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We calculate the delay time and noise spectrum of a squeezed state throughout an electromagnetically induced
transparency medium with dynamic Stark splitting. It is shown that the noise spectrum splits into two parts with
the same delay time, so that the delayed squeezing can survive well in two channels. Furthermore, we show that
the two squeezing channels as well as the delay time can be manipulated via one-photon detuning and detection
frequency such that the quantum state with high delay time and squeezing can be well preserved. This avoids the
influence of large noise from laser near zero detection frequency. © 2012 Optical Society of America
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1. INTRODUCTION
Quantum coherence of electromagnetically induced transpar-
ency (EIT) [1] has drawn much attention to optical applica-
tions such as quantum memory [2], which is a major
component in quantum-network information processes [3].
The quantum network uses atoms as quantum nodes to pro-
cess and store quantum states locally [4]. Photons act as quan-
tum channels to link the separated nodes for exchanging
quantum information [5]. Fundamentally, this is the quantum
interface that converts quantum states from one physical sys-
tem to those of another in a reversible fashion. Such quantum
connectivity can be achieved by optical interaction of photons
and atoms [6] in an EIT medium.

The proposed atomic-ensemble-based quantummemory [2]
is closely related to EIT. Quantum storage of squeezed state
light through an EIT medium has been experimentally realized
in hot atoms and magneto-optical traps [7–10], in which the
atomic quantum memory was verified by measuring the quan-
tum noise of the retrieved states. Theoretical calculations
have also shown that the noise of the quantum state could
be well preserved throughout an EIT medium under one-
and two-photon resonances [11–13]. However, experimental
study of the quantum noise performance of an EIT system
has shown that an undesirable excess noise is introduced
in the delayed output state of coherent probe light [14]. As
a result, the squeezing of the delayed output state in an
EIT medium has not been kept the same as that of input state
[15], and the squeezing property of the retrieved state after a
storage time has degraded [9,10]. Most of these studies have
focused on specific conditions of resonant interaction be-
tween light and atoms. They still suffer from various noises
that limit the efficiency and fidelity, since the EIT system is
not perfectly transparent [16], and the quantum state is
detected at a non-zero detection frequency [17].

To improve the quantum efficiency of the squeezing pro-
pagation or storage in an EIT system, both experimental and
theoretical studies have found a way to suppress the noise of

output delay light via reducing the detection frequency or
operating the system at off one- or two-photon resonance
[17–19]. Apart from EIT-based propagation and quantum
memory of a squeezing for both continuous- and pulsed-wave
light [6,9,20], other protocols have also been proposed to
improve efficiency in quantum memory, such as off-resonant
Raman interaction [21], controlled reversible inhomogeneous
broadening [22], atomic frequency combs [23], gradient echo
technology [24], and so on. Moreover, we note that interfer-
ence between two dark resonances induced by the dynamic
Stark splitting in a four-level system can further enhance the
degree of freedom in manipulating atomic optical responses
when we use a third electromagnetic field to perturb the tran-
sitions, hence the transfer of the quantum states [25]. Theories
and experiments [25–27] have demonstrated that when the
third electromagnetic field is applied, an absorption peak
emerges in the original EIT window, which is an evidence
of ac Stark effect. The splitting of EIT resonance may provide
more channels to manipulate and control the quantum state
preservation and transfer. The prospects of multichannel
quantum memory and communication inspire us to explore
the noise properties of delayed light propagating in the multi-
transparency windows induced by ac Stark splitting. This
paper theoretically studies the delay time and noise spectrum
of a squeezed state throughout a double EIT system of ac
Stark splitting. We investigate the feasibility of using the ac
stark effect for two-channel transfer of squeezed state, and
explore the possibility of using it to manipulate the delay time
and noise of the output squeezed state.

