Efficient frequency doubler of 1560 nm laser based on a semi-monolithic resonant cavity with a PPKTP crystal

Junmin Wanga,b,c,*, Kong Zhanga,b, Yulong Gea,b, Shanlong Guoa,b

a Institute of Opto-Electronics, Shanxi University, No.92 Wu Cheng Road, Tai Yuan 030006, Shan Xi, China
b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, No.92 Wu Cheng Road, Tai Yuan 030006, Shan Xi, China
c Collaborative Innovation Center for Extreme Optics, Shanxi University, No.92 Wu Cheng Road, Tai Yuan 030006, Shan Xi, China

A R T I C L E I N F O

Article history:
Received 25 November 2015
Received in revised form 28 January 2016
Accepted 24 February 2016

Keywords:
Semi-monolithic doubler
Erbium-doped crystal
PPKTP crystal
Erbium-doped fiber amplifier
Second-harmonic wave
Rubidium atoms

A B S T R A C T

We have demonstrated 1.61 W of 780 nm single-frequency continuous-wave laser output with a semi-monolithic periodically poled potassium titanyl phosphate (PPKTP) crystal doubler pumped by a 2-W erbium-doped fiber amplifier boosted 1560 nm diode laser. The measured maximum doubling efficiency is 77%, and the practical value should be 80% when taking into account the fundamental-wave mode matching efficiency. The measured beam quality factor of 780 nm output, M2, is better than 1.04. Typical root-mean-square fluctuation of 780 nm output is less than 0.5% in 30 minutes. This compact frequency doubler has good mechanical stability, and can be employed for many applications, such as laser cooling and trapping, atomic coherent control, atomic interferometer, and quantum frequency standard with rubidium atoms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the development of the periodically poled nonlinear crystals and the 1.5 μm telecom-band erbium-doped fiber amplifier (EDFA), laser frequency doubling becomes an alternative way to realize 780 nm single-frequency continuous-wave laser with high output power and good beam quality. Comparing with the semiconductor tapered amplifier boosted 780 nm diode laser, the frequency doubling of an EDFA-boosted 1560 nm laser has lower spontaneous emission noise, much better beam quality, higher output power, and reasonable narrow linewidth. Moreover, in contrast to a Ti:Sapphire laser, the frequency doubling system is much more cheap, compact and stable.

High power single-frequency 780 nm laser can be employed for laser cooling and trapping [1,2], atomic coherent control [3], atomic interferometer [4], and quantum frequency standard [5] with rubidium atoms. In addition, the 780 nm radiation can be used to prepare the squeezed and entangled fields at 1.5 μm by an optical parametric oscillator, which has important application in continuous-variable quantum communication [6], gravitational wave detection [7] and so on.

In respect of second-harmonic generation (SHG) of 1560 nm laser, if the fundamental laser has medium or high power, efficient frequency doubling can be accomplished by single passing periodically poled nonlinear crystals [8]. If the fundamental laser has low power, using a waveguide can also bring considerable conversion efficiency. But if requiring 780 nm output at watt or higher level, the cavity enhanced frequency doubling scheme can be employed [9–12].

For the doubling cavity choice, comparing a semi-monolithic cavity (SFC) with a bow-tie type four-mirror ring cavity (BTRC), SMC can effectively reduce the linear loss and improve the mechanical stability. BTRC has more mirrors, so mechanical stability is relatively poor, and the linear loss is a bit large. As demonstrated in our previous work [12], high efficient frequency doubling is achieved in a BTRC with a periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystal, even the linear loss is large (3.2%). Although the nonlinear coefficient of PPMgO:LN crystal is large (d\textsubscript{eff} = 17.2 pm/V), it has heavier absorption at both fundamental-wave and second-harmonic-wave than periodically poled potassium titanyl phosphate (PPKTP) crystal, which may lead poorer thermal stability. As for PPKTP crystal, the nonlinear coefficient is slightly smaller (d\textsubscript{eff} = 10.8 pm/V), it can benefit from the lower absorption loss for fundamental-wave and second-harmonic-wave lasers. One can also expect comparable high doubling efficiency in the case of combination of PPKTP crystal and SMC [9–13].

We setup a 1560 nm SMC frequency doubler by using a PPKTP crystal which is flat at one end and is spherical convex at the other
end, and a separate plane-concave input coupler. While injecting 2.09 W of 1560 nm fundamental-wave power, we can achieve 1.61 W of single-frequency continuous-wave 780 nm laser. The measured maximum doubling efficiency is 77%, while the practical maximum doubling efficiency should be 80% if taking into account the fundamental-wave mode matching efficiency. This doubling laser can operate continuously and stably for several hours.

