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Abstract
Two measures of nonclassicality, the entanglement potential and the negativity of the Wigner
distribution function defined by the volume of its negative domains, are compared based on an
investigation of the nonclassicality for Fock states and Schrödinger cat states in a decoherence
process. Both the entanglement potential and the total negative probability are reduced in the
linear loss process and the partial negative distribution of the Wigner function is wiped out for
large losses while the entanglement potential is always positive. We give a bound condition
and find that, though not yet mathematically proven in general, the upper bound of 50% is the
maximum allowed loss for the survival of the negative distribution of the Wigner function.

1. Introduction

Nonclassical states play an important role in understanding the
fundamentals of quantum physics, and have many applications
in quantum information processing [1]. There are various
forms of nonclassical behaviour which have been extensively
investigated, such as antibunching, sub-Poissonian photon
statistics, quadrature phase squeezing, negativity or singularity
of the Glauber–Sudarshan P-function, the negativity of the
Wigner distribution function (WDF), etc. However, none
of the above properties detects nonclassicality infallibly [2].
For example, the squeezed state is usually considered as a
typical nonclassical state since its quadrature noise is less than
that of the vacuum state, but its Wigner function is regular
and positive. Fock states with a large number of quanta,
on the other hand, have singular P functions and negative
Wigner functions but they exhibit no quadrature squeezing and
their antibunching behaviour diminishes when the quantum
number increases [3], becoming eventually the same as a
coherent state. The Schrödinger cat state |α〉 + |−α〉 with
α � 1 is well known as a highly nonclassical state, yet
it has Poissonian photon statistics and negligible squeezing.
Thus, it is still an open issue to quantitatively describe the
nonclassicality for a given state. Several universal approaches
to quantify the nonclassicality have been proposed. In the

early days, Mandel introduced the so-called Mandel Q-factor
to describe the departure of the photon number distribution
of the state from Poissonian statistics [4]. In 1987, Hillery
et al defined ‘nonclassical distance’ in terms of the trace-
norm of the difference between the density operator of the
quantum state and that of the nearest classical state to measure
the nonclassicality [5]. Later, Lee introduced the nonclassical
depth of the radiation [6]. However, these criteria cannot reveal
all the various quantum effects of the quantum states and it is
difficult to quantify precisely how nonclassical a quantum state
is. Recently, a measure named the entanglement potential (EP)
for quantifying the nonclassicality of the single-mode optical
field has been proposed [7], which is a computable universal
measure of nonclassicality.

It is well known that quantum entanglement, as a
key resource for quantum information, plays a leading
role in quantum optics in studying the fundamentals of
quantum mechanics [8]. The relationship between quantum
entanglement and nonclassicality has been investigated in
many papers. It was pointed out that to obtain an entangled
output state with an ideal lossless beamsplitter, a necessary
condition is that the input state should be nonclassical
[9, 10]. Asboth et al proposed a measure of the nonclassicality
of the single-mode optical field based on the EP [7], which they
defined as the quantum entanglement achieved by a 50/50
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Figure 1. Linear loss system modelled by a beamsplitter BS1. The
reflectivity R of BS1 represents the losses that the input state ρin

undergoes; the entangled fields between ports B and C are generated
by a 50/50 beamsplitter BS2.

beamsplitter with a nonclassical state from one side and a
vacuum state from another side. Another measure named the
negativity of the WDF, defined as the volume of the negative
parts of the Wigner function, is also exploited as an indicator of
nonclassicality [11–14]. It has been shown that, in the case of
Fock states |n〉, the volume of the negative part of the Wigner
function increases monotonically with the quantum number n
[13]. It has also been suggested to take the absolute value of the
total negative probability rather than the minimum negativity
of the WDF as an indicator of the quantitative nonclassicality
[15].