2. THEORETICAL MODEL
Consider a four-level system, as shown in Fig. 1. A classical
coupling field with frequency ωc and a weak quantum probe
field â�z; t� with frequency ωp couple the transitions jci↔jbi
and jai↔jbi. A coherent switch field of frequency ωs drives a
magnetic-dipole transition between the fourth level jdi and
the ground state jci. The detunings of the three lights are given
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by Δ1 � ωba − ωp;Δ2 � ωbc − ωc; Δ3 � ωcd − ωs; with ωμv

being the atomic transition frequency of jμi↔jvi This four-
level system can be found, for example in the D1 and D2 lines
of cesium atoms. The upper hyperfine level Fe � 4�62P1∕2� of
the D1 line serves as the excited state jbi, and the two lower
levels Fg � 3 and Fg � 4 of 62S1∕2 serve as the ground states
jai and jci. One of the hyperfine levels Fe � 2; 3; 4; 5�62P3∕2� at
D2 line is used as jdi.

In this system, the dynamic Stark splitting can be viewed as
the combination of different transitions in the dressed-state
picture. The switching field drives the hyperfine magnetic-
dipole transition and results in a superposition of jci and
jdi, and two dressed states denoted by j1�N�i and j2�N�i
are generated. The energy interval between the dressed states

isΔE � ℏ
���������������������������
Δ2

3 � �2Ωs�2
q

, which is known as ac Stark splitting.

When we scan the probe frequency, there should be two dark
resonances or transparency windows of probe absorption
with the coupling frequency and the probe frequency satisfy-
ing the two-photon resonance conditions from jai to j1�N�i
and from jai to j2�N�i. On the other hand, interference be-
tween the two dark resonances results in an extra absorption
peak. Thus, there will be three absorption peaks with two
in-between transparency windows for the probe spectral
profile [27].

Assume that the intensity of the quantum probe field is
much less than those of the classical coupling and switching
fields and all the atoms are initially in the state jai with
hσ̂aai ≈ 1. The evolution equations for both the slowly varying
atomic operators and the slowly varying annihilation operator
of the quantum probe field â�z; t� are given by

_̂σab � −�γab � iΔ1�σ̂ab � igâ� iΩcσ̂ac � F̂ab; (1a)

_̂σac � −�γac � i�Δ1 −Δ2��σ̂ac � iΩ�
c σ̂ab � iΩsσ̂ad � F̂ac; (1b)

_̂σad � −�γad � i�Δ1 −Δ2 −Δ3��σ̂ad � iΩ�
s σ̂ac � F̂ad; (1c)

and

�∂∕∂t� c�∂∕∂z��â � ig�N σ̂ab; (1d)

where 2Ωc, 2Ωs are the Rabi frequencies of coupling and
switching fields. γab is the spontaneous decay rate from jbi
to jai. γac and γad represent the decoherence rates between
the ground states due to atomic collision and atomic drifting
out of the interaction region. g � Pba

����������������������
ωp∕2ε0Vℏ

p
is the

atom-field coupling constant with Pba being the atomic dipole
moment for the jbi↔jai transition. N is the number of atoms.

We take the Fourier transform of the equations in (1) and
solve them for â�z;ω�. Then we obtain the output probe field
at the exit of the cell with the length L:

â�L;ω� � â�0;ω� exp�−Λ�ω�L�

− �g�N∕c�
Z

L

0
F̂�s;ω� exp�−Λ�ω��L − s��ds; (2)

with

Λ�ω� � �jgj2N∕c� × ��r2r3 � jΩsj2�∕Z�ω�� − iω∕c (3)

and

F̂�s;ω� � �iΩcΩsF̂ad�s;ω� � Ωcr3F̂ac�s;ω�
− i�r2r3 � jΩsj2�F̂ab�s;ω��∕Z�ω�; (4)

where r1 � γab � i�Δ1 − ω�, r2 � γac � i�Δ1 −Δ2 − ω�, r3 �
γad � i�Δ1 −Δ2 −Δ3 − ω� and Z�ω� � r1�r2r3 � jΩsj2� �
jΩcj2r3:ω is the detection frequency.

The delay time of the probe beam throughout the atomic
medium can thus be obtained from the equation of group
velocity [11,12],

ΔT � �L∕c�fjgj2N × Re�jΩcj2�r23 − jΩsj2�
− �r2 × r3 � jΩsj2�2�∕�r1�r2 × r3 � jΩsj2� � r3jΩcj2�2gjω�0:

(5)

Equation (2) contains two parts: The first term represents
the amplitude attenuation and phase shift, and the second
term represents the influence of excess noise coming from
vacuum noise when the probe field interacts with the atoms.

