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Abstract. We present experimental results on the two-body loss rates in a magneto-optical trap of
metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings
ranging from −5 to −30 MHz and at different intensities, by monitoring the decay of the trap fluores-
cence. The dependence of the two-body loss rate coefficient β on the excited state (23P2) and metastable
state (23S1) populations is also investigated. From these results we infer a rather uniform rate constant
Ksp = (1± 0.4)× 10−7 cm3/s.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 34.50.Rk Laser-modified scattering and reactions

1 Introduction

Helium atoms in the metastable triplet state 23S1 (He*)
appear to be a good candidate for Bose-Einstein Conden-
sation (BEC) according to theoretical predictions [1]. The
cross section for elastic collisions between spin-polarised
metastable helium atoms is expected to be large, allow-
ing efficient thermalization and evaporation in a magne-
tostatic trap, which is the standard technique to reach
BEC [2–5]. On the other hand, very high autoionisation
rates (Penning collisions) prevent reaching high densities
of metastable helium atoms, both in the presence and in
the absence of light, unless the sample is spin polarized.

If a metastable helium atom collides either with an
other metastable atom, or with an helium atom excited in
the 23P2 state, the quasi molecule formed can autoionise
according to the following reactions:

He (23S1) + He(23S1)→
{

He(11S0) + He+ + e−

He+
2 + e−

, (1)

He (23P2) + He(23S1)→
{

He(11S0) + He+ + e−

He+
2 + e−

. (2)
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A first experiment at subthermal energy (E = 1.6 meV)
with the metastable helium system was performed by
Müller et al. [6], allowing the determination of the in-
teraction potentials. Using those potentials the rate βSS

for the reactions (1) has been calculated [7–9] to be a
few 10−10 cm3/s, which agrees with measurements per-
formed in Magneto-Optical Traps (MOT) [7,10,11]. Ac-
cording to theoretical predictions [1], the ionisation rate
corresponding to the reactions (1) should be suppressed
by four orders of magnitude in a magnetostatic trap. Spin
polarization of the atoms and spin conservation in the col-
lisional process are the causes of this suppression, which
makes the quest of BEC reasonable. Actually, a reduction
of more than a factor of 20 in the two-body loss rate in
an optically polarized sample was observed experimentally
[12].

In presence of light exciting the transition 23S1 →
23P2, the reaction (2) is dominant. “Optical collisions”
with metastable helium atoms were measured to have sur-
prisingly large cross-sections when compared with alkali
systems [13]. The study of optical collisions is of funda-
mental importance in order to optimize the first step to-
wards BEC, consisting in pre-cooling and trapping the
atoms in a MOT. The goal is to transfer a cloud as dense
as possible in a magnetic trap, in order to increase the elas-
tic collision rate and start evaporation. The experimental
study of optical collisions is the subject of this paper.

Several groups reported measurements of optical col-
lisions rates, by studying losses in the MOT at small de-
tunings [8,10,11] around −5 MHz and at large detunings
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Table 1. Optimal loading parameters of the He∗ magneto-
optical trap.

Laser detuning −45 MHz

Laser beam diameter 2 cm

Vertical laser intensity (Ox) 2×9 mW/cm2

Longitudinal laser intensity (Oy) 2×9 mW/cm2

Transverse laser intensity (Oz) 2×7 mW/cm2

Total intensity 50 mW/cm2

Weak axis magnetic field gradient bx = by = 20 G/cm

Strong axis magnetic field gradient bz = 40 G/cm

[11] at −35 MHz and −45 MHz. Measurements over a
broad range of detunings, from −5 MHz to −20 MHz,
were reported in [14] and the dependence of the loss rate
on the intensity of the MOT laser beams was investigated.
In reference [7] a theoretical model for optical collisions
is also proposed predicting rates in good agreement with
the measurements, but differing by more than one order
of magnitude with all the other measurements previously
quoted.