In this paper, to investigate the nature of the
nonclassicality we focus on the question of how robust the
nonclassicalities are against the losses. We know that when
a nonclassical optical field propagates in a medium, or is
detected with imperfect detectors, it inevitably undergoes
decoherence and the degree of nonclassicality will be reduced.
Let us consider the linear loss process and use a beamsplitter
(BS) model to simulate this process [16], as in figure 1. All
the losses and imperfect detection can be considered to be the
part of the field reflected from the BS. The reflectivity of the
BS describes the total losses and the transmitted remaining
part gives the total efficiency of the system. Studying the
nonclassicality of a generic quantum state in the decoherent
environment can essentially test how robust and how large the
nonclassicality is. This discussion can help us recognize the
profound features of the nonclassical effects and the rationality
of this definition of the nonclassicality.

Based on the linear loss process, we have investigated
the nonclassicality of Fock states and Schrödinger cat states,
the well-known nonclassical states, by exploring their WDF
negativity and the EP. It is found that the negative distribution
of the Wigner function cannot be present when the losses
exceed the bound of 50%, while the EP always exists. We
investigate this interesting general bound, and give a bound
condition. We also find that the larger the mean photon number
of the Fock state or the Schrödinger cat state, the more sensitive
the total negative probability is to the linear losses, but this
behaviour is not obvious for the EP.

2. WDFs of Fock states and cat states in a linear loss
process

Instead of using the density matrix equation for the loss
channel, here we consider the linear losses of the BS model,
which can describe the photon loss equivalently [17]. Figure 1

describes the process of the nonclassical fields suffering from
linear loss, which is represented by input fields passing through
the first beamsplitter BS1 with reflectivity R, with R denoting
the linear loss. The second beamsplitter BS2 is 50/50 and is
set up to generate entangled fields between ports B and C. The
dashed arrows stand for the vacuum inputs from the unused
ports of the BSs.

We now investigate the behaviour of the WDFs of the
nonclassical fields in this process. It has been proved that
for an arbitrary quantum state denoted by density operator ρin

impinging on the BS, with a vacuum state coming in from the
unused port, the output state can be expressed by [18]

ρout =
∞∑

m=0

∞∑
k=0

[
1

m!k!

(
R

T

)m+k
] 1

2

× âmT
â† â

2 ρinT
â† â

2 (â†)k ⊗ |m〉〈k|. (1)

Here we have ignored the dephasing caused by the
beamsplitter, but have considered the absorption, mismatching
and other linear losses. The state has been represented in
the basis of the Fock states, â† and â are the creation and
annihilation operators of the input field and T and R are the
transmittance and reflectance of the beamsplitter, respectively.
Since the BS1 itself is assumed lossless, we have R + T = 1.

When the input state is a Fock state |n〉 with photon
number n, the output state is

ρout =
n∑

m=0

n∑
k=0

n!√
m!(n − m)!k!(n − k)!

×R
m+k

2 T n− m+k
2 |n − m,m〉〈n − k, k|. (2)

Here we have traced over the reflection (loss) and obtained the
density matrix of the transmitted field:

ρn =
n∑

m=0

n!

m!(n − m)!
Rn−mT m|m〉A〈m|, (3)

and the corresponding WDF of the state is given by

Wn(q, p,R) =
n∑

m=0

n!

m!(n − m)!
Rn−mT mWm(q, p), (4)

where Wm(q, p) are the Wigner functions of the Fock states
[16] with photon number m, which are expressed by

Wm(q, p) = (−1)m

π
exp(−q2 − p2)Lm(2q2 + 2p2). (5)

Here Lm(x) denote the Laguerre polynomials. As an example,
we show the WDF (p = 0) for initial input state |3〉 for different
losses in figure 2, where we see that as the losses increase the
negativity of the WDF decreases and fades away until R =
50%. When R increases to 1 the WDF turns out to be that of
the vacuum state.