According to the correlation functions of Langevin noise
operators calculated via the quantum regression theorem
[11,27], we obtain the nonzero terms:

hF̂ac�s;ω�F̂�
ac�s0;−ω0�i � γacLδ�s − s0�δ�ω − ω0�∕N; (6a)

hF̂ad�s;ω�F̂�
ad�s0;−ω0�i � �2γad − γac�Lδ�s − s0�δ�ω − ω0�∕N;

(6b)

hF̂ab�s;ω�F̂�
ab�s0;−ω0�i � �2γab − γac�Lδ�s − s0�δ�ω − ω0�∕N;

(6c)

and

hF̂�
ac�s;−ω�F̂ac�s0;ω0�i � γacLδ�s − s0�δ�ω − ω0�∕N: (6d)

Introducing amplitude and phase quadratures of the
probe light X̂�z; t� � �â�z; t� � â��z; t�� and Ŷ �z; t� �
−i�â�z; t� − â��z; t�� and using the definition of quadrature
flux spectrum [28], we can get the normalized quadrature
amplitude and phase spectrum of the delayed output probe
light, SX �L;ω� � �c∕L�hX̂�L;ω�X̂�L;−ω�i and SY �L;ω� �
�c∕L�hŶ �L;ω�Ŷ �L;−ω�i, which are

Fig. 1. Schematic of a four-level system and the corresponding
dressed-state diagram.
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SX�L;ω� � f�SX �0;ω�∕4��exp�−�Λ�ω� �Λ�−ω��L�
� exp�−�Λ�ω� �Λ��ω��L�
� exp�−�Λ��−ω� �Λ�−ω��L�
� exp�−�Λ��−ω� �Λ��ω��L��g
− f�SY �0;ω�∕4��exp�−�Λ�ω� �Λ�−ω��L�
− exp�−�Λ�ω� �Λ��ω��L�
− exp�−�Λ��−ω� �Λ�−ω��L�
� exp�−�Λ��−ω� �Λ��ω��L��g
� f�jgj2NL∕c� × �1 − exp�−�Λ�ω�
�Λ��ω��L�∕��Λ�ω� �Λ��ω��L�
× �jΩcj2jr3j2rac � jΩcj2jΩsj2�2rad − rac�
� jr2r3 � jΩsj2j2�2rab − rac��∕jZ�ω�j2 � �jgj2NL∕c�
× �1 − exp�−�Λ�−ω� �Λ��−ω��L�∕��Λ�−ω�
�Λ��−ω��L� × �jΩcj2jr3�−ω�j2rac�∕jZ�−ω�j2g (7a)

and

SY �L;ω� � f−�SX �0;ω�∕4��exp�−�Λ�ω� �Λ�−ω��L�
− exp�−�Λ�ω� �Λ��ω��L�
− exp�−�Λ��−ω� �Λ�−ω��L�
� exp�−�Λ��−ω� �Λ��ω��L��g
� f�SY �0;ω�∕4��exp�−�Λ�ω� �Λ�−ω��L�
� exp�−�Λ�ω� �Λ��ω��L�
� exp�−�Λ��−ω� �Λ�−ω��L�
� exp�−�Λ��−ω� �Λ��ω��L��g
� f�jgj2NL∕c� × �1 − exp�−�Λ�ω�
�Λ��ω��L�∕��Λ�ω� �Λ��ω��L�
× �jΩcj2jr3j2rac � jΩcj2jΩsj2�2rad − rac�
� jr2r3 � jΩsj2j2�2rab − rac��∕jZ�ω�j2 � �jgj2NL∕c�
× �1 − exp�−�Λ�−ω� �Λ��−ω��L�∕��Λ�−ω�
�Λ��−ω��L� × �jΩcj2jr3�−ω�j2rac�∕jZ�−ω�j2g: (7b)

The output amplitude noise spectrum in Eq. (7) comes from
three contributions, i.e., the three terms on the ride side. The
first term represents the contribution of the amplitude noise
spectrum of the input probe SX �0;ω�; the second term repre-
sents the contribution of the phase noise spectrum of the input
probe SY �0;ω� due to the phase-to-amplitude noise conver-
sion [29,30]; the last term arises from the Langevin atomic
noise due to the random decay process of atoms.

