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Photon quantum statistics of light can be shown by the high-order coherence. The fourth-order coherences of var-

ious quantum states including Fock states, coherent states, thermal states and squeezed vacuum states are investigated

based on a double Hanbury Brown–Twiss (HBT) scheme. The analytical results are obtained by taking the overall

efficiency and background into account.
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1. Introduction

The landmark experiment on photon correlation

by Hanbury Brown and Twiss (HBT) in 1956[1] stim-

ulated the birth of modern quantum optics.[2] With

the development of modern optics and electronics, the

technology of single-photon detection has advanced

rapidly in recent years. Commercial high efficien-

cies single-photon counting modules (SPCMs) and the

photon-number-resolving detectors have been widely

used for scientific research and sensitive measure-

ment. Due to their high quantum efficiency in the

visible and near infrared range, low dark count and

fast response they are becoming key tools in quan-

tum optics and quantum information science[3] for

single-photon source determination,[4] quantum state

preparation,[5,6] quantum logic gates,[7] and so forth.

Higher-order coherence g(n), regarded as an im-

portant quantity for revealing the quantum statis-

tics of light, plays a key role in understanding the

coherence of quantum states.[8,9] With the develop-

ment of experimental techniques for fast and sensi-

tive measurements of light, the higher-order interfer-

ence behaves differently from the lower-order ones.[10]

For uncorrelated and distinguishable input photons,

the fourth-order interference is readily understood in

terms of the particle or wave behaviour of each pho-

ton action.[11] For many years, much effort has been

made to study the fourth-order interference in para-

metric down conversion[12−14] and ghost imaging.[15]

The fourth-order coherence describes the photon cor-

relation of the light field at four separated points in

space and time. Usually, there are four photon de-

tectors needed, and the quantum statistics may be

strongly affected by the experimental conditions, such

as quantum efficiency and background. Although the

on-off SPCMs cannot respond to multi-photons during

dead time,[16,17] before high efficiency photon-number-

resolving detectors[18] can be developed and commer-

cialized they are currently still an option for determin-

ing the statistical properties of the light fields.[19]

In the present paper, the effects of the fourth-

order coherence for various quantum states are dis-

cussed and compared based on the double HBT

schemes formed by four SPCMs. We take into ac-

count the overall efficiency and the dark counts of the

detection.[20] The measurements of the fourth-order

coherence g(4) are obtained. The results show how the

higher-order coherences of different quantum states in-

cluding Fock states, coherent states, thermal states

and squeezed vacuum states are essentially affected

by experimental conditions.
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2. Model

We consider the system in Fig. 1 where the tradi-

tional single HBT configuration is expanded from two

SPCMs to four SPCMs. Assume that the input field

|ψ⟩ has an intrinsic photon distribution Pin(n). The

overall detection efficiency, including the optical col-

lection efficiency, propagation efficiency and quantum

efficiency of the photon detectors, is η. This overall

efficiency can be regarded as the attenuation (a beam

splitter) of the incident field by attenuator B0 with

a transmission of 1 − η while the rest of the detec-

tion is perfect. For simplicity, we assume that all the

SPCMs have the same efficiencies. The background

Fig. 1. Double HBT configuration based on four SPCMs

with overall efficiency η and background |β⟩. B1, B2, B3

are 50/50 lossless beam splitters.

is a random statistical light field with a Poisso-

nian distribution[16] and can be simulated by a

weak random field |β⟩ which statistics is Pin(n) =

γn exp(−γ)/n!, where γ = |β|2. B1, B2, B3 are 50/50

lossless beam splitters.

The photon number distribution after the beam

splitter, when the extra vacuum state input from the

beam splitter is taken into account, is[21]

Ptr(m) =

∞∑
n=m

Pin(n)
n!

m! (n−m)!
ηm (1− η)

(n−m)
. (1)

The beam is then mixed at beam splitter B1 with

a weak background light, and the photon number dis-

tribution can be written as[22]

Pmix(L) =
L∑

m=0

γ(L−m)

(L−m)!
e−γPtr(m). (2)

Here, L is the number of photons incident on B1. If

N photons are transmitted, then L–N photons are

reflected and for these N photons arriving at beam

splitter B2 there are K photons detected by D1 and

N–K photons by D2. On the other hand, of the L–N

photons incident on B3, M photons are detected by

D3 and (L–N)–M by D4.

The resulting probability of detecting K, N–K,

M and (L–N)–M photons at D1, D2, D3 and D4,

respectively, can be written as P (K, N–K, M , (L–

N)–M). Since one SPCM gives only one count during

dead time for one or more than one incident photon,

there are in total sixteen possible photon probabilities.

