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Multipartite entanglement is a key resource for quantum information processing and quantum communication.
We show that the robust entanglement among four filtered output optical modes can be achieved when there is a
nonlinear crystal inside an optomechanical cavity. The optical parametric amplifier (OPA) gives rise to single-
mode squeezing of the cavity modes; therefore, the entanglement among four output optical modes can be en-
hanced remarkably. Furthermore, the degree of quadripartite entanglement is influenced by the nonlinear gain of
OPA and bandwidth of the filters. Large entanglement can be obtained by optimizing the filter functions, which is
important for utilizing entangled light beams more efficiently in real experiments. This kind of multipartite

entanglement will be useful and valuable in the area of quantum communication networks.
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1. INTRODUCTION

Quantum entanglement, as an important kind of quantum cor-
relation [1,2,3,4], is one of the most attractive research areas of
quantum systems. The achievement of multipartite entangled
states is a prerequisite for realization of the quantum informa-
tion process and quantum network [5-9]. The optomechanical
system is considered as an ideal platform to prepare squeezed
and entangled states. The optical squeezing in optomechanics
has been realized in experiment [10,11,12], which is different
from the fully optical experiments using second-order nonlin-
earity [13]. The most obvious advantage for optomechanical
systems is that it can entangle different subsystems (e.g., optical
mode and microwave mode) through interaction with a
mechanical oscillator, because the mechanical oscillator can
couple with an electromagnetic field of any frequency. In recent
years, various entangled states have been generated from cavity
optomechanical systems, including entangled states of light
modes [14-19], of light and mechanical modes [20-22], of
mechanical modes [23-31,32], and of hybrid modes, e.g., in
atom-optomechanical systems [33-36]. Among all these en-
tangled states, entangled light beams are of particular interest
for their important role in quantum communication as the fly-
ing qubit. In 2011, Vitali ez /. proposed a scheme that is able to
generate stationary continuous-variable entanglement between
optical and microwave cavity modes by means of their common
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interaction with a nanomechanical resonator [16]. In 2013, Lin
Tian presented schemes to generate robust photon entangle-
ment via optomechanical quantum interfaces in the strong
coupling regime; both continuous-variable and discrete-state
entanglements that are robust against mechanical noise can
be achieved [17]. In 2016, Ying-Dan Wang ez a/. aimed at op-
timizing the filter functions to obtain a large entanglement in a
relatively short time, which is important for utilizing entangled
light beams more efficiently in real experiments [37,38].
In 2017, Min Xiao et al. presented a proposal to generate
robust tripartite entanglement between two longitudinal cavity
modes with a single-cavity optomechanically system driven by a
single input laser field [39]. Recently, we investigated the en-
hancement effect of a degenerate optical parametric amplifier
(OPA) placed inside an optomechanical cavity on the steady-
state entanglement of two cavity modes, which jointly interact
with a mechanical resonator [40]. The abovementioned works
are all theory proposals. In experiment, Lehnert ez a/. produced
entanglement between two microwave pulses based on a
mechanical oscillator in 2013 [41]. However, there are few
works on generating multipartite (especially more than three
partite) continuous-variable entangled states from optome-
chanical systems.

In this paper, we propose a scheme for enhancing the sta-
tionary entanglement among four filtered output optical modes
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via adding an OPA and two filters in an optomechanical sys-
tem. It is found that OPA and filters can enhance entanglement
among the output optical modes effectively. Therefore, we can
choose proper bandwidth of the filters and nonlinear gain of the
OPA to obtain large and robust entanglement of the output
fields.

The paper is organized as follows: in Section 2, we briefly
introduce the model and derive the quantum Langevin equa-
tions (QLEs) after linearization of the system dynamics.
Moreover, we derive the covariance matrix of the filtered output
optical modes and use logarithmic negativity to evaluate
the entanglement among four output optical modes. In
Section 3, we show the numerical results and indicate that
the entanglement of the output fields can be enhanced effec-
tively, and we also compare the cases with and without placing
an OPA. Finally, we make our conclusions in Section 4.