The Schrödinger cat state is a coherent superposition of
macroscopically distinguishable quantum states, given by the
superposition of two coherent states |α〉 and |−α〉, which are
separated in phase by 180◦. The even Schrödinger cat state is
defined as

|cat〉 = Ne(|α〉 + |−α〉), (6)
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Figure 2. The Wigner distribution function at p = 0 for the initial
Fock state |3〉 for various losses.

where Ne = [2(1 + e−2|α|2)]−1/2 is the normalization factor.
The mean photon number for the cat state (6) is

〈n〉Cat = 1 − e−2|α|2

1 + e−2|α|2 |α|2. (7)

Similarly, we obtain the density matrix of the transmitted field
for an initial even Schrödinger cat state (6):

ρCat = N2
e exp(−R|α|2)

∞∑
n=0

× (R|α|2)n
n!

[|
√

T α〉A〈
√

T α| + (−1)n|
√

T α〉A〈−
√

T α|
+ (−1)n|−

√
T α〉A〈

√
T α| + |−

√
T α〉A〈−

√
T α|]. (8)

(a) (b)

(d) (e)

(c)

Figure 3. Wigner distribution functions for an even Schrödinger cat state with α = 2 in a linear loss process. (a) R = 0; (b) R = 0.25;
(c) R = 0.5; (d) R = 0.75; (e) R = 1.

The corresponding WDF is then obtained to be

WCat(q, p,R) = 2
N2

e

π
exp(−R|α|2) exp[−2T |α|2 − q2 − p2]

×
∞∑

n=0

(R|α|2)n
n!

{cosh[
√

T (2α1q + 2α2p)]

+ (−1)n e2T |α|2 cos[
√

T (2α2q − 2α1p)]}. (9)

Here α1 = √
2Re(α), α2 = √

2Im(α) and q and p are the real
and imaginary parts of the complex amplitude α, respectively.
Figure 3 shows the WDFs of the even Schrödinger cat state
with α = 2 for various losses.

Again, we can see that as the losses increase, the negativity
of the WDF fades away, and 50% (∼3 dB) loss is the critical
threshold above which the WDFs are always positive.

The negativity of the WDF, i.e. the total negative
probability of the WDF, can also be used to describe
quantitatively the nonclassicality of a given state. The absolute
value of the total negative probability PNW is defined as

PNW =
∣∣∣∣
∫

�

W(q, p) dq dp

∣∣∣∣ , (10)

where � is the region of negative WDF. According to the
WDFs expressed by equations (4) and (9), we can obtain the
total negative probability of the Fock states and the cat states,
respectively. Figures 4(a) and (b) show PNW as a function of
the losses for the Fock states |1〉, |2〉, |3〉 and cat states with α =
1, 2, 3, corresponding to 〈n〉Cat = 0.76, 4.00, 9.00, respectively.
We find that the larger the mean photon number 〈n〉Fock (〈n〉Cat),
the more nonclassical the Fock states (cat states) are, and the
more sensitive the nonclassicality is to the linear losses. This
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(a) (b)

Figure 4. Absolute value of the negative probability of the WDF for (a) Fock states |1〉, |2〉, |3〉 and (b) even Schrödinger cat states with
〈n〉Cat = 0.76, 4.00, 9.00, respectively, in a linear loss process.

implies that the more nonclassical the state, the more fragile
the state is and the faster the coherence of the state decays
[19]. Moreover, we again find that the partial negativity of
the WDF disappears for losses larger than R = 50%. This
50% loss seems to be the general bound for the survival of
a negative WDF for generic quantum states. This bound of
the loss has actually been confirmed not only for the cat states
[20], but also for the single-photon-added coherent state and
the two-photon-added coherent state [15].