Since B1, B2, B3 are 50/50 lossless beam splitters and

the four SPCMs are identical, there are indeed five dif-

ferent photon probabilities:

P (1, 1, 1, 1) =
∞∑

L=4

Pmix(L)
L−2∑
N=2

N−1∑
K=1

(L−N)−1∑
M=1

(
1

2

)(2L)
L!

K! (N −K)!M ! ((L−N)−M)!
, (3a)

P (0, 1, 1, 1) = P (1, 0, 1, 1) = P (1, 1, 0, 1) = P (1, 1, 1, 0)

=
∞∑

L=3

Pmix(L)
L−1∑
N=2

N−1∑
K=1

(
1

2

)(2L)
L!

K! (N −K)! (L−N)!
, (3b)

P (1, 0, 0, 1) = P (1, 1, 0, 0) = P (0, 0, 1, 1) = P (0, 1, 1, 0) = P (1, 0, 0, 1) = P (0, 1, 0, 1)

=
∞∑

L=2

Pmix(L)
L−1∑
N=1

(
1

2

)(2L)
L!

N ! (L−N)!
, (3c)

P (0, 1, 0, 0) = P (0, 0, 1, 0) = P (0, 0, 0, 1) = P (1, 0, 0, 0) =
∞∑

L=1

Pmix(L)

(
1

2

)2L

, (3d)

P (0, 0, 0, 0) = Pmix(0). (3e)

For a single-mode field, g(4) is independent of delay time τ and the fourth-order coherence can be expressed

as
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g(4) =
⟨n1n2n3n4⟩

⟨n1⟩ ⟨n2⟩ ⟨n3⟩ ⟨n4⟩
=

⟨n1n2n3n4⟩[
1

4
⟨n⟩

]4 =

∑
n1n2n3n4

(n1n2n3n4)P (n1, n2, n3, n4)[
1

4

∑
n
nP (n)

]4 =
P (1, 1, 1, 1)[

1

4
⟨n⟩

]4 , (4)

where ⟨n⟩ is the mean photon number which is defined as

⟨n⟩ =
∞∑

n=0

nP (n)

= 4P (1, 1, 1, 1) + 3 [P (1, 1, 1, 0) + P (1, 1, 0, 1) + P (1, 0, 1, 1) + P (0, 1, 1, 1)]

+ 2 [P (1, 1, 0, 0) + P (0, 0, 1, 1) + P (1, 0, 1, 0) + P (1, 0, 0, 1) + P (0, 1, 1, 0) + P (0, 1, 0, 1)]

+ [P (1, 0, 0, 0) + P (1, 0, 0, 0) + P (0, 0, 1, 0) + P (0, 0, 0, 1)] + 0P (0, 0, 0, 0)

= 4P4 + 3P3 + 2P2 + P1 + 0P0, (5)

where P0, P1, P2, P3 and P4 denote the probabilities

of detecting simultaneously 0, 1, 2, 3 and 4 photons

by the four SPCMs, respectively. P (n1, n2, n3, n4)

is the resulting probability of detecting n1 photons on

detector 1, n2 photons on detector 2, and so on si-

multaneously. For SPCM which gives only one count

during dead time for greater than or equal one inci-

dent photon, g(4) can be written as Eq. (4).

3. Discussion for various input

states

3.1.Coherent state

For incident coherent field |α⟩, the photon distri-

bution is a well-known Poissonian distribution, i.e.

Pin,C(n) =
αne−α

n!
, (6)

where α is the mean photon number. For a given

overall detection efficiency η and background |β⟩, from
Eqs. (1)–(3) we can obtain the photon detection prob-

abilities and mean photon number as follows:

P4C = e−γ−αη
[
e(γ+αη)/4 − 1

]4
, (7a)

P3C = 4e−γ−αη
[
e(γ+αη)/4 − 1

]3
, (7b)

P2C = 6e−γ−αη
[
e(γ+αη)/4 − 1

]2
, (7c)

P1C = 4e−γ−αη
[
e(γ+αη)/4 − 1

]
, (7d)

P0C = e−γ−αη, (7e)

⟨n⟩C = 4− 4e−(γ+αη)/4. (7f)

The fourth-order coherence g
(4)
C is given as

g
(4)
C = 1. (8)

This result indicates that the fourth-order coher-

ence for coherent state is not affected by the overall

efficiency and background.

3.2. Fock states

Fock state is a valuable quantum resource

for ultra-high sensitive measurement[23] or quantum

information[3] and there are many proposals to gener-

ate Fock states with a large number of photons.[24−26]

In fact, the measurement of Fock state is also a chal-

lenge. If the input field is Fock state |n⟩, we have

Pin,F (n) = 1. That means that one can find only n

photons in Fock state |n⟩. When the total detection

efficiency and the background are taken into account,

the photon number distribution can be written as

Pmix,F(L) =
L∑

m=0

γ(L−m)n!

