cavity mode; λ is the wavelength.

The coupling coefficient between the cavity TEM$_{00}$ mode and atom is dependent on the spatial position and can be described by the relation $g(r) = g_0 \exp[-(x^2 + y^2)/w_0^2] \cos(2\pi z/\lambda)$, where x, y and z are the spatial coordinates shown in Fig. 1. It is found that the coupling coefficient can be changed from 0 (atom is at a node) to maximum (atom is at an antinode), depending on the location of the atom. When both the detunings are set to be $\Delta_{ca} = \Delta_{pa} = 0$, the empty cavity transmission keeps the maximum because of the resonance between the cavity and probe light. As the atom enters into the cavity, depending on its exact location, the cavity transmission will decrease since the strong coupling between the cavity and the atom causes the Rabi splitting and the probe beam will not be resonant to the cavity anymore. The cavity transmission will recover later to the maximum as the atom leaves the cavity. Figure 2 shows the typical four transits. The red dots and lines are experimental data and the blue solid curves are theoretical fitting according to Eq. (1). The process described above is clearly seen and the exact time when the atom arrives at the center of the cavity mode can be determined after it is released at $t = 0$. The experimental results show that the depth of each dip is different. From Fig. 2(a)–2(d), we can find that the coupling coefficients decrease. In Fig. 2(a) the transmission decreases to zero, which cor-
responds to $g_{\text{max}}(r) \approx g_0$ and implies that the atom almost flies through an antinode of the TEM$_{00}$ mode, i.e., $y = 0$. From the depth of the dip, we can thus determine the position of the atom in the y direction. The shallower the dip is, the farther the atom is from the cavity axis. In Fig. 2(d), y is about 34.8 μm, which is even larger than the radius of the mode waist. This means that even if the atom is far away from the cavity mode, it can still be detected sensitively. Actually, according to the theory, based on our system, even if the atom has 39 μm off-axis, 50% of the dip could still be observed. By measuring the transit time precisely, the velocity of the atom flying through the cavity can also be determined, as shown in Fig. 2.

The time-varying cavity transmission spectra with different probes and cavity detunings when the atom passes through the cavity mode. (a) $\Delta_{ca}/2\pi = 0$ and $\Delta_{pa}/2\pi = -23.9$ MHz = $-g_0$, (b) $\Delta_{ca}/2\pi = -40$ MHz and $\Delta_{pa}/2\pi = -51$ MHz.

A single atom can also be detected in the case of non-resonance. We present the cavity transmission spectra with different detunings in Fig. 3. With $\Delta_{ca}/2\pi = 0$ and $\Delta_{pa}/2\pi = -23.9$ MHz = $-g_0$, the cavity transmission keeps at low level when there is no atom in the cavity. As the atom flies through the cavity, we obtain a transmission peak, as shown in Fig. 3(a). Similar observation of the cavity transmission with the detuning of $\Delta_{ca}/2\pi = -40$ MHz and

We have measured the time-varying cavity transmission spectra with repetitious atom droppings, as shown in Fig. 3. Without atoms, the empty cavity transmission is shown in Fig. 3(a). From Figs. 3(b)–3(e), one can see 1, 2, 4 and 8 atoms flying through the cavity mode, respectively. Single atoms can thus be counted one by one and the micro-cavity here acts just as a point-like single atom detector. From Fig. 3 we can see that the arrival times and the dip depths of the atom transits are stochastic. We can change the average atom number passing through the cavity mode every drop by adjusting the initial atom number of the atoms in the MOT and the falling status. There is an average of three atoms for every drop in our experiment. We have finished 220 drops and obtained a total of 664 atom transits. The histogram of atom transits is displayed in Fig. 4, which shows that the average single atom duration inside the cavity is about 110 μs.
\[\frac{\Delta_{pa}}{2\pi} = -51 \text{ MHz} \] is shown in Fig. 5(b).

According to the experimental parameters, the maximum coupling coefficient is \(g_0 = 2\pi \times 23.9 \text{ MHz} \). Figure 6 is the close-up view of the cavity transmission for the detunings of \(\frac{\Delta_{ca}}{2\pi} = 0 \) and \(\frac{\Delta_{pa}}{2\pi} = -23.9 \text{ MHz} \). The peak in the center is the left peak due to the vacuum Rabi splitting, which can be seen clearly. The blue curve is the theoretical fitting according to our experimental parameters and the weak-field approximation. The experimental result agrees well with the theoretical simulation. Vacuum Rabi frequency \(\Omega = 2g_0 = 2\pi \times 47.8 \text{ MHz} \) is thus confirmed directly.

