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Generation of sub-half-wavelength micro-optical

traps by dichroic evanescent standing waves∗
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The bi-dimensional optical lattices formed by several sets of laser evanescent standing waves propagating at the

surface of a dielectric prism are investigated. The characteristics of the optical traps including their depths and the

sizes are analysed. It is shown that the micro-optical lattice with a sub-half-wavelength size can be achieved by the

interference of the selected evanescent waves. The scheme together with the recently developed atomic chip may be

used for atomic quantum manipulation.
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1. Introduction

Many different schemes for trapping ultracold

atoms have been demonstrated in the last decade.

Of them, the optical dipole trap (ODT)[1] requires

no magnetic fields and relatively few optical excita-

tions to provide a truly conservative and tightly con-

fining trapping potential, thus the ODT as an elegant

and simple way to store laser-cooled neutral atoms has

rapidly aroused the interest of all in recent years.[2−4]

Far-off-resonance traps (FORT)[5] can confine atoms

in all ground states for a long time with a very

small ground-state relaxation rate.[6] All-optical Bose–

Einstein condensation has been achieved.[7−9] In some

cases, such as in cavity quantum electrodynamics,[10]

it is of interest to use perfectly controlled or determin-

istic samples of atoms for further experiments involv-

ing quantum manipulation of exactly known number

of atoms. The nearly conservative potential of ODT

with a very low photon scattering rate offers the pos-

sibility of quantum manipulation. The full control of

all internal and external atomic degrees of freedom is

necessary in such applications.

Building small optical lattices is an effective

method to strongly confine a few atoms. Several re-

search groups have demonstrated a single-atom trap in

experiment.[11−13] Through the elaborate optical de-

signing, one has realized a tightly focused single Gaus-

sian laser beam in free space with a beam waist that

reaches the diffraction limit of light wavelength, and

the optical traps with sub-micrometre size have been

obtained.[14,15]

By using the standing waves formed inside an op-

tical cavity one can obtain optical lattices with the

size of each potential of half-wavelength. But further

reducing the size of ODT is still a challenge. The

diffraction limit prevents us from achieving the micro-

traps with the size smaller than half-wavelength of the

FORT beam, and the real confinement of an atom is

still an open problem, especially when a long wave-

length FORT beam is used in experiment.

The method of using evanescent light waves to

control atoms was suggested in 1980s.[16] Double-

wave evanescent atomic trap[17] and the loading pro-

cess of the atoms in a Morse potential have been

also investigated[18] and such a double-evanescent-

wave-trapping scheme has already been realized

experimentally.[19] But all these discussions are based

on the evanescent running waves. In the present pa-

per, we focus our study on the optical lattices that

are formed by evanescent standing waves, instead of

running waves of the medium. The formed optical lat-

tices are different from the usual lattices formed in an

empty optical cavity, and the configuration is also dif-

ferent from the above-mentioned systems[16−19] since
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no optical lattice can be built up by evanescent run-

ning waves. It is the first time that optical dipole traps

with sub-half-wavelength size have been obtained on

the surface of a dielectric medium by four sets of

evanescent standing waves (totally eight beams) tuned

at appropriate wavelengths. The van der Waals po-

tential is also considered and it clearly shows that the

distinctive features of such a scheme lie in the for-

mation of sub-half-wavelength controllable potential

traps which may provide a better confinement and

control of the atoms.

2. Theoretical model

The basic geometrical configuration is shown in

Fig.1. First we consider two beams of plane light

waves propagating in opposite directions at the same

frequency ω1 and same incident angle θ1 from the

medium whose refraction index is n to vacuum. The

coordinates are shown in Fig.1. If θ1 is larger than

a critical angle, the light will be totally reflected and

the two evanescent waves Ẽ2 and Ẽ′
2 propagating in

opposite directions in the vacuum near the surface are

generated[20] as follows

Ẽ2 = E2e
−

ω1

c
z
√

n2 sin2 θ1−1ei(ω1n

c
sin θ1x−ω1t), (1)

Ẽ′
2 = E2e

−
ω1

c
z
√

n2 sin2 θ1−1ei(−ω1n

c
sin θ1x−ω1t), (2)

where E2 is the amplitude of initial field entering the

prism.

