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Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor
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The phase compensation mechanism induced by anomalous dispersion in the reflection process of four-wave
mixing (or reflection from a grating) in a three-level system is investigated, where the four wave vectors do
not match in vacuum. An efficiency of the reflected signal of as high as 43% from a hot atomic cell of Cs
is observed. The maximum reflection occurs when the frequency of the probe beam (and consequently the
frequency of the reflected signal) is slightly red detuned from the transition frequency, which is attributed to
the phase compensation from the steep anomalous dispersion accompanied with a strong probe absorption. The
dependences of the efficiency on the angle between the coupling and probe lights, on the intensity of the coupling,
field and on atomic density are studied. A theoretical model is presented and it is in good agreement with the
experimental results.
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I. INTRODUCTION

Quantum nonlinear dynamics is an important topic in
physics. The optical nonlinearities such as four-wave para-
metric interaction [1] and parametric down conversion [2]
can result in a large number of quantum effects, such as a
squeezed state [1,2], all-optical switching [3], and quantum
entanglement [4]. These effects are important for the research
field of quantum information processing and communication
[5]. Furthermore, the nonlinear process via atomic coherence
has recently attracted much attention [6] due to its potential
application in the storage of quantum information and quantum
memory [7,8], cross-phase modulation [9], effective genera-
tion of squeezing without a cavity [10], multimode squeezing
with possible applications to quantum imaging [11,12], and
long-distance communication [13]. Experimental and theoret-
ical studies have revealed that the atomic coherence generated
by electromagnetically induced transparency (EIT) [14] plays
an important role in the multiwave mixing process [15–19], as
EIT modifies both absorptive and dispersive properties of an
absorbing medium, which may lead to suppression of lower-
order susceptibilities and the enhancement of higher-order
susceptibilities by a slowly propagating wave.

In a three-level EIT system, the strong-coupling field is
a traveling wave, and there is no absorption for the probe
field. By using a standing wave for the coupling field in the
three-level system, we obtain a narrow strong absorption with
a steep anomalous dispersion [20–22] instead of transparency.
At the same time of the probe absorption, a unique field
is generated [23], which can be understood as the result of
electromagnetically induced grating (EIG) due to spatially
modulated absorption and dispersion (Bragg grating) [24].
The diffraction due to the Bragg grating generated by the
standing wave has been observed in cold atoms [25–27]. When
the probe is almost normal to the grating (almost parallel to
the coupling field), the diffraction is usually called reflection
[28], which was observed in hot atoms with and without a
buffer gas [29–32]. This generation of a unique field can be
explained also with a four-wave mixing (FWM) process [18].

In these studies [24–27,29–32], the frequency of the coupling
field is smaller than the probe field frequency, so that the
Bragg condition 2D = λc � λp can be satisfied for the probe,
where λp and λc are the wavelength of the probe and the
standing-wave coupling field, respectively, and D is the period
of the grating; or the phase matching can be achieved for the
four wave vectors of the related fields.

Here we report the experimental observation of 43%
reflection efficiency of the probe with a probe frequency that
is smaller than the frequency of the coupling standing wave,
i.e., the Bragg condition cannot be fulfilled. Our theoretical
analysis and experiment show that the high reflection is due
to the strong anomalous dispersion, which results in the
compensation to the phase mismatch.