3. EPs of the Fock states and cat states in a linear
loss process

Based on the total volume of the negative domains of the WDF,
the nonclassicality of Fock states and Schrödinger cat states
has been discussed above. This measure of nonclassicality
is reasonable but the constraint based on the negative WDF
is very strong, as we can see that 50% of the losses would
completely kill the negativity. Also, as mentioned above, some
quantum states such as the squeezed states are known to be
nonclassical but their WDFs are always positive. A relatively
weak criterion, which is probably more rational, is the so-
called entanglement potential [7]. The main point is to check
how much quantum entanglement can be achieved by a given
quantum state. We still consider the smeared nonclassical
fields which are incident on a 50/50 beamsplitter (BS2, see
figure 1) and see how the generated entanglement at the two
output ports, B and C, changes along with the losses. The
logarithmic negativity [21] is used to describe the degree of
the quantum entanglement, which essentially characterizes the
EP.

Since we have already obtained the density matrix of the
Fock states in the linear loss system shown in equation (3),
we now use this mixed state as the input state of the BS2 with
vacuum at the other port to generate the entanglement. Here
we only consider the initial single-photon state |1〉 and the two-
photon state |2〉 for the evolution of the EP (the logarithmic
negativity). The output field for the initial single-photon state
is

ρ|1〉 = R|00〉BC〈00| +
1 − R

2
|01〉BC〈01| +

1 − R

2
|01〉BC〈10|

+
1 − R

2
|10〉BC〈01| +

1 − R

2
|10〉BC〈10|, (11)

and similarly for the two-photon state we have

ρ|2〉 = R2|00〉BC〈00| +
(1 − R)2

2
|11〉BC〈11|

+ R(1 − R)(|01〉BC〈01| + |01〉BC〈10| + |10〉BC〈01|
+ |10〉BC〈10|) +

(1 − R)2

4
(|02〉BC〈02| + |02〉BC〈20|

+ |20〉BC〈02| + |20〉BC〈20|) +
(1 − R)2

2
√

2
(|02〉BC〈11|

+ |11〉BC〈02| + |11〉BC〈20| + |20〉BC〈11|). (12)

The logarithmic negativity of a bipartite mixed state ρ is
defined as [21]

LN(ρ) = log2 ‖ρTA‖, (13)

where ρTA denotes the partial transpose of ρ with respect to
subsystem A, and ‖ρTA‖ denotes the trace norm of ρTA , which
is equal to the sum of the absolute values of the eigenvalues of
ρTA .

Similarly, for initial Schrödinger cat states (equation (8)),
we have

ρCat = N2
e e−|α|2

∞∑
h,i,i ′,j,j ′=0

1

h!
√

i!i ′!j !j ′!
(R|α|2)h

×
(√

1 − R

2
α

)i+j+i ′+j ′

[1 + (−1)h+i ′+j ′

+ (−1)h+i+j + (−1)i+j+i ′+j ′
]|i, j 〉BC〈i ′, j ′|. (14)

Here we have assumed that α is real, i.e., α = α∗ for simplicity.
For the continuous variable two-mode entanglement, the
logarithmic negativity is a decreasing function of ν̃−, and is
defined as [21–23]

LN(ρ) = max[0,−log22ν̃−], (15)
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(a) (b)

Figure 5. EP as a function of the losses. (a) EP for initial |1〉 (lower curve) and |2〉 (upper curve) states as a function of the losses. (b) EP for
an initial even Schrödinger cat state with 〈n〉Cat = 0.76 (lower curve) and 4.00 (upper curve).

where ν̃− is given by

ν̃− =
√

�̃(σ ) −
√

�̃(σ )2 − 4Detσ

2
, (16)

with �̃(σ ) = Det(A) + Det(B) − 2Det(C) and the covariance
matrix σ being the 2 × 2 block form

σ =
(

A C

CT B

)
. (17)

The elements A, B, C of the covariance matrix σ are given in
terms of the conjugate observables x and p in the form [24]

A =
( 〈

x2
1

〉 〈
x1p1+p1x1

2

〉
〈
x1p1+p1x1

2

〉 〈
p2

1

〉
)

, (18)