In summary, we have experimentally investigated the sensitive measurement of individual neutral cesium atoms based on a strong coupling CQED system. The high-finesse optical micro-cavity can sense the single atom even if the atom is far away from the center of the cavity mode. The position and the velocity of the atom are both determined by the transmission spectra of the cavity. The average duration of the single atom in the cavity is about 110\(\mu \)s. By setting the proper cavity and probe detunings, the transmission peak due to the vacuum Rabi splitting is observed directly, which confirms the strong coupling interaction and the vacuum Rabi frequency \(\Omega = 2g_0 = 2\pi \times 47.8 \text{ MHz} \). Such a strong coupling CQED system can be used for demonstrating the quantum manipulation and quantum measurement on the single quanta level.

References

GENERAL

040201 A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev’s Type
XIA Li-Li

040202 A Modification of Extended Homoclinic Test Approach to Solve the (3+1)-Dimensional
Potential-YTSF Equation
M. T. Darvishi, Mohammad Najafi

040203 Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete
Mechano-Electrical Systems
WANG Peng

040204 Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems
CHEN Xiang-Wei, MEI Feng-Xiang

040205 Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic
Systems
GUO Rong-Wei

040301 Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on
Nano Electro-Mechanical Resonator
ZHU Zhi-Cheng, TU Tao, GUO Guo-Ping

040302 Photon Distribution of a Squeezed Chaotic State
FAN Hong-Yi, ZHOU Jun, XU Xue-Xiang, HU Li-Yun

040303 A Three-Node QKD Network Based on a Two-Way QKD System
HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei

040304 Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues
O. Bayrak, A. Soylu, I. Boztosun

040305 High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense
Coding with Hyperentanglement
WANG Tie-Jun, LI Tao, DU Fang-Fang, DENG Fu-Guo

040401 Cosmological Dynamics of de Sitter Gravity
AO Xi-Chen, LI Xin-Zhou, XI Ping

040501 Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated
Noises
LI Chun, MEI Dong-Cheng

040502 Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator
SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang

040503 Stable Flocking of Multiple Agents Based on Molecular Potential Field and Distributed
Receding Horizon Control
ZHANG Yun-Peng, DUAN Hai-Bin, ZHANG Xiang-Yin

040504 Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate
JIANG Nan, CHEN Shi-Jian

040505 Time Evolution of a Harmonic Chain with Fixed Boundary Conditions
LU Hong, BAO Jing-Dong

040701 Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors
XU Lei, WANG Rui, LIU Yong, DONG Liang

THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

041101 Peak of Chiral Susceptibility and Chiral Phase Transition in QED
ZHOU Yu-Qing, YANG Yong-Hong
041201 Associated Production of a Neutral Top-Higgs with Top Quark Pairs at the LHC within the TC2 model
Li Bing-Zhong, HAN Jin-Zhong

NUCLEAR PHYSICS

042101 174Hf and 174Yb by the Projected Shell Model with Improved 4-quasiparticle basis
CHEN Fang-Qi, ZHOU Xian-Rong

ATOMIC AND MOLECULAR PHYSICS

043101 Lifetime Measurement for 6snp Rydberg States of Barium
SHEN Li, WANG Lei, YANG Hai-Feng, LIU Xiao-Jun, LIU Hong-Ping

043201 Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State
HU Qin-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke

043301 Field-Free Molecular Orientation Induced by Nonresonant Square Laser Pulses
XU Shu-Wu, HUANG Yun-Xia, JI Xian-Ming

043401 Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps
WANG Ji-Cheng, ZHOU Ke-Ya, WANG Yue-Yuan, LIAO Qing-Hong, LIU Shu-Tian

044201 Temperature Compensation for Threshold Current and Slope Efficiency of 1.3 μm InAs/GaAs Quantum-Dot Lasers by Facet Coating Design
XU Peng-Fei, YANG Tao, JI Hai-Ming, CAO Yu-Lian, GU Yong-Xian, WANG Zhan-Guo

044202 Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning
LI Jing, DENG Ying, WANG Jian-Jun, LI Ming-Zhong, XU Gang-Peng, LIN Hong-Huan, ZHU Na, ZHANG Rui, JING Feng

044203 Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System
ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai, LI Wei-Dong

044204 Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes
SHI Feng, ZHANG Yi-Jun, CHENG Hong-Chang, ZHANG Jing, XIONG Ya-Juan, CHANG Ben-Kang

044205 A Successive Scans Method of Adjusting Scan-Time for Injection Electroluminescent Display Panels
OU Peng, YANG Gang, JIANG Quan, WANG Jun, HU Jian-Hua, WU Qi-Peng, LUO Kai-Jun

044206 Q-Switched Thulium-Doped Domestic Silica Fiber Laser
HU Hui, DU Ge-Guo, YAN Pei-Guang, ZHAO Jun-Qing, GUO Chun-Yu, RUAN Shuang-Chen