Our measurements are performed in a MOT loaded
with 109 atoms, at a peak density of 1010 atoms/cm3.
With respect to previous works, we extend the measure-
ments of the two-body loss rate to a wider range of detun-
ings and intensities with a good precision, by measuring
the number of atoms and the size of the trap using absorp-
tion techniques. Also, by measuring accurately the excited
state population in each trapping condition, we are able
to interpret our data with a simple model, expressing the
two-body loss rate in terms of the excited state popula-
tion and of a rate constant Ksp, found to be independent
of the laser detuning and intensity.

Our experimental setup is described in Section 2, while
in Section 3 we explain our detection system and we give
the working conditions and performance of our magneto-
optical trap. In Section 4 we describe in detail the ex-
perimental procedure used to measure the two-body loss
rate and the excited state population for different trap-
ping conditions. The results are given in Section 5, and
the conclusions in Section 6.

2 Experimental set-up

A beam of metastable helium atoms is generated by a
continuous high voltage discharge in helium gas, cooled
to liquid nitrogen temperature. Radiation pressure on the
metastable beam allows one to increase its brightness, and
to deflect it from the ground state helium beam [15]. The
metastable atoms are then decelerated by the Zeeman
slowing technique and loaded in a magneto-optical trap
(MOT) in a quartz cell at a background pressure of
5 × 10−10 torr. More details on the experimental setup
will be given in a forthcoming paper [16]. MOT parame-
ters for optimal loading of the trap are listed in Table 1.

z

y

xλ/2

Absorption PD1

Fluorescence PD2

CCD camera
for absorption

He*

λ/4 λ/4

Fig. 1. Detection set-up. By rotating the λ/2 plate, one can
create either a progressive plane wave for measuring the ab-
sorption on the photodiode PD1, or a standing wave, with both
beams circularly polarized in the cell region, for imaging the
cloud onto the CCD camera. PD2 monitors the fluorescence of
the MOT.

For the laser manipulation of the atoms, we use the
line at 1083 nm, connecting the metastable triplet state
23S1 to the radiative state 23P2. The saturation intensity
Isat for this transition is 0.16 mW/cm2 and the linewidth
Γ/2π is 1.6 MHz. Our laser system consists of a DBR
laser diode (SDL-6702-H1) in an extended cavity configu-
ration, injecting a commercial ytterbium doped fiber am-
plifier (IRE-POLUS Group). The diode is stabilized by
saturation spectroscopy at −240 MHz from resonance. At
the fiber output we obtain 600 mW of power, in a TEM00

mode at the same frequency. The estimated linewidth is
around 300 kHz. All the frequencies required for collima-
tion, deflection, trapping and probing are generated by
acousto-optical modulators in a double pass configuration,
while we use directly part of the fiber output beam for
slowing the atoms.

3 Detection system and characterization
of the MOT

In order to fully characterize the cloud, we use a probe
laser beam on resonance, whose diameter is about 1 cm,
which is turned on 100 µs after the MOT field and light
beams have been turned off. Our detection setup (see
Fig. 1) allows different measurements. With the combi-
nation of λ/2 plates and polarization beam splitter cubes,
we can create either (i) a progressive wave, circularly po-
larized, passing through the atomic cloud towards a pho-
todiode (PD1 in Fig. 1), giving the total absorption by the
atoms, or (ii) a stationary wave, also circularly polarized,
one arm of which is sent to a CCD camera, allowing spa-
tially resolved absorption pictures of the cloud. A second
photodiode (PD2 in Fig. 1) is used to collect the cloud
fluorescence. We use the absorption photodiode PD1 to
measure N , the number of atoms in the steady state of the
MOT. The probe beam saturates the transition when the
incident power exceeds 10 mW (see Fig. 2). The maximum
absorbed power is then P = NhνΓ/2. Our Watt-meter
(Coherent lab-master) is calibrated to 3% accuracy and
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Fig. 2. Absorbed power by the MOT versus incident power of
the laser probe beam. The absorbed power saturates at 1 mW
for an incident power of 10 mW. The corresponding number of
atoms is (1± 0.1)× 109 atoms

allows a rectilinear calibration fit of the photodiode volt-
age. We measure a maximum total absorption of 1 mW,
corresponding to (1 ± 0.1) × 109 atoms. We estimate the
accuracy for the measurement of N to be about 10%.