2. SYSTEM

As shown in Fig. 1, we consider an optical Fabry—Perot
cavity with an OPA crystal in it. The cavity consists of
two mirrors (M, M,) and a mechanical resonator. Two
cavity modes interact jointly with the mechanical resonator.
The two mirrors are partially transmissive, so the system can
generate four output optical modes. Two cavity modes have
resonance frequencies @¢;(j = 1,2), and they interact with
the mechanical oscillator via usual optomechanical interac-
tion. The mechanical oscillator has an effective mass m
and frequency w,, The cavity modes are driven by two lasers
with frequencies w;(j = 1,2) and power P;(j = 1,2), and
the OPA is pumped by another two lasers at frequencies
2wy, which are used to generate two squeezed optical fields
at frequencies ;.
The Hamiltonian of the system is given by

2 2
2 h
i=1 =
2 .
b3 el —aeoun
i=1
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The first term gives the energy of the cavity modes, where
annihilation operator 4; and creation operator a; have the
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Fig. 1. Sketch of the system. Two cavity modes are, respectively,
driven by two lasers and interact with the mechanical resonator via
optomechanical interaction. There is a nonlinear crystal (OPA) inside
the optomechanical cavity.

commutation [z,,4,] = 1( = 1,2). The second term is the
energy of the mechanical mode, where ¢ and p are dimension-
less position and momentum operators of the mechanical
oscillator satisfying the commutation relation [g, p] = i. The
third term describes the radiation—pressure coupling, and
g; = (o¢;/L)\/h/mw, (i = 1,2) is the optomechanical cou-
pling, in which L is the effective length of the cavity. The fourth
term expresses driving fields, and €;(i = 1,2) is related to the
driving power P; by &; = \/2k;P;/hwy;, where k(i = 1,2) is
the decay rate of the cavity mode. The last term describes the
coupling between the OPA and the two cavity modes. G is the
nonlinear gain of the OPA, and 6 is the phase of the optical
field driving the OPA. Here we consider a degenerate configu-
ration and only the fundamental photons resonate inside the
cavity, while the pump field is undepleted; thus, in the last term
of the Hamitonian, the pump power is included in the
nonlinear gain G [42,43,44], i.e., G is proportional to the
pump power.

The nonlinear QLEs, considering the damping of both
cavity modes and mechanical mode and all kinds of noises
entering into the system, in the interaction picture with respect
to hw,a a;, are given by

g = Opp;
b=, -Vup + 184 + graya; + &,
Lil = _(Kl + Ky + Z.A()l)ﬂl + iglﬂlq + &1 + ZGKZHAZI

+ /2K40 + \/2K,4,
ay = -(ky + Ky + iDgy)ay + igrarq + €, + 26816‘”-2‘-

+ \/2K,48 + /2K, (2)
where Ay, = w¢; - wy;, and y,, is the damping rate of the
mechanical mode. & and 4 are input noise operators of the
system. Particularly, 2} describes the vacuum input noise enter-
ing into the two cavity mirrors, whose nonzero correlation
function is defined as

(@ (a" () = 5z - 1), 3

and £ is the noise operator of the mechanical oscillator with
correlation function [45]

do . hw
7 —iw(t-t") h 1,
m/zﬂe a){cot <2/€BT>+ }

HOLEE
@

where kp is the Boltzmann constant, and 7" is the temperature.
For y,, < @,,, £ becomes delta-correlated, i.e.,

E@EE) + E()é(0)) /2 =7, 2Qn+ Dot -£),  (5)

with 72 = [exp(hw,,/kgT) - 1]"' denoting the mean thermal
phonon number. It means that the motion of the mechanical
oscillator is a Markovian process.