II. EXPERIMENT

Consider the three-level system with one upper state |a〉
(62P1/2,F

′ = 4), and two ground states |b〉 (62S1/2,F = 4)
and |c〉 (62S1/2,F = 3) of the 133Cs D1 line; see Fig. 1(a). The
transition frequencies from |a〉 to |c〉 and |b〉 are ωac and ωab,
respectively, with ωac = ωab + 2π × 9.2 GHz. The decay rate
of the upper state to the ground states is �a = 2π × 4.6 MHz.
Two strong copropagating and counterpropagating coupling
fields with frequency ωc = ωac propagate in the x direction,
and drive the transition between |a〉 and |c〉, a weak probe
light (ωp) scanning across the transition of |a〉 and |b〉 is
incident with a small angle θ into the cell, see Fig. 1(b). In this
experiment, the frequency of the coupling field is larger than
that of the probe field, ωc > ωp, which violates the geometric
Bragg condition ωc/ωp = cos θ . In other words, the vacuum
wave vectors of the driving fields, probe field, and the reflected
field do not meet the phase-matching condition. The Cs vapor
cell with antireflection-coated end windows (the loss of the
far-off resonant light through the cell is measured to be 4%)
has a length L = 7.5 cm; the temperature (T) is controlled
from 28 ◦C to 82 ◦C, which corresponds to an atom density
of 0.07–4.52 × 1018 m−3. The power of the copropagating
coupling field is 20 mW with an e−2 full width of 0.64 mm,
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FIG. 1. (Color online) (a) �-type three-level scheme. (b) Exper-
imental setup. PBS: polarizing beam splitter; QWP: quarter-wave
plate; M: reflection-mirror; PD1,2: photodetectors.

and the counterpropagating coupling field is formed from the
reflected copropagating coupling field via a quarter-wave plate
and a reflection mirror M; its power is varied by the reflection
coefficient R. The power of the probe is 90 µW (only 0.45%
of the coupling power) with an e−2 full width of 0.59 mm.

In Fig. 2(a), we plot the absorption coefficient α =
L−1 ln(Pin/Pout) vs �p = ωp − ωab for different R. Pin and
Pout are the input and output powers of the probe light,
respectively. For R = 0, the EIT spectrum is observed [see
the cyan curve (1)], and for R = 1, a narrow absorption peak
is observed [see the black curve (5)]. From R = 0 to R = 1, we
see the gradual transformation of the EIT dip into a narrow
absorption peak, with small dips at the middle of curves (2),
(3), and (4). For R �= 1, the coupling field can be approximately
considered to be composed of two parts, a standing wave and a
forward (copropagation) field that results in a EIT dip (residual
EIT), which is true even for R = 1 because of various losses. To
measure the dispersion properties of the medium, we use the
homodyne method based on a Mach-Zehnder interferometer
to detect the phase shift �	 of the probe light passing through
the cell. Figure 2(b) shows the �	 as a function of �p. From
EIT to the narrow absorption peak, the dispersion is changed
gradually from a normal [curve (1)] to a steep anomalous
dispersion [curve (5)]. The small normal dispersion region at
zero detuning is due to the residual EIT.

Once the counterpropagating coupling field is turned on,
the emission signal with frequency ωr ≈ ωp at the reflection
direction from the vapor cell is detected by detector PD2 [see
Fig. 1(b)]. We measure the reflection efficiency η = Pr/Pin (re-
flected field power Pr over the input probe power) versus probe
detuning at different angles (see Fig. 3), and as high as 11%
efficiency is observed at θ = 0.14◦ and T = 43 ◦C [curve (1)].
The larger measurement angle leads to a decrease of the
reflection efficiency [see curves (1)–(4)]. Although not shown
in Fig. 3, the saturation absorption spectrum of the probe light
is simultaneously recorded to monitor the frequency of the

-30 -20 -10 0 10 20 30
0

2

4

6

8

10

12

 (
%

)

p (MHz)

(4)

(3)

(2)

(1)

FIG. 3. (Color online) The reflection efficiency vs probe detuning
for different angles at T = 43 ◦C. Curve (1) (black line): θ = 0.14 ◦;
curve (2) (red line): θ = 0.24◦; curve (3) (magenta line): θ = 0.34 ◦;
and curve (4) (green line): θ = 0.44 ◦. The other parameters are the
same as those in Fig. 2.

reflected signal, and it is noted that the peaks of the reflection
spectrum are red-detuned from an atomic transition of ∼5 MHz
when the system is driven by a resonant standing-wave field.
The smaller the angle is, the higher is the efficiency. A
maximum efficiency could be observed at θ = 0◦, but in the
case of θ = 0◦, the beam of the reflected signal overlaps that
of the input probe, and it is not possible to collect the complete
reflected signal.