We stress the fact that the case of He* differs of that
of alkalis, for which the imaging method gives a direct
measurement of both the two-dimensional column density
and the rms sizes of the MOT, by absorption of a brief
and low intensity probe pulse (I � Isat). In the case of
He*, the quantum efficiency of the CCD camera (10−3

at 1.083 µm) is too low to provide images with a suffi-
cient signal to noise ratio. We need instead to illuminate
the atoms with a 200 µs pulse whose intensity is about
0.1 mW/cm2 (I ∼ Isat), and use a moderate magnifica-
tion of 1/5. Another difficulty with He* occurs from the
large recoil momentum h̄k/m (9.2 cm/s) due to the light
mass of the atoms: the atoms are pushed out of resonance
during the 200 µs pulse if a traveling wave pulse is used.
The solution we adopted is to illuminate the atoms in a
standing wave with the set-up shown in Figure 1. Though
this scheme allows us to obtain pictures with a good con-
trast, the drawback is that the images obtained in the
standing wave configuration for I ∼ Isat are more diffi-
cult to analyze than in the low intensity case. In order
to interpret the absorption pictures in the standing wave
configuration, and for any saturation parameter, we devel-
oped a handy theoretical model (see Appendix A) giving
the column density of the atoms for each pixel of the CCD
camera. The resulting density is then fitted by a Gaussian
curve to extract the size of the cloud.

The typical parameters of our magneto-optical trap
with the operating conditions of Table 1 are listed in Ta-
ble 2.

4 Measuring the trap decay by fluorescence

Once the loading of the MOT is interrupted, the evolution
of the number of trapped atomsN is given by the following

Table 2. Characterization of the MOT with parameters of
Table 1.

Number of atoms N = (1± 0.1)× 109

RMS size (weak axis) σx = σy = (2± 0.1) mm

RMS size (strong axis) σz = (1.6± 0.1) mm

Density at the center (1± 0.25) × 1010 at/cm3

Temperature 1 mK

equation:

dN
dt

= −αN − β
∫
n2(r, t)d3r (3)

where n(r, t) is the atomic density at position r and time
t, α is the decay rate due to collisions between trapped
atoms and the residual gas, and β is the two body intra-
MOT loss factor. Assuming that the spatial distribution is
independent of the time evolution of the number of atoms,
which is valid at low enough densities, one can write the
density as

n(r, t) =
N(t)

(2π)
3
2σxσyσz

e
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z . (4)

At low enough pressure and high enough density, losses
due to background gas are negligible, so that the equation
reduces to

dN
dt

= −β N2(t)
(4π)

3
2σxσyσz

(5)

whose solution is

N(t) =
N(t0)

1 +
β

2
√

2
n(0, t0)(t− t0)

(6)

where t0 is the initial time. In order to follow the evo-
lution of the number of trapped atoms, we monitor the
fluorescence decay of the MOT with a photodiode (PD2
in Fig. 1). As the fluorescence signal is proportional to the
number of atoms, we obtain a fluorescence decay curve re-
producing equation (6), which we fit to get the parameter
βn(0, t0). In order to determine β, one still has to mea-
sure n(0, t0), which means that one has to measure the
rms size of the cloud along the three directions and the
initial number of atoms N(t0).

Our goal is to measure the loss rate for a wide range
of detunings and intensities. The experimental procedure,
divided in three successive steps, is the following.