Since we are interested in the entanglement of optical fields
in the steady state, we aim to find the steady-state solutions
of Eq. (2). We use the semiclassical approximation theory to
linearize the nonlinear QLEs by writing each operator as
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a; = o, +0oa;,q=q,+0q,p=p,+p,(i =1,2). Then,
inserting them into Eq. (2) and setting the derivatives to zero,
one can obtain the average value

px = 0’
— g1|a51|2 +g2|aJ2|2
qs wm 4
€
o = ,
7k, + Ky - 2G cos 0) + i(A, - 2G sin 0)
a; - (6)

- (ky + Ky = 2G cos 0) + i(A, - 2G sin )’

where A; = Ay, - g;9.(i =1,2) is the effective detuning.
Next, defining the quadrature fluctuation operators of
the cavity modes 6X,= (62,464, )/ /2,6Y ;/=i(5a, -a;)/ /2
and the corresponding input noise fluctuation operators
Xin = (4 + af") )2V = (& - ') /in/2, where iand j
represent the vacuum noise of cavity mode 7 from mirror j,

the linearized QLEs are given by

64 = w,,0p,
Op=-0,,6q-7,,0p+ G 16X, + G,6X,+¢,
58X, =-(k, +K,-2G cos 0)8X | + (A, +2Gsin 0)5Y,
+ /26 X0 + /2, X8,
8Y,=-(k; +Kk,+2G cos O)5Y | - (A, -2G sin 0)8X,
+G,8q+ 2K, Y,
58X, =—(ky + Ky -2G cos 0)8X 5 + (A, +2G sin 6)5Y
+ /260 X8 4 /2, X00,
8Y,=—(k; +Ky+2G cos 0)5Y , - (A, -2G sin 0)8X ,
+ Gy8q+ /26 Vi + /2K, Vi, ]
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G;(i =1,2) is the effective optomechanical coupling with
G, = ﬁgiaﬂ, where we have taken a,; real by choosing a
proper phase reference of the cavity fields.

The QLEs [Eq. (7)] can be rewritten as

where R(z) = [6¢,0p,6X,,8Y,8X,,6Y,]" is the vector of
the quadrature fluctuation operators, A is the so-called drift
matrix with the form of Eq. (9),

and

n(t) = (0, (1), /2K, X (£) + /26X (£) /26, Y (2)
+ /26, Y1 (2), /2K, X5 (2)

+ V2X5 (0260 Y5 (1) + 26,V 5 ()T

is the corresponding vector of noise operators. The system is
stable only when the real parts of all eigenvalues of the drift
matrix A are negative.

We now focus on the entanglement among the four output
optical modes of the optomechanical cavity. According to the
input—output theory [46], the operators of the output fields can
be written as

" (0) = \/2K;0a;(w) - & (w). (10)

So the dynamics of both output optical modes are given by
B"(@) = P,R- N, (11)

R$™(w) = P,R - N>, (12)

where  R() = [g,p, X3, V5 X35 VT, Rg(w) =
g, X35, Y92, X98, Y47, and Py = diag[1, 1, /2y, /21,
V2K1, V261), Py = diagll, 1, /2Ky, /265, V262, /2K R
describes the quadrature fluctuation operators of the intra-
cavity field in the frequency domain after performing the
Fourier transform and can be written in a compact matrix form:

R = -Mn, (13)

where M = (iwl + A)"' with I being the 6x6 identity
matrix. In addition, N = (0,0, X, Y, X, vin)T, N, =
(0,0, X, Yin, X ¥in). Then we can obtain a 8 x 1 vector
RO (0) = DX, VX3, V3 X9, VI, X35, V9577, which
contains the quadratures of four output optical modes.