B =
( 〈

x2
2

〉 〈
x2p2+p2x2

2

〉
〈
x2p2+p2x2

2

〉 〈
p2

2

〉
)

, (19)

C =
(〈

x1x2+x2x1
2

〉 〈
x1p2+p2x1

2

〉
〈
x2p1+p1x2

2

〉 〈
p1p2+p2p1

2

〉
)

. (20)

Here x1, x2, p1, p2 are given in terms of the normalized bosonic
annihilation (creation) operators a (a†),b (b†) associated with
the modes a and b, corresponding to the output fields of port
B and C, respectively, and they are defined as

x1 = a + a†
√

2
, p1 = a − a†

√
2i

;

x2 = b + b†
√

2
, p2 = b − b†

√
2i

.

(21)

The final results are shown in figure 5. Figure 5(a) shows
the EP of the initial states |1〉 and |2〉 as a function of the
losses. Clearly, we can see that the logarithmic negativity
decreases monotonously with increasing losses, and there
is no bound above which the EP is completely wiped out.
The larger the photon number, the higher the EP. For small
losses, the decrease of the EP is almost linear as the losses

increase. Figure 5(b) gives the corresponding results for even
Schrödinger cat states with α = 1 and α = 2, respectively.
The EP again decreases linearly as the losses increase even up
to about R = 80%, which indicates that the EP could be used
to describe the nonclassicality reasonably well. Whatever the
states are, the greater the initial EP, the more sensitively is
the EP affected by the losses. For different quantum states, the
loss-dependent EP is different. Similar to the negative WDF
description, in some cases, when the losses exceed a certain
value, the amount of nonclassicality of the smeared states with
high initial EP may be even less than those states with initially
low EP (see figure 5(b)).

It is interesting to compare the above two criteria of the
nonclassical descriptions. There are some similarities between
the total negative probability PNW of the WDF and the EP
(Ep). When the mean photon number increases, both PNW

and Ep increase, while they decrease monotonically as the
losses increase. However, each of these two descriptions
of nonclassicality has its distinctive properties. The total
negative probability of the WDF decreases to zero when the
losses exceed 50%, while Ep is always positive, approaching
zero only for 100% losses. Another feature is that for an
initial quantum state with a large mean photon number, PNW

decreases more rapidly than Ep with the increase of the losses.
This implies that PNW is much more fragile and sensitive to
extra losses, and therefore, the criterion of PNW is a stronger
constraint for describing the nonclassicality compared with
Ep. Although we have only discussed the two criteria based
on two typical quantum states in the linear decoherent process,
the behaviour is representative. The results show that the
WDF and EP provide two constraint standards in the portrayal
of nonclassicality, such as the different levels of quantum
entanglement [25] or quantum correlations [26]. The EP
represents a lower level of nonclassicality of the quantum
states compared to the WDF. The stronger the constraint
on the nonclassicality, the more fragile and sensitive is the
dependence of the corresponding quantum feature on the
losses. This is reasonable.
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4. Discussion of the WDF for generic quantum
states in a linear loss process

It has been shown that the negativity of the WDF disappears as
the losses increase to 50%, both for the Fock and the cat states.
We now discuss if this bound exists for a generic quantum state
with an initially negative WDF.

A generic quantum state ρ can be expanded in the Fock
state basis:

ρ =
∞∑

n,s=0

Cn,s |n〉〈s|. (22)

The WDF of ρ can be written as

Wρ(q, p) =
∞∑

n,s=0

Cn,sWn,s(q, p), (23)

where Wn,s(q, p) denotes the WDF of |n〉〈s|. The evolution
of Wρ(q, p) in a linear loss process depends on the evolution
of Wn,s(q, p) and its coefficient Cn,s . The WDF of a generic
quantum state is defined as [27]

W(q, p) = 1

π

∫ +∞

−∞
exp(2ipy)〈q − y|ρ̂|q + y〉 dy. (24)

Here q can be expanded in the Fock state basis (h̄ = 1) as [28]

|q〉 = 1

π1/4
exp

(
−q2

2

) ∞∑
n=0

1√
2nn!