3. RESULTS AND DISCUSSION
In our calculation and discussion, we assume that the input
probe light is a 3 dB squeezed state with quadrature compo-
nents SX �0;ω� � 0.5 and SY �0;ω� � 2. First we consider the
case for a typical Λ-type EIT system with Ωs � 0. The squeez-
ing probe pulse can be slowed and stopped inside the medium,
so that it induces a group delay in the probe light when the
probe transmits throughout the medium. Furthermore, the
delay time will change when a single EIT window splits into

two symmetrical EIT windows with ac Stark splitting induced
by a third switch field. Figure 2 gives the delay time versus the
probe detuning in different cases with small Rabi frequencies
of switch and coupling field. The solid black curve shows the
delay time for the three-level Λ-type system. We see that the
maximum delay occurs at the resonance. For the case of two
transparent windows due to ac stark splitting with Ωs � 0.6
(the dashed dotted blue curve), there are two ranges with
positive delay time in the vicinity of the two-photon resonance
EIT points. These two transparent points with the same delay
property as the Λ-type EIT system can thus be used for
double-channel quantum memory.

We further consider the effect of detuning of the driving
field on the delay time. Just as we described in Fig. 1, the
dressed splitting may introduce a detuning for the two
coupled transitions, i.e., j1�N�i↔jbi and j2�N�i↔jbi, due to
the detuning of the switch or coupling field, resulting in an
asymmetry in both EIT components. The dashed red and short
dashed green curves in Fig. 2 show the delay time variation
when the coupling or switch field is off-resonance. The asym-
metric curves have different maximum delay times due to the
different bandwidths of the two transparent windows, i.e., a
narrow transparency window with a rather steep dispersion
can obtain a large delay time. Moreover, the delay time can
be even increased at one of the EIT points for off-resonant
probe light. We easily see that one can obtain about 70 μs cor-
responding to one transparent point, which is about 3.5 times
larger than that at the transparent point for a normal three-
level system. This may be useful for controlling the delay
or storage time by using the effect of ac Stark splitting, and
thus achieving double-channel quantum memory with the
same or different delay times.

The discussion on the delay time shows that squeezing
probe light can be slowed down in two channels in this sys-
tem, and therefore, it is possible to store the probe in these
two channels. Faithful two-channel quantum memory can
be recognized by measuring the squeezing property after
the atomic medium. Figure 3 shows the amplitude noise spec-
tra of the output delay probe light, such that the squeezing can