(1) First, we load the trap for 1 s at δ = −45 MHz and
at the highest intensity in the trapping beams (I/Isat =
50 per laser arm). Then, we stop the loading by block-
ing the slowing beam with a mechanical shutter. 20 ms
later, we “compress” the MOT by suddenly changing
its detuning and intensity using acousto-optical modula-
tors. We record the fluorescence signal during this proce-
dure. A typical fluorescence curve is shown in Figure 3.
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Fig. 3. Evolution of the fluorescence signal. Once the loading
is stopped, scattered light from the slowing beam is blocked,
which explains the drop of the signal at t = −10 ms. The
detuning is then set to δ = −20 MHz at t = 0 ms and the
fluorescence decays.
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Fig. 4. Size of the MOT during the compression phase. The
new equilibrium is reached after 10 ms

The loading is stopped at t = −20 ms and the photodi-
ode signal drops by a factor of 2 at t = −10 ms because
the background light from the slowing beam is blocked.
The fluorescence is greatly enhanced in the beginning
of the compression phase at t = 0 ms, as expected when
the detuning is set closer to resonance (the detuning is
set here to −20 MHz), but decays to almost zero in about
100 ms because of the two-body losses. Figure 4 shows the
time evolution of the size of the cloud during this phase
of compression, showing that 10 ms are enough to reach
the new equilibrium size. Thus, we extract the parameter
βn(0, t0) from a fit of the fluorescence decay starting from
t = t0 = 10 ms. At this very time we measure the sizes
of the MOT along x and y and the number of atoms in
order to calculate n(0, t0).

(2) Then, the sizes along the weak axis of the mag-
netic field gradient are measured by absorption on the
CCD camera as explained in Section 3. Figure 5 shows
the rms size along x for various laser detunings and in-
tensities. The size along z (strong axis of the quadrupole
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Fig. 5. Rms size of the MOT cloud as a function of the inten-
sity of the MOT laser beams for various detunings.

field) is inferred from measurements of the sizes along x
and y with a magnetic field gradient b twice as large. We
find a typical size along z 20% smaller than along the weak
axes of the quadrupole. We did not correct the sizes for the
expansion of the cloud during the pulse lasting 200 µs, as
this would have required the measurement of the temper-
ature for all the detunings and intensities. Nevertheless,
we performed some time of flight measurements, giving
temperatures ranging from 0.3 mK at −10 MHz to 1 mK
at −40 MHz, from which we estimate that the sizes are
overestimated at most by 5% at −25 MHz and by 15%
at −5 MHz. In addition, we measured the statistical error
on the sizes to be relatively small at large detunings, 2 to
3%, but larger at small detunings (about 10% at−5 MHz).
This is due (i) to the poor spatial resolution of our imag-
ing system (pixel dimension 80 µm× 130 µm), and (ii) to
a low signal to noise ratio for small detunings where the
loss rate is larger, as most of the atoms are lost during the
compression phase.

(3) Finally, to determine the number of atoms that
were still trapped at t0 = 10 ms, we simultaneously switch
off the magnetic field and set the trapping beams on res-
onance at t0, instead of letting the trap decay as in Fig-
ure 3. The laser intensity is set to a high enough value to
strongly saturate the transition. We get a peak of fluores-
cence, whose amplitude is proportional to the number of
atoms. We compare it with the peak obtained with the
same procedure but for the MOT in the best loading con-
ditions of Figure 2, for which we measured the number of
atoms precisely. From this comparison, we infer the num-
ber of atoms at t = t0 in the compressed MOT, and thus
determine n(0, t0).

This measurement also gives access to the value of the
average population of the excited state πp. Indeed, πp is
given by

F

Fmax
=

πp

1/2
= 2πp (7)

where F is the fluorescence signal we measure in the com-
pressed MOT at t0, and Fmax the fluorescence signal at
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Fig. 6. Fluorescence signal F from the MOT as a function of
intensity I of the laser beams. The inverse of the fluorescence
F is found to vary linearly with the inverse of the intensity
I. The results are used for the calibration of the number of
atoms.

resonance, when the transition is saturated, and πp ex-
pected to be 1/2.