The reflection efficiency also strongly depends on the
power of the coupling field, the temperature of the atoms,
or the number density of the atoms. When the power of the
coupling standing wave Ps (for Ps = Pc1 = Pc2, Pc1 and Pc2

represent the power of forward and backward coupling field)
increases, the efficiency increases from few percent to 12% at
T = 43 ◦C [see the black dots in Fig. 4(a)], and the saturation
reaches Ps = 20 mW. If we fix the power of the copropagating
coupling field (Pc1 = 20 mW) and increase the power of
the counterpropagating coupling field Pc2 via changing R
from 0 to 1 (from a traveling coupling field to a complete
standing-wave coupling field), the efficiency still increases
with increasing Pc2 [see the red triangle dots in Fig. 4(a)].
A comparison between the two curves in Fig. 4(a) shows us
that without complete standing-wave coupling, we still have
significant reflection, but the efficiency is smaller for the case
of a complete standing-wave coupling field, which means that
the stronger absorption of the probe with steeper anomalous
dispersion (see Fig. 2) gives a higher reflection efficiency.
When the temperature increases from 35 ◦C to 80 ◦C, as high
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(5) FIG. 2. (Color online) Measured
transmission (a) and phase shift (b)
of probe light vs probe detuning �p

for different R: (1) R = 0 (cyan line);
(2) R = 0.25 (green line); (3) R = 0.5
(magenta line); (4) R = 0.75 (red line);
and (5) R = 1 (black line). The other
parameters are θ = 0.14◦ and T = 28 ◦C.
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FIG. 4. (Color online) The efficiency vs
the coupling power for R = 1 and different
R (a), and the cell temperature with R = 1 (b).
The other parameters are the same as those in
Fig. 2.

as 43% efficiency is observed (with angle θ = 0.14◦ and R = 1)
due to the increase in atom density. Saturation reaches at 80 ◦C
[see Fig. 4(b)].

What is the physics behind the measurement results where
the geometric Bragg condition is violated and the phase match-
ing for the vacuum wave vectors is not met? Furthermore,
the atomic velocity distribution (at above room temperature)
makes the periodical structure very weak. From Figs. 2 and 4,
we know that high reflection occurs in the atomic system with
strong probe absorption and large anomalous dispersion (phase
shift) for the probe light. Therefore, we need to consider the
absorption (and dispersion) and emission by all the atoms in
the cell with different velocities, which come from the atomic
dipole between |a〉 and |b〉.

III. THEORY

Now we turn to the theoretical interpretation of the
reflection process. Consider the three-level atom in Fig. 1(a)
in the frame moving with the atom, which is coupled
to two counterpropagating coupling fields Ec1,c2(z,t) =
1
2Ec1,c2e

i(
⇀
k c1,c2·⇀r −ωc1,c2t) + c.c. with frequency ωc1, ωc2 and

wave vectors
⇀

kc1,
⇀

kc2, and one weak probe field Ep(z,t) =
1
2Epei(

⇀
k p ·⇀r −ωpt) + c.c. with frequency ωp and wave vector

⇀

kp.
The time evolutions of the density-matrix elements are

ρ̇ab = (−iωab − �a/2)ρab − ipe−iωpt (ρaa − ρbb)

+ i(c1e
−iωc1t + c2e

−iωc2t )ρcb, (1a)

ρ̇cb = (−iωcb − γcb)ρcb − ipe−iωptρca

+ i(∗
c1e

iωc1t + ∗
c2e

iωc2t )ρab, (1b)

ρ̇ca = (−iωca − �a/2)ρca − i∗
peiωptρcb

+ i(∗
c1e

iωc1t + ∗
c2e

iωc2t )(ρaa − ρcc), (1c)

ρ̇bb = γabρaa − ipe−iωptρba + i∗
peiωptρab, (1d)

ρ̇cc = γcaρaa − i(c1e
−iω1t + c2e

−iω2t )ρca

+ i(∗
c1e

iωc1t + ∗
c2e

iωc2t )ρac, (1e)

ρaa + ρbb + ρcc = 1, (1f)

where c1 = µacEc1

2h̄ ,c2 = µacEc2

2h̄ ,p = µabEp

2h̄ are the Rabi
frequencies of copropagating and counterpropagating cou-
pling and probe fields, and µij is the relevant dipole moment of
transition |i〉 ↔ |j 〉. �a/2 is the decoherence rate between the
excited state |a〉 and the ground states |b〉, |c〉, respectively.