2. Experimental setup and design of doubler

Fig. 1 shows the schematic diagram of the frequency doubling system and a photo of the doubler. The master-oscillator power fiber amplifier (MOPFA) consists of a 15-nW external-cavity diode laser (ECDL from New Focus) at 1560.5 nm and a 2-W EDFA (Keopsys), followed by an optical isolator for restraining laser feedback and ensuring the stability of EDFA. Half-wave plate and polarization beam splitter (PBS) cube are used for controlling fundamental power, and settling the proper polarization for the frequency doubling process.

Our PPKTP-crystal SMC doubler is made up of a plane-concave input coupler with a curvature radius of 30 mm and a 1 mm × 2 mm × 10 mm PPKTP crystal (Raciol Crystal), shown in the dotted box in Fig. 1(a). The input coupler is coated with a transmissivity of \(T_{in}=10.9\%\), and a reflectivity of \(R > 98\%\) at 780 nm. The PPKTP crystal has the poling period of 24.925 μm (Type-zero phase matching). One end of the crystal is flat with antireflection coating of \(R < 0.1\%\) for both of fundamental wave and second harmonic wave; the other end is spherical convex with a curvature radius of \(R' = 15\) mm, and is coated with high reflection at 1560 nm (\(R > 99.8\%\)) and high transmission at 780 nm (\(T \sim 89\%\)).

![Schematic diagram of semi-monolithic resonant cavity frequency doubling system](image)

(a) Schematic diagram of semi-monolithic resonant cavity frequency doubling system; (b) Photo of the SMC. MOPFA: master-oscillator power fiber amplifier, OI: optical isolator, \(\lambda/2\): half-wave plate, PBS: polarization beam splitter cube, PZT: piezo-electric transducer, DM: dichroic mirror, Lock-in: lock-in amplifier, PI: proportional and integral amplifier, SUM: summator, HVA: high-voltage amplifier.

![Image showing the calculated waist radius of fundamental-wave TEM\(_{00}\) mode in SMC versus the cavity length with different concave curvature radius \(r\) of the input coupler.](image)

The calculated waist radius of fundamental-wave TEM\(_{00}\) mode in SMC versus the cavity length with different concave curvature radius \(r\) of the input coupler.
PPKTP crystal’s spherical convex end \((r' = 15 \text{ mm}, 20 \text{ mm}, 25 \text{ mm},\) and \(30 \text{ mm})\) can significantly change the waist radius of fundamental-wave TEM\(_{00}\) mode. The larger the PPKTP-crystal convex end’s curvature radius is, the larger the waist radius of fundamental-wave TEM\(_{00}\) mode will be. For PPKTP crystal is 10 mm long and the curvature radius of the input coupler is \(r = 30 \text{ mm},\) when the curvature radius of the semi-monolithic PPKTP crystal’s spherical convex end is \(r = 15 \text{ mm},\) the waist radius of fundamental-wave TEM\(_{00}\) mode can change from \(\sim 30 \mu\text{m}\) to \(\sim 45 \mu\text{m}\) along with different cavity length. We choose 36-mm-long cavity, the correspond waist radius of fundamental-wave TEM\(_{00}\) mode is \(\sim 40 \mu\text{m},\) and the waist position is roughly in the middle of PPKTP crystal.

3. Experimental results and discussion

The quasi-phase matching temperature data for 1560 nm laser passing the 10-mm-long PPKTP crystal are shown in Fig. 4. When the fundamental-wave power is 125 mW, and focused by a lens \((f = 60 \text{ mm}),\) we can get the optimized doubling temperature \(T_{\text{opt}} \sim 75.9 ^\circ\text{C}\) with a full width at half maximum \(FWHM \sim 17 ^\circ\text{C},\) and the nonlinear conversion coefficient \(E_{\text{eff}} \sim 0.49\%/\text{W}.)\) The asymmetry of temperature curve maybe due to the optical inhomogeneity in crystal [14]. Due to different focusing conditions and waist position of fundamental-wave beam in the crystal, the measured nonlinear conversion coefficient cannot precisely represent the situation in SMC, but the optimized temperature and the \(FWHM\) bandwidth should be roughly the same. In the case of using 30-mm-long PPKTP crystal [15] with same poling period and phase matching condition, the bandwidth of matching temperature is \(FWHM \sim 6 ^\circ\text{C}.\) The bandwidth of periodically poled nonlinear crystal’s quasi-phase matching temperature is inversely proportional to the length of crystal approximately [16], therefore using a 10-mm-long PPKTP crystal now have greater temperature bandwidth \((\sim 17 ^\circ\text{C}).\) Obviously this is beneficial for second-harmonic wave’s power stability, and it will lower the requirement for control precision of temperature.

Using the above-mentioned PPKTP-crystal SMC, the measured frequency doubling results are shown in Fig. 5. The red solid squares and the blue circles represent harmonic wave’s output power, blue circles are the doubling efficiency, and solid lines are theoretical calculation results. (The mode matching efficiency of fundamental-frequency laser is not considered.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
wave laser into doubling cavity, the incident fundamental-wave power, and the nonlinear conversion coefficient, respectively.