Figure 6 shows the results of the fluorescence measure-
ments, giving Fmax/F as a function of the inverse of the
laser intensity I for various detunings. It is interesting to
note that the inverse of F is found to vary linearly with
the inverse of I.

Following [17], the fluorescence of N atoms in the com-
pressed MOT can be modeled by the following equation:

F = ηNhν
Γ

2

C1
I

Isat

1 + C2
I

Isat
+ 4

δ2

Γ 2

(8)

where η is the detection efficiency, I is the total intensity
of the six MOT beams, and C1 and C2 phenomenological
factors. C1 and C2 would be 1 for a two-level atom, but
they are expected to be smaller for an atom placed at
the intersection of 6 differently polarized laser beams, as
happens in a MOT. In reference [17], C1 and C2 are found
to be equal, and slightly larger than the average of the
squares of the Clebsch-Gordan coefficients over all possible
transitions. For a J = 1←→ J = 2 transition, this average
is 0.56. We can rewrite equation (8) as

Fmax

F
=
C2

C1
+

1 + 4
δ2

Γ 2

C1

Isat

I
(9)

where Fmax = η N hν Γ/2.
The results of Figure 6 show a good agreement with

(9). But, C2 and C1 are not found equal, and both depend
on the detuning. For example, C1 is found to be 0.58, 0.48,
0.46, 0.44, 0.22 for δ = −25, −20, −15, −10, −5 MHz
respectively. We stress the fact that, for the fluorescence at
resonance, and for full saturation, C1 and C2 are expected
to be equal.
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Fig. 7. Two-body loss rate factor as a function of laser power
for several detunings.
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Fig. 8. Two-body loss rate factor as a function of detuning for
a fixed intensity I = 80Isat of the laser.

5 Results

The results of the Penning collisions rate β are shown in
Figures 7 and 8.

Figure 7 presents the loss parameter β as a function
of the laser intensity for different detunings δ, from −30
to −5 MHz. The uncertainty of the measurements varies
from 25% for large detunings to 60% for small detunings.
For all detunings, β increases with power, which shows
that S-P collisions are dominant.

Figure 8 shows the loss parameter as a function of
detuning for a fixed intensity (I/Isat = 80). For the same
reason, the rate increases when the detuning goes to zero,
as the population in the P state increases. Our results for
β agree with previous results [8,10,11,14] within the given
error bars, extending the measurements to a wider range
of parameters. For example, at−5 MHz and in an intensity
range for which β is not expected to vary strongly (I = 140
to 200Isat), Kumakura et al. [8] find β = (4.2 ± 1.2) ×
10−8 cm3/s, Browaeys et al. [14] β = 2×10−8 cm3/s with
an uncertainty of a factor 2 and Tol et al. [11] β = (1.3±
0.3) × 10−8 cm3/s. Our measurement β = (3.5 ± 1.4) ×
10−8 cm3/s agrees best with [8]. One should also note
that we find neither a decrease of β for high intensities at
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Fig. 9. Rate coefficient Ksp for all our measurements, as a
function of the laser intensity I for several detunings.

small detunings, nor a decrease of β at small detunings
for a given intensity: this differs from the results of [14].
In fact, we find that β increases with intensity at small
detunings, and also increases with decreasing detunings
at a given intensity. We also disagree with the results of
[7] where much smaller rates are found.