Hn(q)|n〉. (25)

Substituting equation (25) into equation (24), we obtain the
WDF for |n〉〈s|
Wn,s(q, p) = 1

π3/2

1√
2nn!

1√
2ss!

∫ +∞

−∞
e2ipy

× exp[−(q2 + y2)]Hn(q − y)Hs(q + y) dy, (26)

where Hn(x) are the Hermite polynomials.
Let us take |n〉〈s| as the input of the beamsplitter BS1, so

the output density operator is

ρout =
n∑

m=0

s∑
k=0

√
n!s!

m!(n − m)!k!(s − k)!

×R
m+k

2 T
n+s

2 − m+k
2 |n − m,m〉〈s − k, k|. (27)

Tracing over the loss part, we obtain the density matrix of the
transmitted part:

ρn,s =
min(n,s)∑

m=0

√
n!s!

(m!)2(n − m)!(s − m)!

×RmT
n+s

2 −m|n − m〉A〈s − m|. (28)

Using equation (26), the corresponding WDF of the above
density operator |n〉〈s| is derived to be

Wn,s(q, p,R) =
min(n,s)∑

m=0

√
n!s!

(m!)2(n − m)!(s − m)!

×RmT
n+s

2 −mWn−m,s−m(q, p). (29)

For a Fock state, we obtain

Wn,n(q, 0, R) = e−q2

π

n∑
m=0

n!

m!(n − m)!

×Rm(R − 1)n−mLn−m(2q2), (30)

where Ln−m are the Laguerre polynomials. This shows that
around the origin of the phase space, R = 0.5 is the boundary
between negative and positive WDF. Although this conclusion
has not been proved mathematically to be valid for broader
quantum states, numerical calculations still help us to find
that, for arbitrary |n〉〈s|, with n+s being an even number, the
negative distributions of the Wigner functions disappear when
R = 0.5. If either n or s equals 0, i.e. for the forms of |n〉〈0|
or |0〉〈s| (n, s > 0), the WDFs have no negative distribution
anymore for any amount of loss. For those cases when n+m
is odd, there is always a negative distribution of the WDF of
|n〉〈s| in the loss process until R = 1. As examples, we show
the WDFs (p = 0) of several initial states |n〉〈s| for 0, 50 and
100% losses in figure 6.

Knowing the evolution of the WDF of |n〉〈s| in the linear
loss process, we can thus discuss a generic quantum state with
the WDF in general as

Wρ(q, p,R) =
∞∑

n,s=0

Cn,sWn,s(q, p,R). (31)

From the above discussion, we can conclude that for any state

ρ =
∑

Cn,s |n〉〈s|, (32)

when n+s is an even number and Cn,s is non-negative, there
always exists a bound. When the losses exceed this bound of
R = 50%, the WDF no longer exhibits negativity. We denote
n+s = even and Cn,s � 0 as the ‘bound conditions’ of the
state. Similarly, if n+s is odd and Cn,s is non-negative, there
is no loss bound any more, and the WDF always retains its
negativity until R = 1.

It is now easy to understand the results discussed in
section 2 that for all the Fock states the partial negative
distribution of their WDF is wiped out when the losses exceed
50% since all the Fock states satisfy the bound conditions. For
an even cat state (6), its density matrix expanded in the Fock
state basis is

ρCat = N2
e (|α〉〈α| + |α〉〈−α| + |−α〉〈α| + |−α〉〈−α|)

= N2
e exp(−|α|2)

∞∑
n,s=0

|n〉〈s|√
n!s!

[αn(α∗)s + αn(−α∗)s

+ (−α)n(α∗)s + (−α)n(−α∗)s]. (33)

This can be rewritten in the form

ρCat =
∞∑

n,s=0

Cn,s |n〉〈s|, (34)

with

Cn,s = N2
e exp(−|α|2) αn+s

√
n!s!