For given incident power of fundamental-wave laser P_{in}, if the input coupling transmissivity of doubling cavity T_m reaches the optimized value T_{opt}, the doubler will fulfill the so-called “impedance matching” condition.

$$T_{opt} = \frac{L}{2} + \left(\frac{L}{2}\right)^2 + E_{fl}P_{in}$$

(3)

The fundamental-wave laser will be completely coupled into the doubling cavity to participate the doubling process. T_{opt} mainly depends on L and P_{in} for the given doubling crystal and given focusing condition of fundamental-wave laser beam, according to Eq. (3). In our experiment, $E_{fl} \sim 0.49\% /W$ and $L \sim 1.1$ are estimated, for 2.09 W fundamental-wave incident power $P_{in} \sim 2.09$ W (must consider the mode matching efficiency $\sim 96\%$), $T_{opt} \sim 10.48\%$ can be derived according to Eq. (3). In practice, we use an input coupling transmissivity $T_m \sim 10.9\%$. According to ref. [18], the expected maximum doubling efficiency is $\eta_{max} = T_m / (T_m + L)$. In our case, $T_m \sim 10.9\%$ and $L \sim 1.1$ yield η_{max} $\sim 90.8\%$.

The lower the linear loss L of doubling cavity, the higher the doubling efficiency will be. We can reduce the linear loss and increase the output transmissivity at 780 nm by improving the quality of cavity mirror, PPKTP crystal and all the coating. We can also improve the power spectral density by narrowing fundamental-wave laser’s linewidth. All these points will enhance the doubling efficiency.

We have experimentally evaluated the harmonic-wave output beam’s quality factor, M^2, by using the single knife scanning method. $M_x^2 \sim 1.04$ for the horizontal direction and $M_y^2 \sim 1.03$ for the vertical direction are measured. These indicate that the 780 nm output beam has excellent quality.

In 30 min, a typical root-mean-square (rms) fluctuation of 780 nm laser power is less than 0.5%, as shown in Fig. 6. Comparing with the case of PPMgO:LN crystal in a BTRC doubling cavity (typical rms fluctuation is less than 1.2% for 30 min) [12], here the stability has a significant improvement. This is due to much better mechanical stability of our PPKTP-crystal SMC doubler and much broader FWHM temperature bandwidth of PPKTP crystal.

The 780 nm output light can be tuned to D_2 lines of ^{85}Rb and ^{87}Rb atoms by slowly scanning the 1560 nm fundamental-wave laser’s frequency. The typical continuously tunable range is ~ 1 GHz. Actually the ECDL at 1560 nm can be continuously tuned more than 20 GHz. Here the harmonic-wave laser’s continuously tunable range is mainly limited by the doubling cavity’s PZT. If we replace a new longer PZT, the SMC doubling cavity should be kept locked following the ECDL frequency scanning at a broader range. Of course, if using single-pass doubling configuration with PPMgO:LN, PPLN, or PPKTP crystals, we can obtain much larger continuously tunable range (can roughly follow the continuously tunable range of the fundamental laser) of 780 nm laser, but the doubling efficiency is lower.

4. Conclusion and prospects

In conclusion, we achieve 1.61 W of 780 nm single-frequency laser output from a PPKTP-crystal SMC doubler, when the incident 1560 nm fundamental-wave power is 2.09 W, the measured highest doubling efficiency is 77%, while the practical doubling efficiency should be 80% if taking into account the fundamental-wave mode matching efficiency. The 780 nm output laser has a good beam quality ($M^2 < 1.04$), and can stably operate for several hours. In 30 min, typical power fluctuation is less than 0.5% (rms).

At present, the main factor which limits doubling efficiency is the linear loss L of fundamental-wave in the doubler. Now it is still a bit large ($L \sim 1.1\%$). L should be reduced to be as low as possible. This moment the optical quality of the input coupler substrate and the coating are not perfect, and these may cause some scattering and transmission losses. Also the optical quality of the PPKTP crystal we used, the flat and convex surfaces, as well as the coating are not perfect, and these can cause some residual reflection, transmission, and scattering losses. If the linear loss L of SMC doubler can be lowered to be less than 0.5%, when the input-coupling transmissivity is around $T_m \sim 10\%$, the doubling efficiency can be increased to be more than 95% in principle.

The PPKTP-crystal SMC can also constitute an efficient 1560 nm laser frequency doubler with a commercial butterfly-packaged distributed feed-back (DFB) laser and telecom EDFA module. It is very compact and stable, and can be applied to high-resolution spectroscopy, laser cooling and trapping of atoms, frequency standard, and atomic interferometer with rubidium atoms (^{85}Rb or ^{87}Rb).

Acknowledgments

This work is partially supported by the National Major Scientific Research Program of China (Grant No. 2012CB921601) and the National Natural Science Foundation of China (Grant nos. 61475091, 11274213, and 61227902). Authors thank Ms. Xin WEN for careful reading the manuscript and helpful discussion.

References