(L−m)!m!(n−m)!

× e−γηm (1− η)
n−m

. (9)

Particularly, for the single-photon state the photon

number distribution is

Pmix,F(L)|n=1 =
γL

L!
e−γ (1− η) +

γ(L−1)

(L− 1)!
e−γη. (10)

By using Eqs. (3) and (10) we can find the mea-

sured probabilities of photon number of a single pho-

ton state to be

P4F|n=1 = e−γ
(
eγ/4 − 1

)3 (
eγ/4 − 1 + η

)
,

P3F|n=1 = −e−γ
(
eγ/4 − 1

)2 [
4 + eγ/4 (η − 4)− 4η

]
,

P2F|n=1 = −3e−γ
(
eγ/4 − 1

) [
2 + eγ/4 (η − 2)− 2η

]
,

P1F|n=1 = e−γ
[
eγ/4 (4− 3η) + 4 (η − 1)

]
,

P0F|n=1 = e−γ (1− η) ,

084205-3



Chin. Phys. B Vol. 19, No. 8 (2010) 084205

⟨n⟩F|n=1
= 4 + ηe−γ/4 − 4e−γ/4. (11)

Apparently, the fourth-order coherence g
(4)
F in the

single-photon state is then given by

g
(4)
F

∣∣∣
n=1

=
256

(
eγ/4 − 1

)3 (
4eγ/4 − 4 + η

)(
4eγ/4 − 4 + η

)4 . (12)

In the case of no background, i.e. γ = 0, we ob-

tain g
(4)
F

∣∣
n=1

= 0. This shows that g
(4)
F of the single-

photon state can be perfectly determined since the

single-photon state exhibits anti-bunching effect.

It is important to know how the background and

the efficiency affect the Fock state measurement. Fig-

ure 2 shows curves for g
(4)
F (n=1, 2, 3, 4 correspond-

ing to Figs. 2(a)–2(d), respectively) versus detection

efficiency for different backgrounds. The solid lines

correspond to the small-number Fock states without

any background. The dash, dot and dash–dot lines

correspond to backgrounds of γ = 0.001, 0.01 and 0.1,

respectively. For a given detection efficiency, the exis-

tence of a background gives higher value of g
(4)
F , but

this effect can be washed out as photon number n in-

creases. Without the background all measurements

can approach to the outmost limits, which are deter-

mined by the on–off detection of the SPCMs, as the

detection efficiency goes to unit. For a given back-

ground, the results firstly decrease and then increase

as the total detection efficiency approaches to unit.

This can be well understood. The random Poissonian

statistics of the background will dominate the final re-

sults in the case of a weak and fragile quantum state

when the detection efficiency is small. As the detec-

tion efficiency is higher, the Fock state itself dominates

the system which results in the decrease of g
(4)
F . But

if the overall efficiency is better, which means more

multi-photons are missing the result of higher value of

g
(4)
F is apparent. Consequently, the eventual measure-

ment is determined by all these factors. This is why in

general there exists overall efficiency η, at which g
(4)
F

is minimum (see Fig. 2).

Fig. 2. Curves for the fourth-order coherence g
(4)
F of Fock states (n = 1, 2, 3, 4 corresponding to subfigures

(a), (b), (c), (d), respectively) versus detection efficiency for different backgrounds.

3.3.Thermal field

A single-mode thermal field satisfies the Bose–Einstein distribution

Pin,T (n) =
(α)

n

(1 + α)
n+1 , (13)
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where α = [exp(~ω/kBT ) − 1]−1 is the mean photon number. The thermal field is a typical incoherent source

which shows the bunching effect and a super-Poissonian photon distribution. From Eqs. (1), (2) and (13), the

probability Pmix,T(L) of detecting L photons at beam splitter B1 for the single-mode thermal field is

Pmix,T(L) =
L∑

m=0

γ(L−m)

(L−m)!
e−γ (ηα)

m

(1 + ηα)
m+1 . (14)

Using Eqs. (3) and (14), we arrive at

P4T = 1− 16

4 + 3ηα
e−3γ/4 − 16

4 + ηα
e−γ/4 +

12

2 + ηα
e−γ/2 +

1

1 + ηα
e−γ , (15a)

P3T =
48

4 + 3ηα
e−3γ/4 +

16

4 + ηα
e−γ/4 − 24

2 + ηα
e−γ/2 − 4

1 + ηα
e−γ , (15b)

P2T =
12

2 + ηα
e−γ/2 − 48

4 + 3ηα
e−3γ/4 +

6

1 + ηα
e−γ , (15c)