Fig. 2. (Color online) Delay time ΔT as a function of the normalized
probe detuning Δ1∕γab. The Rabi frequency of the switch field and
detuning of the interacting field are Ωs � 0, Δ2 � 0, Δ3 � 0 (solid
black curve), Ωs � 0.6, Δ2 � 0, Δ3 � 0 (dashed dotted blue curve),
Ωs � 0.6, Δ2 � 1, Δ3 � 0 (dashed red curve), and Ωs � 0.6, Δ2 � 0,
Δ3 � 1 (short dashed green curve). The other parameters are
jgj2NL∕c � 25, L � 3.5 × 10−2, γac � γad � 0.01, and Ωc � 0.8.
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be well maintained in both channels. The solid line represents
the amplitude noise of the output quantum probe light (note
that 1.0 is the shot noise level), and the dashed line represents
the probe absorption. We clearly see that the total amplitude
noise of the output probe beam nearly equals that of the input
probe at one single EIT resonance (Δ1 � 0) for a normal
three-level system with Ωs � 0, as shown in Fig. 3(a). Outside
the squeezing window, the fluctuation of the output delay light
turns out to be the shot noise, which fully results from the
phase-to-amplitude noise conversion and the atomic noise re-
presented by the second and third terms in Eq. (7). When the
switching light is applied [see Figs. 3(b) and 3(c) for Ωs � 1
and Ωs � 2], two transparency windows (dashed curves) in-
duced by dynamic Stark splitting with three absorption peaks
arise. Meanwhile, the doublet splitting of the single EIT also
induces the splitting of the amplitude noise spectrum SX �L;ω�
[see solid black curves in Figs. 3(b) and 3(c)] and phase noise
spectrum SY �L;ω� [see blue dashed dotted curves in Figs. 3(b)
and 3(c)] of the probe beam. It is shown that both of the am-
plitude and phase noise spectra split linearly with the strength
of the switching field, which results in the doublet splitting of
the noise spectra moving toward both sides. The amplitude
and phase noise have the opposite squeezing properties,
which means that the amplitude noise takes the minimum
value and the phase noise has the maximum value, i.e., the
squeezing of the quadrature amplitude component corre-
sponds to the anti-squeezing for the quadrature phase compo-
nent. We also see that the minimal amplitude noise of the
output probe beam is symmetrically preserved at the two
transparency points satisfying two-photon resonance condi-
tions. The frequency interval between the two maximum
squeezing points or the two two-photon resonance points
equals the Rabi frequency of the switching field, i.e., 2Ωs in
terms of the energies of the dressed-state doublet. Thus, we
can tune the two-photon resonance flexibility to obtain the
minimum noise output at different detunings of the probe.
We can also conclude that the switching field that modifies
the atomic hyperfine transition can modify the EIT resonance
and opens more than one transparency window to protect
the quantum property of the input field from resonance
absorption.

As we discussed for Fig. 2, the delay time of probe light can
be well manipulated by the detuning of the driving fields. In
the following, we pay attention to the noise properties for off-
resonant driving. Figure 4 tells us how the detuning of switch-
ing field affects the output amplitude noise of the probe light
when the coupling field is resonant to its transition. We can
see that the detuning of the switching field causes asymmetric
M-type curves in the noise spectrum, showing that one squeez-
ing window is wider than the other. The frequency interval
between the two maximum squeezing points also increases
with increased detuning of the switching field, which is con-
sistent with the energy interval equation mentioned in the the-
oretical model. We also note that the off-resonance of the
switching field would not affect the maximum squeezing at
two EIT points. It can be used to extend the flexibility to pre-
serve the squeezing at different probe detunings.

We further show in Fig. 5 the effect of detuning of coupling
light on the output amplitude noise of the probe light when the
switching field is resonant to its transition. It can be found that
the detuning causes the asymmetry of the two double M
curves, which is similar to the detuning of the switching field.
However, we see that the width of the two squeezing windows
stays the same, and the frequency interval between the two
maximum squeezing points is always equal to 2Ωs, which is
different from the case in Fig. 4.

Now we turn our attention to the effects of decoherence
rates γac between the ground states (jai and jci) and nonra-
diative decay rate γad (from jdi to jai) on the output squeezing
when the three fields are all resonant, as illustrated in Fig. 6.
We can see that the two maximum output squeezing points at
the probe detuningΔ1∕γab ≈ 1 almost keep the same values as
those of the input squeezing state, i.e., SX �L; 0� � 0.5 for the
case of small decoherence rates γac � γad � 0.01. However,
when the decoherence rate takes a realistic parameter 250 Hz,
corresponding to the normalized value of γac � 0.05 or γad �
0.05 for a typical radiative decay rate γab � 5 MHz of Cs D2
lines, the maximum squeezing decreases, as shown in the blue
and red dashed lines. This means that the output squeezing
will unavoidably be decreased under the realistic condition.

The effect of detection frequency on output squeezing is
shown in Fig. 7. When the switching field is turned off, there
is only one squeezing dip around the zero detection frequency,
which is the same as in [11,12,17]. If we change the Rabi

(a)

(b)

(c)

Fig. 3. (Color online) Output amplitude and phase noise (left axis)
and probe absorption (right axis) versus probe detuning. The black
solid and blue dashed dotted curves show the total output amplitude
and phase noise SX �L;ω � 0� and SY �L;ω � 0�, respectively. The red
dashed curves represent the probe absorption. (a) Ωs � 0, (b) Ωs � 1,
and (c) Ωs � 2. The other parameters are jgj2NL∕c � 25,
γac � γad � 0.01, Ωc � 3.6, and Δ2 � Δ3 � 0.