Finally, we also measured the loss rate in the trapping
conditions (δ = −45 MHz, I = 310Isat): the decay rate of
the number of atoms was found to be βn(0) = 30 s−1 at a
density of 1010 at/cm3, which gives β = 3× 10−9 cm3/s.
One can further analyze these data following the simple
model of [10] which relates the decay constant β to the
constant rate coefficients Kss, Ksp and Kpp and to the
populations of the excited and ground state levels, πp and
πs respectively:

β = Kss πs πs + 2Ksp πs πp +Kpp πp πp. (10)

Experiments [7,11] or theory [7–9] have shown that the
contributions Kssπ

2
s and Kppπ

2
p to the total rate β are

smaller than the Ksp term by approximately two orders
of magnitude.

From the measurements of the fluorescence signal in
Figure 6, we derive πp for each experimental point, as
F/Fmax in equation (7) is equal to 2πp. In Figure 9, we
then plot Ksp for the ensemble of our data. We do not
see clear evidence for a dependence of Ksp with the de-
tuning or the intensity within the dispersion of our data.
To a good approximation, we estimate then that Ksp is
actually constant in the explored range of parameters:
Ksp = (1.0 ± 0.4) × 10−7 cm3/s, with a dispersion that
roughly agrees with the error bars we claim. This re-
sult agrees with the first measurement ever performed
[10], but the precision is now much improved. It also
agrees well with the measurements of [8] where the au-
thors found Ksp = (8.3±2.5)×10−8 cm3/s, assuming that
for their parameters (δ = −5 MHz and I = 30 mW/cm2),
πs = πp = 0.5.

An important point is that, in contrast with the mea-
surement of the fluorescence at resonance where the tran-
sition is assumed to be saturated, πp in the compressed
MOT never reaches 0.5 in our measurements: even for the

smallest detuning and the highest intensity, πp is only
0.2. This explains why the results for β in Figure 7 at
δ = −5 MHz strongly increase for increasing intensity
over the whole explored range.

6 Conclusion

We measured the absolute two-body loss rate between
metastable atoms in a magneto-optical trap as a func-
tion of detuning and intensity. We extended the range
of these parameters and compared the results to those
of previous measurements, mostly performed at small de-
tunings. Using a new experimental approach, we obtained
reliable values for the two-body loss rates with an im-
proved accuracy as compared to most earlier results. In
the region of overlap of parameters, we find a good agree-
ment with previous measurements, within the quoted un-
certainties. We find a loss rate monotonically increasing
as a function of intensity and decreasing with detuning.
Our measurements are interpreted with a simple model,
giving a rather constant loss rate Ksp, with an average
value of (1 ± 0.4) × 10−7 cm3/s, as already found in the
very first measurement of [10]. We believe that the quality
and the extended range of our measurements should mo-
tivate more theoretical work, in order to understand bet-
ter the peculiar dynamics of Penning collisions between
metastable helium atoms in the presence of light.

The authors wish to thank C. Cohen-Tannoudji for helpful
discussions and careful reading of the manuscript.

Appendix A: Model of the absorption

In this appendix we describe the method we used to quan-
titatively interpret the absorption images of the atomic
cloud when a standing wave configuration of the probe
beam is used, and for an arbitrary saturation parameter.
We describe the atoms as two-level atoms characterized
by a non linear susceptibility:

χ = n(x, y, z)
[
− d2

h̄ε0

δ − i(Γ/2)
(Γ/2)2 + δ2 + |Ω|2/2

]
(11)

where n(x, y, z) is the atomic density, d the atomic dipole,
δ the detuning, Γ the inverse lifetime of the excited state
and Ω is the Rabi frequency given by

h̄Ω

2
= −d E(+) E = E(+) e−iωt + c.c. (12)

where E is the electric field. The direction of propagation
of the beam is z and the field is supposed to be uniform
in the plane (x, y). The propagation of the field is then
described by the Maxwell equations:[

∆+ k2
0 (1 + χ)

]
Ω(z) = 0 (13)

where k0 is the wavevector of the light.
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The principle of the model is to use the slowly varying
envelope approximation generalized to the case of a stand-
ing wave. We then decompose the probe beam field as:

Ω(z) = A+(z) eik0z +A−(z) e−ik0z (14)

where A+, A− are the slowly varying envelopes of the
wave going towards positive z and negative z respectively.
A similar decomposition holds for the nonlinear suscepti-
bility of the atoms:

χ(z) = χ0(z) + χ+(z) e2ik0z + χ−(z) e−2ik0z + . . . (15)

where χ0, χ+ and χ− are slowly varying envelopes, and
where we neglect terms in the expansion describing gen-
eration of frequencies others than the probe frequency via
the non linear interaction.