P1T =
16

4 + 3ηα
e−3γ/4 − 4

1 + ηα
e−γ , (15d)

P0T =
e−γ

1 + ηα
, (15e)

⟨n⟩T = 4− 16
e−γ/4

4 + ηα
. (15f)

Similarly, we obtain

g
(4)
T =

256

(
1 +

e−γ

1 + αη
+

12e−γ/2

2 + αη
− 16e−γ/4

4 + αη
− 16e−3γ/4

4 + 3αη

)
(
4− 16e−γ/4

4 + αη

)4 . (16)

In the case of no background and nonzero detec-

tion efficiency, we have

g
(4)
T =

1 +
1

1 + αη
+

12

2 + αη
− 16

4 + αη
− 16

4 + 3αη(
1− 4

4 + αη

)4 .

(17)

Figure 3(a) shows the results based on Eqs. (16)

and (17) with α = 1. The solid, dash, dot and dash–

dot lines correspond to backgrounds with γ = 0, 0.001,

0.01, and 0.1, respectively.

Figure 3(b) shows the results of the measured

fourth-order coherence g
(4)
T in thermal field versus

mean photon number for different total detection effi-

ciencies and backgrounds. The solid lines are for the

results without background and with detection effi-

ciency being 1, while the dash lines are for a back-

ground of 0.001 and an efficiency of 0.05.

Fig. 3. Curves for the fourth-order coherence g
(4)
T in ther-

mal field versus detection efficiency (α = 1) (a) and mean

photon number (b) for different backgrounds.
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3.4. Squeezed vacuum state

The squeezed vacuum state (SVS) is a very im-

portant quantum-light state in quantum information

processing with continuous variables and entangle-

ment generation. A single-mode SVS can be writ-

ten as |ξ⟩ = Ŝ (ξ) |0⟩. Here the squeezing operator is

Ŝ (ξ) = exp
(
ξ∗â2/2− ξâ†2/2

)
, where ξ = r exp (i θ),

with r = |ξ| being the squeezing parameter. The pho-

ton number distribution can be expressed as

Pin,SVS (2n) =
(tanh r)

2n
(2n)!

cosh r (n!2n)
2 . (18)

The mean photon number, and the fourth-order

coherence for an ideal SVS can be expressed respec-

tively as

⟨nsq⟩ = sinh2 r, (19a)

g
(4)
SVS =

cosh4 r

sinh4 r
. (19b)

According to Eqs. (1)–(5) and (18), we can simi-

larly obtain the fourth-order coherence g
(4)
SVS of SVS

based on the double HBT configuration. Here for

clarity, we have omitted the complex and tedious

expressions but show the numerical results. Figure

4(a) shows the fourth-order coherence g
(4)
SVS in SVS

based on the double HBT configuration as functions

of the detection efficiency and squeezing parameter

(r = 1) for various backgrounds. The changes in pho-

ton statistics are similar to those of a thermal field

(see Fig. 3(a)), but the range of change of the param-

eters are larger due to the well-known super-bunching

effect of the SVS.

Figure 4(b) presents g
(4)
SVS as a function of the

squeezing parameter r. The solid lines are for the ideal

values and the dash lines are for zero background and

perfect efficiency. The dot lines correspond to 0.001

for the background and 5% for the efficiency, which

basically corresponds to the usual experimental con-

ditions. When the squeezing increases, the g
(4)
SVS ap-

proaches its true photon statistics and is no longer

sensitive to the background and the overall efficiency.

The reason is that the bunching effect of an SVS be-

comes weak as squeezing increases.[26]

Fig. 4. Curves for the fourth-order coherence g
(4)
SVS in a

squeezed vacuum state versus detection efficiency (r = 1)

(a) and the squeezing parameter (b) for different back-

grounds.

4. Conclusion

We discussed the higher-order photon statistical

properties for several states, from classical to quantum

states, based on the double HBT scheme consisting of

four on–off SPCMs. The fourth-order coherence g(4)

is calculated by taking the overall efficiency and the

background into account. The results show that the

fourth-order coherence can be detected approximately

by this double HBT system, but for different input

states, including Fock states, coherent states, thermal

states and squeezed vacuum states, the measured re-

sults are quite affected by the experimental conditions.

The multiple single photon detectors can be used to

detect effectively the multi-photon events. The whole

analysis is based on the practical experimental condi-

tions and the results can help us understand the capa-

bilities of single-photon counters, which can essentially

reveal the real photon statistics of various quantum

states. In connection with non-Gaussian measure-

ment, the homodyne detection[27] and post-selection

processing, the results and the treatment provided

here may be extended to quantum state preparation[5]

and remote quantum cloning.[7]
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