Fig. 4. Output amplitude noise SX �L;ω � 0� versus probe detuning
for different detunings of the switching field. Parameters are Ωc � 3.6,
Ωs � 1, andΔ2 � 0, with (a)Δ3 � 0, (b)Δ3 � 1, and (c)Δ3 � 2, with
the other parameters the same as those in Fig. 3.
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frequency of the switching field, we can see that there are two
squeezing dips at ω � �Ωs. Compared to the discussed three-
level systems, the four-level system here helps preserve and
manipulate quantum states with low noise at relatively higher

detection frequency, which can avoid the effect of large laser
noise due to relaxation oscillation at a near-zero detection
frequency. Also, the position of two minimum squeezing win-
dows can be manipulated by the Rabi frequency of the switch-
ing field. Therefore the switching field offers not only the
possibility of multichannel quantum state transfer, but also
a flexible manipulation of quantum states with any selectable
detection system.

As described in [16], when the detection frequency is non-
zero, we can take a proper two-photon detuning around the
value of the detection frequency to minimize the output
noise in a three-level Λ-type system. In the four-level system,
the dynamic Stark splitting provides us a more convenient
means to optimize the quantum state throughout the atomic
system. Figure 8 shows that by taking the same value of
the detection frequency and the switching field strength,
we can obtain better squeezing of the output state at zero
probe detuning [comparing the solid and dashed curves in
Figs. 8(a) and 8(b)], while the noise spectra without the
switching field [see the dashed curves in Figs. 8(a) and 8(b)]
always show large noise at a resonant point for probe light.
We suggest that in a real observable scheme of double-
channel state storage, one can choose a right Rabi frequency
of a switching field instead of tuning the probe from reso-
nance to optimize the quantum behavior at a nonzero detec-
tion frequency.

4. CONCLUSION
In conclusion, using a switching field to drive the hyperfine
transition coupled to a four-level system, we theoretically stu-
died the quantum noise properties of light throughout this
Stark doublet splitting medium with two dark resonances.
We found that the noise spectrum splits linearly with the
ac Stark splitting, and the minimum noise exists at the two
transparency points satisfying two-photon resonance condi-
tions. Each transparency point can be used to keep the input
squeezed state unaffected by the noise in the output state. On
the other hand, by setting the proper value of the Rabi fre-
quency of the switching field, the maximum squeezing of
the output state can still be obtained at a nonzero detection
frequency. Therefore, the dynamic Stark splitting is a possible
way to manipulate and control the transfer, storage and

Fig. 5. Output amplitude noise SX �L;ω � 0� versus probe detuning
for different detunings of the coupling field. Parameters are Ωc � 3.6,
Ωs � 1, andΔ3 � 0, with (a)Δ2 � 0, (b)Δ2 � 1, and (c)Δ2 � 2, with
the other parameters the same as those in Fig. 3.

Fig. 6. (Color online) Output amplitude noise SX �L; 0� versus
probe detuning for different dephasing rates. The black solid curve
represents γac � γad � 0.01, the blue dashed curve γac � 0.01 and
γad � 0.05, and the red short dashed curve γac � 0.05 and γad � 0.05.
Other parameters are the same as those in Fig. 3.

Fig. 7. (Color online) Output amplitude noise SX �L;ω� versus detec-
tion frequency for different Rabi frequencies of the switching field
when the three fields are resonant. The black dotted, red solid,
and blue dashed curves represent Ωs � 0, 1, and 2, respectively. Other
parameters are the same as those in Fig. 3.

Fig. 8. (Color online) Output amplitude noise for nonzero detection
frequency versus probe detuning. (a) Black solid curve: ω � Ωs � 1,
blue dashed curve: ω � 1, Ωs � 0; (b) Black solid curve: ω � Ωs � 2,
blue dashed curve: ω � 2, Ωs � 0. Other parameters are the same as
those in Fig. 3.
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retrieval of the quantum state flexibly. This may have potential
application for multichannel optical communication or quan-
tum information processing.
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