The correlation between the output optical modes can be
analyzed in terms of thermal modes, appropriately filtered from
the field with specific filter functions [47,48,49]. Simple and
explicit filter functions in time and frequency domain are
given by [47,48]

o (/9

R() = AR() + n(0), (8) WO == gy 00
0w, 0 0 0 0
-W,, ~Vm G, 0 G, 0
e 0 0 —(x; +x5-2G cos ) A, +2G sin 0 0 0
G, 0 ~(A,-2Gsin0)  -(k; + Ky + 2G cos ) 0 0 ’
0 0 0 0 ~(ky 4+ k5 = 2G cos 0) A, 4+ 2G sin 0
G, 0 0 0 -(A, - 2G sin ) —(k; + k5 + 2G cos )
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and

hi(w) = T 79 o) PR

(7 =1,2), (14)
where 7;! and Q;; are, respectively, the bandwidth and central
frequency of the j-th filter. ;(#) is the Heaviside step function.
Correspondingly, the field’s filtered modes are written by the
bosonic annihilation operator

i) = / " byt - ale)dr (15)

Since the steady state of the system is a zero mean Gaussian
state, it is fully described by its second-order correlations
[47,48]. The covariance matrix of the filtered output fluc-
tuation quadrature can be written as

2V, 0') = (RN @)RN @) + R ()R (w)T), (16)

Re[h1 ()] -Im[hy,(2)] 0 0
Im[Ay1()]  Relhy;(2)] 0 0
0 0 Re[h,(1)]  -Im[hy,(2)]
T(w) = g g Im[h(l)z(f)] Re[h(;z(f)]
0 0 0 0
0 0 0 0
0 0 0 0

and Rl(w) = T(w)R*"(w), in which T(w) is the Fourier
transform of the 7°(¢), and 7(¢) is an 8 x 8 matrix containing
the filter functions of four output optical modes and is given
by Eq. (17).

By substituting R!(w) into Eq. (16), we can get

2Vil(w, w")
— T(w)<R0u[(w)Rcu[,T(a)’) +Rout(a)')Rout,T(w)>T(a)’)T.
(18)

After integrating V(w,®’) by using delta function
0(w + @'), the brief expression of the covariance matrix
(CM) of the four filtered output optical modes can be

written as

pAl— / ” doVil(w, - ), (19)

Once we obtain the CM, it is convenient to calculate entan-
glement among four output optical modes by using the loga-
rithmic negativity [50,51], which is defined as

Exn = max|[0, - In(20_)], (20)

where v_ = mineig|iQ, V| is the smallest symplectic eigen-
value of partial transposed CM V. with V. = P,V Py,

(V, is the 4 x 4 CM related to the two output optical modes,
and Py, = diag(1, 1, 1, - 1) is the matrix that inverts the sign
2

of phase of optical mode 2) and Q, = ®;_,io, is the so-called

symplectic matrix, where o, is the y-Pauli matrix, and @
denotes a direct sum of matrices.

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we show the numerical results of the steady en-
tanglement among four output optical modes in the cases with
and without placing an OPA in the system. Since the phase 8 of
the driving field on OPA affects the entanglement of the output
fields, we adopt the phase @ = 7/2, which is the optimal phase
for the entanglement [40]. Figure 2 shows the steady-state
entanglement among four output optical modes as a function
of nonlinear gain G of the OPA. The other parameters

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

. (17)

Re[/y1(1)]  ~Im[hy,(7)] 0 0
Im[hy ()] Re[hy(7)] 0 0

0 0 Re[hy(2)]  ~Imlhy,(2)]

0 0 Im[hy(£)]  Re[h(7)]

we adopted are as follows: the mechanical resonator has the
frequency w,,/2n = 10 MHz, effective mass 7 = 5 ng, and
damping date y,,/27 = 100 Hz; the length of the cavity is
L =5 mm, cavity decay rates are x; = 0.015 w,, and
k; = 0.01 @, detunings are A} =w, and A, =-0,
[20,33,40,48,52], and two driving lasers have powers
Py =100 mW and P, = 80 mW. As shown in Fig. 2, the
entanglement degrades when nonlinear gain G is very large.
Large G leads to a large difference between G| and G, and
strong squeezing of intra-cavity modes, which implies that
the fluctuation of X is bigger than that of X,. Thus, optical
noise becomes a significant effective thermal bath for the
mechanical mode and leads to a degradation of entanglement,
according to the second equation of Eq. (6). And an optimal G
exists corresponding to maximum entanglement as a result
of the balance between entanglement enhancement at moder-
ate values of G and entanglement degradation at large values
of G.

