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An optical field with a definite number of photons is very important for quantum metrology and quantum infor-
mation. Some theoretical protocols for creating such a Fock-state have been proposed, but it is still a big challenge
to produce it with a large number photons experimentally. We revisit the system of atoms inside an optical para-
metric oscillator that was proposed in 1990s, and it is found that for the atom ensemble, the optical Fock-state with
an arbitrary number of photons can be generated. Compared to the previous proposals, the scheme presented here
is simple and seems physically realizable. The system also provides the possibility to demonstrate the strong
interaction between nonclassical light and atoms in a confined space. © 2012 Optical Society of America

OCIS codes: 020.1335, 190.4970, 270.5290, 270.6570.

1. INTRODUCTION
Fock states play an important role in quantum optics due to
their fundamental nonclassical nature, such as antibunching
and negativity of the Wigner function, as well as their potential
practical applications in quantum metrology [1] and quantum
information science [2], such as quantum cryptography [3]
and quantum computing [4]. They can also improve the sen-
sitivity of an interferometer to the Heisenberg limit [5].

However, until now it was experimentally challenging to
produce such light fields that contain definite number of
photons. Several proposals aimed at creating a Fock-state “on
demand” have been offered theoretically. Brown et al. [6] pre-
sented a scheme for the deterministic production of N -photon
Fock states from coupling N three-level atoms in a high-
finesse optical cavity to an external field, and it is suitable
for experimental implementation by using a cloud of cold
atoms trapped in a cavity. O’Sullivan et al. [7] considered
the heralded N -photon states created from the photons
produced by an unseeded optical parametric amplifier using
time-multiplexed detectors. An experimentally viable ap-
proach for preparing arbitrary photon-number states of a
cavity mode using continuous measurement and real-time
quantum feedback is presented by Geremia [8]. Following this
method, Haroche and Raimond have proposed a real-time sta-
bilizing quantum feedback scheme for the preparation and
protection of photon-number states of light trapped in a
high-Q microwave cavity [9,10] based on their experimental
techniques.

For one and two photon states, they have been experimen-
tally demonstrated by using other processes including atomic
and molecular fluorescence [11,12], Coulomb blockade for
electrons [13], and micromaser [14]. Waks et al. [15] have de-
monstrated Fock-state generation with 1, 2, 3, and 4 photons,

by using a visible light photon counter (VLPC) along with the
process of parametric down-conversion. Achilles et al. [16] got
the heralded two-photon-number state by conditionally de-
tecting a two-mode squeezed state generated by parametric
down-conversion. Yet producing and detecting a Fock-state
containing large number of photons is still a very large chal-
lenge. So it is of great importance to explore a feasible and
simpler approach to generate Fock states with a large number
of photons.

In this paper, we revisit the combined “atom� DOPO” sys-
tem. DOPO is the degenerate optical parametric oscillator.
The system was first provided and discussed by Xiao and
Jin et al. [17], and was discussed extensively from then on
for a large number of atoms [17–19] and also for single atoms
[20–23]. We discuss the photon statistics, which is one of the
main features of the light field in the case of a large number of
atoms. It shows that, when there are many atoms in the cavity,
very weak antibunching but strong sub-Poissonian (Mandel Q
goes to −1) can be obtained, which shows the attainability of
generation of Fock states with arbitrary photon numbers. For
comparison, both antibunching and sub-Poissonian are weak
for the normal bistability (OAB) system, and it does not show
the ability of generating Fock states with a large number of
photons. The numerical simulations are explained quite
clearly by the consequence of the bistability and concrete
parameters of the system. Consider the present state-of-the-
art of cold atom and optical parametric process; the system
is quite feasible in experiment.

2. BASIC MODEL AND THE CORRELATION
FUNCTIONS
Let us consider a combined system consisting of an optical
cavity with a pair of nonlinear crystals and the two-level atoms
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(see Fig. 1) [17]. The nonlinear medium is prepared to ful-
fill the phase-matching condition for parametric down-
conversion. The system is pumped by a strong external
coherent field with the frequency nearly resonant at twice
the atomic transition frequency. The total Hamiltonian de-
scribing this system is given by [18]
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2 � â�2 B̂2� âB̂
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where Ĥ1 is the free energy of the system, Ĥ2 describes
the atom-field and parametric interactions in the system,

Ĥ3 is the external driving term, and Ĥ4 gives decay processes
of the atoms and the intracavity field. (â�2 , â2) denote the crea-
tion and annihilation operators of the fundamental field mode
and (â�, â) are for the subharmonic field mode. σ̂�, σ̂z are the
Pauli atomic operators. ωa is the atomic transition frequency,
and ωc is the frequency of the cavity subharmonic field. g is
the coupling constant between the atoms and the intracavity
subharmonic field. κ is the coupling coefficient of the non-

linear down-conversion process. Γ̂�
a , (B̂

�
2 , B̂2), (B̂

�
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the noise operators of the atoms, the fundamental field,
and the down-conversion field, respectively. ε2 stands for
the complex classical amplitude of the external driving field.