044207 Coupling Frequency Band of the In-Phase Locked Gain Waveguide Array Lasers
SHA Peng-Fei, XIN Jian-Guo, FANG Li-Ping, LIU Zheng-Fan, ZHOU Ying, YU Song-Lin, WEN Jian-Guo

044208 Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems
FU Yu-Xin, ZHANG Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Ping

044209 Suppression of FM-to-AM Conversion in Broadband Third-Harmonic Generation of Nd:Glass Laser
CHEN Ying, QIAN Lie-Jia, ZHU He-Yuan, FAN Dian-Yuan

044201 Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles
QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong

044201 Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid
T. Hayat, F. M. Abbasi, Awatif A. Hendi
Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls
SI Xin-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong

Spectral Characteristics of CN Radical ($B \rightarrow X$) and Its Application in Determination of Rotational and Vibrational Temperatures of Plasma
PENG Zhi-Min, DING Yan-Jun, ZHAI Xiao-Dong, YANG Qian-Suo, JIANG Zong-Lin

Effective Shear Viscosity of Iron under Shock-Loading Condition
MA Xiao-Juan, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong

Numerically Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface
CHEN Zhao-Quan, LIU Ming-Hai, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei

Non Planar Electrostatic Solitary Wave Structures in Negative Ion Degenerate Plasma
S. Hussain N. Akhtar, Saeed-ur-Rehman

Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure
LI Xue-Chen, JIA Peng-Ying, ZHAO Na

Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO$_3$
DUAN Yi-Feng, QIN Li-Xin, SHI Li-Wei, TANG Gang

Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure
WEN Zhang-Bin, HOU Zhi-Lin, FU Xi-Jun

Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes
WU Shan-Shan, WANG Lei, YANG De-Ren

Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential
TAN Hao, WANG Hai-Ying, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long

Surface Effects on the Postbuckling of Nanowires
LI Bin, LI Chuan-Xi, WEI Cheng-Long

Effect of the Viscosity of Silicone Oil on the Aggregation Behavior of C:F Clusters on a Silicone Oil Liquid Substrate
DENG Yan-Hong, YE Chao, YUAN Yuan, LIU Hui-Min, CUI Jin

Effect of the Viscosity of Silicone Oil on the Aggregation Behavior of C:F Clusters on a Silicone Oil Liquid Substrate
DENG Yan-Hong, YE Chao, YUAN Yuan, LIU Hui-Min, CUI Jin

Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction
ZHAO Peng, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong

Electronic Density Decay Lengths of Pb Films from First Principles Calculations
LI Meng, JIN Hong-Bo, LI Jin-Ming, SUN Qiang, JIA Yu

Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates
SUN Tao, WANG Ming-Qing, SUN Yong-Jian, WANG Bo-Ping, ZHANG Guo-Yi, TONG Yu-Zhen, DUAN Hui-Ling

Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study
OUYANG Fang-Ping, CHEN Li-Jian, XIAO Jin, ZHANG Hua

Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions
LI Xiao-Wei
047501 Energy Gap Dependence on Mn Content in a Diluted Magnetic Quantum Dot
P. Nalini, A. John Peter

047801 Spectral Resolution Effects on the Lineshape of Photoreflectance
MA Li-Li, SHAO Jun, LÜ Xiang, GUO Shao-Ling, LU Wei

047802 Multilayer Antireflection Coating for Triple Junction Solar Cells
ZHAN Feng, WANG Hai-Li, HE Ji-Fang, WANG Juan, HUANG She-Song, NI Hai-Qiao, NIU Zhi-Chuan

047803 Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs
LIAN Jia-Rong, NIU Fang-Fang, LIU Ya-Wei, ZENG Peng-Ju

047804 Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature
HE Ping, FAN Rong-Wei, XIA Yuan-Qin, YU Xin, YAO Yong, CHEN De-Ying

047805 Preparation of Gd$_2$O$_2$S:Yb,Ho Phosphor via Thermolysis of Sulfur-Contained (Gd,Yb,Ho)[S$_2$CN(C$_4$H$_8$)]$_3$ Phen Complexes
ZHONG Hai-Yang, LUO Xi-Xian, MA Lu-Bin, ZHANG Ming, XING Ming-Ming, FU Yao

048101 Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition
CHEN Yao, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong

048102 Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition
WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo

048201 A Monte Carlo Simulation of a Monomer Dimer CO$_2$ Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice
K. Iqbal, A. Basit

048401 Thermoelectric Properties of Te-Doped Ba$_{0.32}$Co$_{4}$Sb$_{12-x}$Te$_x$ Prepared at HPHT
REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng

048701 Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention
LI Ling, JIN Zhen-Lan

048702 DNA Conformational Variations Induced by Stretching 3’5’-Termini Studied by Molecular Dynamics Simulations
QI Wen-Peng, LEI Xiao-Ling