As shown in Fig. 3, the entanglement can be significantly
enhanced by the OPA in the cavity. Only the entanglement
between output optical modes 1 and 2 is given, and other
entanglements have the same tendency. When OPA and
filters work together in an optomechanical system, we need to
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Fig. 2. Entanglement Ej versus the nonlinear gain G, where
Q,=Q, =0,,Q, =Q) =-w,,and 7 = 0.01 K. The entan-
glement between output optical modes 1 and 2 (red solid line), modes
3 and 4 (blue solid line), modes 1 and 4 (orange solid line), and modes
2 and 3 (black dotted line) are shown. Other parameters are given in
the text.

choose a proper bandwidth to obtain large entanglement.
Here we adopt the value of the inverse bandwidth
Ty =Ty = Ty = Ty = 70/w,,. Thus, with a proper non-
linear gain of the OPA and suitable bandwidth of the filters,
we can improve the degree of entanglement among the output
optical modes. All entanglements among four output optical
modes are shown in Fig. 4. It is obvious that all entanglements
can be enhanced, and the maximum value of the entanglement
has increased by 77% for output optical modes 1 and 2, 66%
for output optical modes 2 and 3 (I and 4), and 63% for

0.0

0 50 100 150 200

7 (units of 1/w,,)

Fig. 3. £, as a function of the inverse bandwidth of filters 7; solid
line: G = 0.05w,,; dashed line: G = 0. Other parameters are as in
Fig. 2.

output optical modes 3 and 4, compared to the condition with-
out OPA in the system. There are no entanglements between
modes 1 and 3, 2 and 4 at all. The quadripartite square graph-
state entanglement among the output optical modes is clearly
shown in Fig. 5.

In addition, we also study the influence of temperature
on the entanglement among four output optical modes.
Here, similarly, only the entanglement between output optical
modes 1 and 2 is shown in Fig. 6. From Fig. 6, we can clearly
see that the improvement is remarkable for the system at a
lower temperature, which means that our scheme is preferred
to work at cryogenic temperatures.
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Fig. 4. Entanglement between two output optical modes as a function of the central frequency of one filtered output mode (;; = Q,,), with
central frequency of the other output mode fixed at Q,; = Q,, = -®,,. Solid line: G = 0.05®,,; dashed line: G = 0. Other parameters are as in

Fig. 2.
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Fig. 5. Quadripartite square graph-state entanglement among the
output optical modes, where circles stand for output modes, solid lines
represent bipartite entanglements, and dashed lines mean no entangle-
ments at all.
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04t}
0.3}

Ey

L
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Fig. 6. Entanglement between output optical modes 1 and 2 versus
the central frequency of one filtered output mode (Q;; = Q) for
different system temperatures, with the central frequency of other out-
put modes fixed at Q,; = Q,, = -w,),. Solid and dashed lines corre-
spond to G = 0.05w,, and G = 0, respectively. Red and black lines
correspond to 7 = 0.01 Kand 7" = 1 K, respectively. Other param-
eters are as in Fig. 2.

4. CONCLUSION

We show that the steady-state entanglement among four out-
put optical modes can be significantly improved by adding an
OPA in an optomechanical system. The OPA is used to squeeze
two cavity modes, which leads to a significant improvement of
the two-mode entanglement, especially for the system at low
temperatures. There exists an optimal nonlinear gain of the
OPA for generating the maximum entanglement. After opti-
mizing the filter functions, we can obtain a large entanglement
in a relatively short time, which is important for utilizing en-
tangled light beams more efficiently in real experiments. Our
scheme can be used to enhance the multipartite entanglement
of optical fields in an optomechanical system, which is valuable
to quantum communication and quantum computation.
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