The Fokker–Planck equation can be obtained from this
Hamiltonian by the standard technique [24]. In deriving the
equation, all the operators have been translated into the cor-
responding c numbers defined by
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are the collective operators of atoms. From the Fokker–
Planck equation, one can get a set of equations of motion
for the variables as follows:
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and the correlation terms
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where Δc � ωc − ωp∕2, Δ2 � ω2 − ωp, Δa � ωa − ωp∕2. With-
out loss of generality, we consider a double-resonance cavity
for the fundamental and subharmonic fields such thatΔc � 0,
Δ2 � 0, andΔa � ωc − ωa, and a pure radiative decay process
(no collisional decay for atoms); i.e., γ⊥ � γ‖∕2. γ1 and γ2 are
the cavity-decay rate of the subharmonic and pumping field
mode, respectively. N is the total number of atoms in the cav-
ity. Several normalized parameters are introduced as follows:
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where C is the atomic-cooperative parameter, which is de-
fined as the ratio of atomic absorption to the cavity-decay rate
of the subharmonic mode. Ns is the single-atom saturation
photon number. n0 is the scaling photon number (saturation
photon number) for the DOPO system. ε0 is the threshold of
the pumping amplitude for the DOPO system when the atoms
are absent. The normalized field variables are

x � α������
Ns

p ; y � ε2
ε0

: (6)

Together with the replacements [25]
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we can get the equivalent equations of Eq. (3),
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g

Fig. 1. A schematic of the physical system under consideration.
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dx
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In order to investigate the photon statistics of the intracavity
field, we have adiabatically eliminated the operators of the
pumping field. From the steady-state solution, we obtain
the following relations:
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Let us define the pumping intensity Y � yy� and the intracav-
ity intensity X � xx�; then we have
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The threshold of the DOPO of this combined system is mod-
ified by the atoms [17]
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Generally, the threshold of the DOPO is increased due to the
atoms, and in the case of resonant interaction, it reaches the
maximum threshold value j�εcmaxj � jε0j�1� 2C�. A bistable re-
sult related to the Eq. (10) with Δ � 0 and C � 5, r � 0.5, is
given in Fig. 2(b), and the corresponding result for the normal
optical absorptive bistability is shown in Fig. 2(a) for compar-
ison. The turning points of intracavity intensity X for OAB are

C − 1�
�������������������
C�C − 4�

p
, while for atoms in DOPO, it is

������������
2C∕r

p
− 1,

as pointed out in the figures.
For simplicity, let us assume �x � �x� and �υ � �υ�; i.e., the �x

and �υ are real quantities. Generally, the physical quantities u

can be described as their steady-state mean value �u and the
noise ξ around �u [25]; that is, u � �u� ξ. Equation (8) can then
be simplified as
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As we know, the steady-state covariance matrix G satisfies
[26]

AG�GAT � −D: (16)

D actually represents a non-positive-definite diffusion.
Equation (16) defines a set of 15 linear equations for the ele-
ments of the covariance matrix G. Since the fluctuations ξ are

Fig. 2. Typical bistable curve of the intracavity intensity X versus pumping intensity Y ; (a) normal optical absorptive bistability with C � 5,
(b) atoms in DOPO with Δ � 0, C � 5, and r � 0.5. The turning points have been pointed out.
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Gaussian distributed, the moments of all orders can be calcu-
lated once these equations have been solved. Since A and D

are real, the total 15 equations decouple into a set of nine
effective equations for the real part of G. By solving these
equations, one can in principle get all the elements of the cov-
ariance matrix G.