γcb is the dephasing rate between two ground states. Note
that the wave vectors of the two coupling fields are in

opposite directions,
⇀

kc1 = −⇀

kc2 = ⇀

kc, and the frequencies
have a difference ωc2 − ωc1 = δ due to the atomic velocity.
The atom moving with velocity v in the direction of x “sees”
the frequencies of the probe and the copropagating coupling
beams are shifted by an amount of −ωpv/c and −ωc1v/c,
respectively, and the frequency of the counterpropagating
coupling beam is shifted by ωc2v/c.

Because the probe field is much weaker than the coupling
field, the atoms mostly populate the ground state |b〉. We per-
form a rotating-frame transformation using ρab = ρ̃abe

−iωpt ,
ρac = ρ̃ace

−iωc1t , ρcb = ρ̃cbe
−i(ωp−ωc1)t . The solution of

Eqs. (1) can be solved in the form

ρ̃ij =
∑

n

ρ̃
[n]
ij e−inδt (n = 0, ± 1, . . .), (2)

where ρ̃
[n]
ij is the Fourier component of ρ̃ij , which is related to

important physical properties we will discuss later. By keeping
to the first order of the probe field Rabi frequency p and all
orders of the Rabi frequencies of coupling fields c1,c2, we
obtain

ρ̃
[n]
ab = −ipδn,0 − ic1ρ̃

[n]
cb − ic2ρ̃

[n−1]
cb

i�p − γab + inδ
, (3a)

ρ̃
[n]
cb = −i∗

c1ρ̃
[n]
ab − i∗

c2ρ̃
[n+1]
ab

i(�p − �c1) − γcb + inδ
, (3b)

where �p = ωp − ωab and �c1 = ωc1 − ωac are the detunings
of the probe and copropagating coupling lights, respectively.
In Eq. (3a), ρ̃

[0]
ab is the synchronic frequency coherence of the

probe light (it determines the linear absorption and dispersion
properties of probe light), and ρ̃

[n]
ab (n � 1) are the difference

frequency coherences, which result in the nonlinear process.
The absolute value of the square of ρ̃

[n]
ab is related to the

intensity of the generated signal with frequency ωe = ωp + nδ

via a nonlinear process, and is strongly correlated to the
ground-state atomic coherence ρ̃

[n]
cb . On the other hand, ρ̃

[n]
cb

is directly determined by the Rabi frequency of the coupling
fields c1,c2; it is very large at the two-photon resonance [�p −
�c1 = 0 in Eq. (3b)] between the copropagating coupling and
probe lights. Especially for n = 1, the generated signal results
from both the zero-order ground-state coherence ρ̃

[0]
cb and the

counterpropagating coupling field [see the second term in
Eq. (4a)], and it is enhanced by the higher-order ground-state
coherence ρ̃

[1]
cb , which in turn is induced by the first and second
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order of ρ̃
[n]
ab [see Eq. (4b)]. For n = 1, the process is described

as a FWM:

ρ̃
[1]
ab = −ic1ρ̃

[1]
cb − ic2ρ̃

[0]
cb

i�p − γab + iδ
, (4a)

ρ̃
[1]
cb = −i∗

c1ρ̃
[1]
ab − i∗

c2ρ̃
[2]
ab

i(�p − �c1) − γcb + iδ
, (4b)

ρ̃
[0]
cb = −i∗

c1ρ̃
[0]
ab − i∗

c2ρ̃
[1]
ab

i(�p − �c1) − γcb

. (4c)

The solution of ρ̃
[n]
ab is obtained from the recursion relation

ρ̃
[n]
ab = P −1

n

(
− pδn,0 + ∗

c1c2

(�p − �c2) + nδ + iγcb

ρ̃
[n−1]
ab

+ c1
∗
c2

(�p − �c1) + nδ + iγcb

ρ̃
[n+1]
ab

)
, (5)

where

Pn = (�p + nδ + iγab) −
( |c1|2

(�p − �c1) + nδ + iγcb

+ |c2|2
(�p − �c2) + nδ + iγcb

)
.