If we insert the expansions (14, 15) into the propaga-
tion equation (13) and use the rotating wave approxima-
tion, we obtain a set of two coupled differential equations
for the slowly varying field amplitudes A+, A−. By split-
ting the complex amplitudes into modulus and phase:

A+ = |A+| eiφ+ A− = |A−| eiφ− (16)

and by introducing the phase difference (φ+ − φ−) in the
definition of the slowly varying susceptibilities χ+ and χ−:

χ+ = χ̃+ ei (φ+−φ−) χ− = χ̃− e−i (φ+−φ−) , (17)

one can write :

d|A+|
dz

=
k0

2
(Imχ̃+ |A−|+ Imχ̃0 |A+|) (18)

d|A−|
dz

= −k0

2
(Imχ̃− |A+|+ Imχ̃0 |A−|) . (19)

By using expressions (11, 14), the quantities k0 Imχ̃+,
k0 Imχ̃− and k0 Imχ̃0 are readily calculated:

k0 Imχ̃0 =
3λ2

2π
n(x, y, z)αf0 (20)

k0 Imχ̃+ = k0 Imχ̃− =
3λ2

2π
n(x, y, z)αf1 (21)

where

α =
(Γ/2)2

(Γ/2)2 + δ2 + (|A+|2 + |A−|2)/2
(22)

f0 =
1√

1− ε2
; f1 =

1− f0

ε
(23)

ε =
|A+||A−|

(Γ/2)2 + δ2 + (|A+|2 + |A−|2)/2
· (24)

As a last step we eliminate the atomic density n(x, y, z)
from the equations by changing variable:

Z(z) =
∫ z

−∞
n(x, y, z′)dz′ (25)

and we obtain the final coupled equations:

d|Ã+|
dZ

=
3λ2

4π
α
(
f1|Ã−|+ f0|Ã+|

)
(26)

d|Ã−|
dZ

=
3λ2

4π
α
(
f1|Ã+|+ f0|Ã−|

)
, (27)

where:

Ã− = A−/(Γ/2) Ã+ = A+/(Γ/2) . (28)

For δ = 0 and in the limit of small saturation parameters,
one has α = 1, f0 ' 1, f1 ' 0 and one recovers the
usual decoupled equation for low saturation absorption.
We have now to solve equations (26, 27). More precisely
we wish to calculate the column density

Z∞ =
∫ +∞

−∞
n(x, y, z′)dz′ (29)

for each effective pixel (x, y) of our image of the cloud. For
each effective pixel, we can measure the initial conditions:

|Ã+|2(Z(−∞) = 0) = Ii (30)

|Ã−|2(Z(−∞) = 0) = If (31)

corresponding respectively to the intensity of the probe
beam before passing through the cloud, or equivalently
without the atoms, and to the intensity of the probe beam
that passed through the atomic cloud. For symmetry rea-
sons, the column density (29) is given by 2Z0 = Z(0),
where Z0 verifies

|Ã+(Z0)|2 = |Ã−(Z0)|2. (32)

For each pixel (x, y), we then integrate equations (26, 27)
numerically using the initial conditions (30, 31) until
|Ã+(Z)|2 = |Ã−(Z)|2. The corresponding Z multiplied
by 2 gives the column density. Note that, contrarily to
what happens in the low saturation regime, we here need
the values Ii and If separately (and not only their ratio),
which implies a calibration of our CCD camera.
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