[1 + (−1)s + (−1)n + (−1)n+s].

(35)

Only when both n and s are even will we have Cn,s � 0. For all
other cases, we have Cn,s = 0. Here again we have assumed
that α is real. What we discussed above belongs to the case
that n+s is even and Cn,s non-negative, so the negativity of the
WDFs of even cat states disappears when the losses exceed
50%.
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(a)

(b)

(c)

(d)

(e)

Figure 6. WDF for initial density operators |n〉〈s|, (a) |1〉〈0| (b) |1〉〈1| (c) |2〉〈0| (d) |2〉〈1| (e) |3〉〈1|, for different losses R = 0, R = 0.5,
R = 1.

For the odd Schrödinger cat state

|cat〉 = No(|α〉 − |−α〉), (36)

with the normalization factor No = [2(1 − e−2|α|2)]−1/2; its
density matrix can also be written in the form of expression
(34), with

Cn,s = N2
o exp(−|α|2) αn+s

√
n!s!

× [1 + (−1)s+1 + (−1)n+1 + (−1)n+s]. (37)

Only when both n and s are odd will we have Cn,s � 0. For all
other cases, Cn,s = 0. This also satisfies the bound condition.
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Figure 7. WDF for an initial state given by (38) with t = 0.75, for different losses R = 0, R = 0.5, R = 1.

Similar to the even cat states, the WDFs of all the odd cat
states with α being real have the same bound in a linear loss
process.

It should be noted that the bound conditions are sufficient
but not necessary. If a state does not satisfy n+s being even
and Cn,s non-negative, its WDF can also have a threshold,
but all the states satisfying these bound conditions definitely
have the bound of losses. As a simple example to show
this point, we consider a state composed of a superposition
of a single-photon state |1〉 and a two-photon state |2〉,
i.e.

|ϕ〉 = t |2〉 +
√

1 − t2|1〉, (38)

where t is a real number and 0 � t � 1. Its density operator
is

ρt = t2|2〉〈2| + t
√

1 − t2|2〉〈1|
+ t

√
1 − t2|1〉〈2| + (1 − t2)|1〉〈1|. (39)

This state does not satisfy the bound conditions, but its WDF
also does not have a negative distribution when R � 0.5 as
shown in figure 7. In this case, the WDF of the state (39) is a
superposition of states |i〉〈j | (i,j = 1,2). Though the WDFs
of |i〉〈j | (i = j ) have a negative distribution when R = 0.5
(see figure 6(d)), the WDF of the state composed of all |i〉〈j |
(i,j = 1,2) terms can also have no negative distribution. The
result depends on the coefficients of |i〉〈j |.

5. Summary

We have studied and compared two measures of
nonclassicality, the EP and the negativity of the WDF, based
on a linear loss system for Fock states and Schrödinger cat
states. It is found that both the EP and the total negative
probability of the WDF are degraded as the losses increase.
However, the partial negative distribution of the WDF is not
present for large losses while the EP still exists. The maximum
allowed loss for the survival of a negative WDF is 50% for
the Fock and cat states. We have discussed this interesting
phenomenon, and a general ‘bound condition’ is given. The
WDFs of the states satisfying this condition have no negative
distribution when the losses exceed 50%. For larger photon
numbers, the nonclassicality is higher and the degradation of
the strong constraint criterion of PNW , either for initial Fock

states or Schrödinger cat states, is much more sensitive to the
extra losses than that of the EP.

Acknowledgments

We would like to thank Heng Shen, Fuyi Li and Lu Li for
their helpful discussions. This research is supported by the
National Natural Science Foundation of China (grant nos.
10974125, 60808006, 60821004, 60978017) and the National
Basic Research Program of China (grant no. 2006CB921102).
The work is also supported partially by NCET (no. NCET-07-
0524) and MXZX (grant no. 08121019).