Introducing the ratio Zn = ρ̃
[n]
ab /ρ̃

[n−1]
ab for n �= 0, we get

Zn = ∗
c1c2Un

1 − |c1|2|c2|2Tn

1−···
(n = ±1, . . .), (6)

where

Un = 1

Pn[(�p − �c2) + nδ + iγcb]
,

Tn = Un+1

Pn[(�p − �c1) + nδ + iγcb]
.

We obtain finally

ρ̃
[0]
ab = −p

P0 − c1
∗
c2Z1

(�p−�c1)+iγcb
− ∗

c1c2X1

(�p−�c2) + iγcb

, (7a)

ρ̃
[1]
ab = −p∗

c1c2

P0 − c1
∗
c2Z1

(�p−�c1)+iγcb
− ∗

c1c2X1

(�p−�c2)+iγcb

U1

1 − |c1|2|c2|2T1
1−···

,

(7b)

ρ̃
[2]
ab = −p∗

c1c2
∗
c1c2

P0 − c1
∗
c2Z1

(�p−�c1)+iγcb
− ∗

c1c2X1

(�p−�c2)+iγcb

U1

1 − |c1|2|c2|2T1
1−···

× U2

1 − |c1|2|c2|2T2
1−···

, (7c)

where

X1 = c1
∗
c2K1

1 − |c1|2|c2|2L1
1−···

,

with

Kn = 1

P−n[(�p − �c1) − nδ + iγcb]
,

Ln = Kn+1

P−n[(�p − �c2) − nδ + iγcb]
.

The real and imaginary parts of χ correspond to the
dispersion and the absorption of the probe field, respec-
tively, and are related to ρ̃

[0]
ab by the polarization relation

P = 1
2ε0χEpe−iωpt + c.c. = µabNρ̃

[0]
ab e−iωpt + c.c., where ε0

is the free-space permittivity, and N is the atom number
density. In this system of gas atoms, the influence of Doppler
broadening has to be taken into account. Considering all
the atoms in the vapor cell, we need to take an integration
over the velocity distribution f (v) =

√
m

2πkBT
exp(− mv2

2kBT
),

where
√

2kBT
m

is the most probable speed of atoms at a
given temperature T, m is the atomic mass, and kB is the
Boltzmann constant. We make the average over all Doppler
detuning by replacing the detuning �c1 → �c1 − (ωc1v/c),
�p → �p − (ωpv/c), and �c2 → �c2 + (ωc2v/c) for dif-
ferent velocities in the laboratory frame, and get the total
susceptibility

χ =
∫ +∞

−∞

(−N |µab|2 /ε0h̄)
√

m
2πkBT

exp
(− mv2

2kBT

)
(
�p − ωpv

c
+ iγab

) − c1(∗
c1+∗

c2Z1)
(�p−�c1)+ (ωc1−ωp)v

c
+iγcb

− c2(∗
c2+∗

c1X1)
(�p−�c2)− (ωp+ωc2)v

c
+iγcb

dv. (8)

The imaginary and real parts of Eq. (8) for different
ratios of the Rabi frequency (R = |c2|2 / |c1|2) are plotted
in Figs. 5(a) and 5(b), which are in good agreement with
the experimental observation [Figs. 2(a) and 2(b)]. A minor
discrepancy exists between theory and the experiment for
curve (5) in Figs. 2(b) and 5(b), since the Rabi frequencies
of the forward and backward coupling fields are not exactly
the same in the experiment because of the loss from optics for
the backward coupling field.