3. NUMERICAL SIMULATIONS
It is well known that the photon statistics can be characterized
by the second order degree of coherence g�2� and the Mandel
parameter Q. The former describes the bunching (g�2� > 1) or
antibunching (g�2� < 1) of the photons, and the latter tells how
fluctuated the photon number of the field is. Q > 0�< 0� indi-
cates super(sub)-Poissonian distribution of the photon num-
ber, which means large(small) fluctuations of the intensity
of the field [27]. According to the definitions of these two
parameters, we get

g�2��0� � ha�2a2i
ha�ai2 � h��a� �Δa��2��a�Δa�2i

h��a� �Δa����a�Δa�i2 � 1� �a�2hΔa2i � �a2hΔa�2i � 2�a��ahΔa�Δai � hΔa�2Δa2i − hΔa�Δai2
��a��a� hΔa�Δai�2 ;

Q � N

4μC �g�2��0� − 1�: (17)

For large number of atoms, they are approximated to be

g�2��0�≃ 1� 2�hΔxΔxi � hΔx�Δxi�
�x2

;

Q≃
N

4μC
2�hΔxΔxi � hΔx�Δxi�

�x2
: (18)

Figures 3 and 4 show the second order degree of coherence
g�2� at zero delay time and the Mandel Q parameter of the

intracavity field versus intracavity intensity X with various
cavity-decay rates and atomic-cooperative parameter C, re-
spectively. Here we have chosen the intracavity atom number
N � 10000. Figures (a) and (c) are for OAB, and Figs. (b) and
(d) are for atoms in the DOPO, respectively. We can see that
very weak antibunching and sub-Poissonian statistics appear
for the usual OAB system when the intracavity field is weak.
There exist two sudden changes: one is from super-Poissonian
to sub-Poissonian, and the other is just the opposite. These
two sharp peaks exactly correspond to the two turning points
of the bistability of the system. Between the two turning
points, the system is unstable and the result of photon statis-
tics is not valid anymore. In the case of a large number of
atoms, the normal OAB system shows weak antibunching
and sub-Poissonian behaviors when the intracavity field is
very weak, for which the nonclassical properties appear more
likely. On the other hand, for atoms in DOPO, the intracavity

field shows strong super-Poissonian when the X is approach-
ing zero; this is because the subharmonic field is a squeezed
vacuum field below threshold that contains only even photons
and is a typical photon-bunched state. When the system
operates above threshold, weak antibunching and strong sub-
Poissonian statistics appear. The unstable regimes are also
shown [see Figs. 3(b) and 4(b), and the two turning points
are at 0 and 3.47]. In addition, when increasing the intracavity
intensity, the Mandel parameter Q goes to −1, while g�2��0� is
very close to 1, which shows that the scheme can be used for

Fig. 3. The second order degree of coherence for zero delay time g�2��0� andMandelQ versus intracavity intensity with different cavity-decay rates
(N � 10000). (a) and (c) are for OAB, C � 5; (b) and (d) are for atoms in DOPO, C � 5 and r � 0.5.
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generating Fock-state with a definite number of photons. This
is reasonable because there is a certain number of atoms in
the cavity, which are coupled to photons through the atom-
photon interaction. The results also indicate that larger cavity-
decay rate μ and atomic-cooperative parameter C lead to
stronger antibunching and stronger sub-Poissonian effects.
The reason is that cavity decay decreases the intracavity
squeezing, which eventually makes the intracavity field show
sub-Poissonian for the weak field [28]. On the other hand,
atom-field coupling is helpful to increase the nonclassicality
for a certain number of atoms [29]. It is worth to mention that,
if C → 0, the OAB system goes back to the case of the coher-
ent light field in the optical cavity, and the combined
“atom� DOPO” system turns to the situation of a normal
DOPO [30]. All the parameters above can be reached based on
the present state-of-the-art of cold atom and the optical para-
metric oscillator, and the system is feasible in experiment.

4. CONCLUSIONS
We have investigated the photon statistics of the combined
“atom� NOPO” system. The second order degree of coher-
ence g�2��0� and the Mandel parameter Q of the intracavity
field are calculated. The numerical result of a large number
of atoms is obtained for various parameters based on the pre-
sent experimental situations. The result is also compared to
the normal optical absorptive bistability system. It shows that
weak antibunching but strong sub-Poissonian statistics can be
obtained in this combined system, which means that the sys-
tem can be used for Fock-state generation with a large number
of photons. The scheme does not require a strong nonlinearity
at the single quantum level or high-Q cavity in the strong cou-
pling regime. In contrast to the normal bistability system,
there is no strong sub-Poissonian effect. This system thus pro-
vides an approach to demonstrate the generation of the opti-
cal Fock-state with a large number of photons. The present
investigation is also significant to understand the photon sta-
tistical properties of nonclassical light interacting with atoms.

Since the generated nonclassical state is just within the cavity,
people do not need to inject the quantum light source from
outside, as was demonstrated in the early time experiment
[31]. The system is thus more efficient for investigating the
interaction between quantum light sources and atoms.
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