References

[1] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of
Quantum Information (Berlin: Springer)

[2] Richter T and Vogel W 2002 Phys. Rev. Lett. 89 283601
[3] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:

Springer)
[4] Mandel L 1979 Opt. Lett. 4 205
[5] Hillery M 1987 Phys. Rev. A 35 725
[6] Lee C T 1991 Phys. Rev. A 44 R2775
[7] Asboth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett.

94 173602
[8] Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett.

49 1804
Weihs G, Jennewein T, Simon C, Weinfurter H and

Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[9] Kim M S, Son W, Buzek V and Knight P L 2002 Phys. Rev. A

65 032323
[10] Wang X B 2002 Phys. Rev. A 66 024303
[11] Benedict M G and Czirjak A 1999 Phys. Rev. A 60 4034
[12] Foldi P, Czirjak A, Molnar B and Benedict M G 2002 Opt.

Express 10 376
[13] Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum

Semiclass. Opt. 6 396
[14] Dodonov V V and Andreata M A 2003 Phys. Lett. A

310 101
[15] Li S B, Zou X B and Guo G C 2007 Phys. Rev. A

75 045801
[16] Leonhardt U 1997 Measuring the Quantum State of Light

(Cambridge: Cambridge University Press)
[17] Gerry C C and Knight P 2005 Introductory Quantum Optics

(Cambridge: Cambridge University Press)
[18] Ban M 1996 J. Mod. Opt. 43 1281
[19] Gardiner C and Zoller P 2000 Quantum Noise (Berlin:

Springer)
[20] Spagnolo N et al 2009 Phys. Rev. A 80 032318

8

http://dx.doi.org/10.1103/PhysRevLett.89.283601
http://dx.doi.org/10.1364/OL.4.000205
http://dx.doi.org/10.1103/PhysRevA.35.725
http://dx.doi.org/10.1103/PhysRevA.44.R2775
http://dx.doi.org/10.1103/PhysRevLett.94.173602
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.81.5039
http://dx.doi.org/10.1103/PhysRevA.65.032323
http://dx.doi.org/10.1103/PhysRevA.66.024303
http://dx.doi.org/10.1103/PhysRevA.60.4034
http://www.opticsinfobase.org/oe/abstract.cfm?URL=oe-10-8-376
http://dx.doi.org/10.1088/1464-4266/6/10/003
http://dx.doi.org/10.1016/S0375-9601(03)00288-3
http://dx.doi.org/10.1103/PhysRevA.75.045801
http://dx.doi.org/10.1103/PhysRevA.80.032318


J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 085504 J Li et al

[21] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[22] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A

70 022318
[23] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M

1998 Phys. Rev. A 58 883
[24] Rai A, Das S and Agarwal G S 2009 arXiv:0907.2432v2

[quant-ph]

[25] Braunstein S L, Fuchs C A, Kimble H J and van Loock P 2001
Phys. Rev. A 64 022321

[26] Grangier P, Courty J M and Reynaud S 1992 Opt. Commun.
89 99

[27] Wigner E 1932 Phys. Rev. 40 749
[28] Vogel W and Welsch D G 1994 Lectures on Quantum Optics

(Berlin: Akademie Verlag)

9

http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.70.022318
http://dx.doi.org/10.1103/PhysRevA.58.883
http://www.arxiv.org/abs/0907.2432v2
http://dx.doi.org/10.1103/PhysRevA.64.022321
http://dx.doi.org/10.1016/0030-4018(92)90254-O
http://dx.doi.org/10.1103/PhysRev.40.749

	1. Introduction
	2. WDFs of Fock states and cat states in a linear loss process
	3. EPs of the Fock states and cat states in a linear loss process
	4. Discussion of the WDF for generic quantum states in a linear loss process
	5. Summary
	Acknowledgments
	References