It can be proved easily from Eq. (7) that the generated

signal is proportional to ρ̃
[n]
ab ∝ p(∗

c1c2)n ∝ exp{i[⇀

kp −
⇀

kr − n(
⇀

kc1 − ⇀

kc2)] · ⇀

r} with the wave vector
⇀

kr . Note that the

wave vectors of the coupling beams are set
⇀

kc1 = −⇀

kc2 = ⇀

kc

in the discussed configuration. So the nth-order generated
signal n �= 0 from different velocity atoms is small due to
a large phase mismatch except for n = 1. For n = 1, the gen-

erated signal ρ
[1]
ab ∝ p∗

c1c2 ∝ exp[i(
⇀

kp − ⇀

kr − 2
⇀

kc) · ⇀

r ] is
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FIG. 5. (Color online) The absorption

(a) and dispersion (b) of probe light vs
probe detuning �p for different ratio of
Rabi frequency R = 2

c2/2
c1. Curve (1):

R = 0 (cyan line); curve (2): R = 0.25
(green line); curve (3): R = 0.5 (magenta
line); curve (4): R = 0.75 (red line); and
curve (5): R = 1 (black line). The parame-
ters are γab = 0.5�a , γcb = 0.03�a , p =
2π × 3 MHz, c1 = 2π × 50 MHz, and
the density of atoms is 1015/m3.

relatively large because the phase roughly matches �
⇀

k =
⇀

kp − ⇀

kr − 2
⇀

kc ≈ 0.

Field
⇀

Er reflected by the atoms along the direction of
⇀

kr is

⇀

Er (
⇀

r,t) ∝
∑

i

ρ̃
[1]
ab ei(

⇀
k p−⇀

k r−2
⇀
k c)·⇀r i e−iωr t , (9)

where the summation is over all the atoms. The total intensity
of the output reflected signal off the vapor cell (the length L)
is

Ir = c

2π
| ⇀

Er (
⇀

r,t)|2 ∝ |pc1c2|2|f [1](c1,c2)|2

× sin2
(

�kL
2

)
(

�kL
2

)2 , (10)

with

f [1](c1,c2) = 1

P0 − c1
∗
c2Z1

(�p−�c1)+iγcb
− ∗

c1c2X1

(�p−�c2)+iγcb

× U1

1 − |c1|2|c2|2T1
1−···

.

The frequency of the reflected signal is ωr = ωp − (
⇀

kp −
⇀

kr − 2
⇀

kc) · ⇀
v ≈ ωp, which is approximately equal to ωp in

the reflection direction according to the condition of phase
matching. The process for the signal generation is as follows:
The atoms transition from |b〉 to |a〉 by absorbing the probe
field (photon) of frequency ωp, then transition to |c〉 by
emitting the copropagating field of ωc, and then transition back
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FIG. 6. Phase mismatching at θ = 0.14◦ vs the probe detuning.
The parameters are the same as in Fig. 5.

to |a〉 by absorbing the counterpropagating coupling field of
ωc, and finally return to |b〉 by the emission of the reflected
field. It can be represented by the factor f [1](c1,c2), which
depends only on the intensity of the coupling field (emitting
and reabsorbing the same copropagating field and/or the same
counterpropagating field). Note that the generated reflected
light and the absorbed light in the backward field form a
Doppler-free pair, and the absorbed probe photon and the
increased photon in the forward field form another Doppler-
free pair, because both pairs are at two photon resonances
between |b〉 and |c〉 (or |c〉 and |b〉). This process also
involves the absorption and emission of the same forward
(or backward) coupling field (without net photon increase or
reduction), indicated by f [1](c1,c2). The emitted photon
into the forward coupling field is neglected, because the initial
intensity is more than 20 times stronger than that of the probe.

Now let us come back to the phase-matching condition,
including the dispersion,

�
⇀

k = ⇀

kp − ⇀

kr − 2
⇀

kc = 0, (11)

where |⇀kc| = ncωc/c, |⇀kp| = npωp/c, and |⇀kr | = nrωr/c. In
our experimental scheme, energy conservation leads to equal
frequencies of probe and reflected fields ωp = ωe, and np =
ne = 1 + (1/2)Re[3πN (λp/2π )3(γab/p)ρ̃[0]

ab ] for both the
probe and emission light are coupled to the same atomic
transition. We set nc = 1 for the dispersion and the absorption

of the strong-coupling field can be neglected, the value of �
⇀

k

is [see Fig. 1(b)]

�k = 2(npωp cos θ − ωc)/c = (
2(ωp cos θ − ωc)

+ Re
[
3πN (λp/2π )3(γab/p)ρ̃[0]

ab

]
ωp cos θ

)/
c.

(12)

At resonance ωp = ωab, ωc = ωac, the momentum could
not be conserved for any angle θ , �k < 0, because of
ωac − ωab = 2π × 9.2 GHz [see the energy level in Fig. 1(a)]
and the second term on the right-hand of Eq. (11) is zero
[representing the dispersion of the atoms; see Fig. 5(b)],
consequently, the reflection signal is weak, as shown in
Fig. 3. However, in Fig. 3 we observe that the reflected
beam peaks at a probe detuning of �p = 5 MHz. It is well
known that around the absorption peak, the gradient of the
anomalous dispersion is very large [see Figs. 2(b) or 5(b)],
that is to say, the value of the real part of ρ̃

[0]
ab (the phase

shift in experimental measurement results) changes sharply
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FIG. 7. (Color online) The numerical calculation for reflected
signal vs probe detuning. Curve (1): θ = 0.14◦ (black line); curve (2):
θ = 0.24◦ (red line); curve (3): θ = 0.34◦ (magenta line); and curve
(4): θ = 0.43◦ (green line). The parameters are the same as those in
Fig. 5.

with probe detuning. When the frequency ωp decreases, the
anomalous dispersion provides some compensation [repre-
sented by the term Re[3πN (λp/2π )3(γab/p)ρ̃[0]

ab ]ωp cos θ/c

in Eq. (12)] to the phase-matching condition. Note
Re[3πN (λp/2π )3(γab/p)ρ̃[0]

ab ] > 0 for ωp < ωab, which
makes Eq. (11) closer to being satisfied, as is shown in
Fig. 6, i.e., the phase mismatching �kL reaches a minimum
at �p ≈ 5 MHz and, consequently, we have a peak at ωp <

ωab. In Fig. 7 we plot the corresponding theoretical curves,
which are close to the experimental curves in Fig. 3. The
signal peaks are red detuned for ∼5 MHz because of the
phase compensation induced from the anomalous dispersion
(natural width of the excited state); see Figs. 3 or 7. For
ωp > ωab, we have Re[3πN (λp/2π )3(γab/p)ρ̃[0]

ab ] < 0, so
that there is no phase compensation (in fact, it is even worse),
and the reflected signal declines quickly. In the numerical
calculation for the curves in Fig. 7, the summation over all

atoms within the cell length is approximately replaced by an
integration over the atoms within an effective distance 1/β

and β ∝ Imρ
[0]
ab /p, as the probe field declines during the

propagation, Ip = Ip0e
−βx .

IV. CONCLUSION

In conclusion, the reflection process, where the phase
matching for the vacuum wave vectors (the geometric Bragg
condition) cannot be fulfilled, is studied both theoretically
and experimentally. The four waves involved are the coprop-
agating and counterpropagating coupling fields, the probe,
and the reflected field. The atoms absorb the probe and
the counterpropagating coupling field, and meanwhile emit
the copropagating coupling field and the reflected field.
The probe and the copropagating coupling field form a
Doppler-free pair, and the reflected and the counterpropagating
coupling fields form another Doppler-free pair, so that we have
Doppler-free reflection, because both pairs are at two-photon
resonance. During the FWM process, the phase mismatching
is compensated for by anomalous dispersion due to the strong
absorption of the probe. When the frequency is redshifted
from the resonance, we have a minimum phase mismatch
and consequently a maximum of the reflection (a peak).
The reflection is enhanced by strong anomalous dispersion,
and more than 45% of reflection efficiency is observed. The
efficiency increases with coupling power and the atom density.
Here we would like to emphasize that FWM is different
from the effect of third-order nonlinearity, because the atomic
dipole depends on all orders of the coupling fields [see the
f [1](c1,c2) factor of Eq. (10)].
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[15] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[16] V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys.

Rev. Lett. 99, 143601 (2007).
[17] L. Deng and M. G. Payne, Phys. Rev. Lett. 91, 243902 (2003).
[18] H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 061804

(2004).
[19] S. Du, E. Oh, J. Wen, and M. H. Rubin, Phys. Rev. A 76, 013803

(2007).
[20] C. Affolderbach, S. Knappe, R. Wynands, A. V. Taı̆chenachev,

and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).

053841-6

http://dx.doi.org/10.1103/PhysRevLett.55.2409
http://dx.doi.org/10.1103/PhysRevLett.57.2520
http://dx.doi.org/10.1103/PhysRevLett.57.2520
http://dx.doi.org/10.1126/science.1152261
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1364/OL.14.001344
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1103/PhysRevLett.91.093601
http://dx.doi.org/10.1103/PhysRevLett.82.1847
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1103/PhysRevA.76.053827
http://dx.doi.org/10.1103/PhysRevA.76.053827
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1364/OL.21.001936
http://dx.doi.org/10.1103/PhysRevLett.99.143601
http://dx.doi.org/10.1103/PhysRevLett.99.143601
http://dx.doi.org/10.1103/PhysRevLett.91.243902
http://dx.doi.org/10.1103/PhysRevA.70.061804
http://dx.doi.org/10.1103/PhysRevA.70.061804
http://dx.doi.org/10.1103/PhysRevA.76.013803
http://dx.doi.org/10.1103/PhysRevA.76.013803
http://dx.doi.org/10.1103/PhysRevA.65.043810


ENHANCED REFLECTION VIA PHASE COMPENSATION . . . PHYSICAL REVIEW A 83, 053841 (2011)

[21] A. A. Zhukov, S. A. Zibrov, G. V. Romanov, Y. O. Dudin, V. V.
Vassiliev, V. L. Velichansky, and V. P. Yakovlev, Phys. Rev. A
80, 033830 (2009).

[22] A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett.
83, 4277 (1999).

[23] H. Y. Ling, Y. Q. Li, and M. Xiao, Phys. Rev. A 57, 1338
(1998).

[24] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature (London) 426,
638 (2003).

[25] G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R.
Tabosa, Phys. Rev. A 59, 1408 (1999).

[26] M. Mitsunaga and N. Imoto, Phys. Rev. A 59, 4773 (1999).
[27] H. Kang, G. Hernandez, and Y. Zhu, J. Mod. Opt. 52, 2391

(2005).
[28] H. P. Myers, Introductory Solid State Physics (Taylor & Francis,

London, 2002).
[29] A. W. Brown and M. Xiao, Opt. Lett. 30, 699 (2005).
[30] A.W. Brown and Min Xiao, J. Mod. Opt. 52, 2365 (2005).
[31] I. Bae, H. Moon, M. Kim, L. Lee, and J. Kim, App. Opt. 47,

4849 (2008).
[32] I. Bae, H. Moon, M. Kim, L. Lee, and J. Kim, Opt. Express 18,

1389 (2010).

053841-7

http://dx.doi.org/10.1103/PhysRevA.80.033830
http://dx.doi.org/10.1103/PhysRevA.80.033830
http://dx.doi.org/10.1103/PhysRevLett.83.4277
http://dx.doi.org/10.1103/PhysRevLett.83.4277
http://dx.doi.org/10.1103/PhysRevA.57.1338
http://dx.doi.org/10.1103/PhysRevA.57.1338
http://dx.doi.org/10.1038/nature02176
http://dx.doi.org/10.1038/nature02176
http://dx.doi.org/10.1103/PhysRevA.59.1408
http://dx.doi.org/10.1103/PhysRevA.59.4773
http://dx.doi.org/10.1080/09500340500275892
http://dx.doi.org/10.1080/09500340500275892
http://dx.doi.org/10.1364/OL.30.000699
http://dx.doi.org/10.1080/09500340500275314
http://dx.doi.org/10.1364/AO.47.004849
http://dx.doi.org/10.1364/AO.47.004849
http://dx.doi.org/10.1364/OE.18.001389
http://dx.doi.org/10.1364/OE.18.001389