Fig.1. Two-beam configuration.

The evanescent waves, Ẽ2 and Ẽ′
2, are running-

waves in the x-direction along the interface, and their

amplitudes decay rapidly in the z-direction (vertical

direction). In the overlapped range of two evanescent

waves at the surface, a stable intensity distribution is

built up through the interference

I = 2|E2|2e−
2ω1

c
z
√

n2 sin2 θ1−1

[

1 + cos

(

2ω1n sin θ1

c
x

)]

. (3)

The one-dimensional standing-light field is then

formed under certain conditions, and the size of each

potential is the distance between two adjacent antin-

odes,

d =
λ1

2n sin θ1
, (4)

where λ1 is the wavelength of incident beams. It is

seen from the expression (4) that the size of the po-

tential depends on the index and the incident angle. A

higher refraction index and larger incident angle lead

to a smaller lattice.

In the case of Gaussian beams, the intensities of

the incident light teams I1 and I2 can be expressed as

follows:

I1 = I(x′, y, z′) =
2P

πω2(x′)
exp

[

−2
y2 + z′2

ω2(x′)

]

, (5)

where x′ = x sin θ1 + z cos θ1 and z′ = −x cos θ1 +

z sin θ1, and

I2 = I(x′′, y, z′′) =
2P

πω2(x′′)
exp

[

−2
y2 + z′′2

ω2(x′′)

]

, (6)

where x′′ = −x sin θ1 + z cos θ1 and z′′ = −x cos θ1 −
z sin θ1. P is the incident power. Here we have consid-

ered that the incident Gaussian beams are not along

the x-direction, and coordinate transformations have

been made.

The evanescent waves then take the forms

Ẽ1 = E1e
−

ω1

c
z
√

n2 sin2 θ1−1ei(ω1n

c
sin θ1x−ω1t), (7)

and

Ẽ2 = E2e
−

ω1

c
z
√

n2 sin2 θ1−1ei(−ω1n

c
sin θ1x−ω1t), (8)

where E2
1 =

2cµ0

n
I1 and E2

2 =
2cµ0

n
I2. E1 and E2 are

the amplitudes of initial fields entering the prism.

The total intensity distribution superposed by the two

evanescent waves is then

It =
1

n
e−

2ω1

c
z
√

n2 sin2 θ1−1
[

I1 + I2

+2
√

I1I2 cos

(

2ω1n

c
sin θ1x

)

]

. (9)

Add up two beams the same as the above beams

but in the y–z plane, as shown in Fig.2. The intensity

distribution of I ′t of these two evanescent waves in the

y-direction has a similar form to the expression (9),

with x simply replaced with y in the expression (9).
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Fig.2. Four-beam configuration. Two beams are in the

x–z plane and another two in the y–z plane.

The optical dipole potential Udip is closely related

to the light intensity. Under certain conditions, we

have[4]

Udip =
~Γ

2

8Is

It + I ′t
ω1 − ωa

, (10)

where Γ and ωa are the natural line-width and the

resonance frequency of the corresponding atomic tran-

sition, respectively. ω1 is the frequency of the incident

laser beam. The trap depth can be also expressed in

units of temperature T as follows:

T =
Udip

kB
, (11)

where kB is the Boltzmann constant.

Clearly, the optical lattices can be achieved by

gradient light field on the surface, and the size of each

potential can be reduced either by using those medi-

ums with a large refraction index or by increasing the

incident angle.

We further consider the dichroic-trap which is

formed by two sets of red and blue-detuned beams

simultaneously[20] as shown in Fig.3. A set of four

blue-detuned beams incident upon the prism at a

larger incident angle θ2 than that of the red-detuned

beams.

Fig.3. The configuration of dichroic cross traps. The grey

lines represent red detuned beams at an incident angle θ1,

and black lines the blue detuned beams at an incident an-

gle θ2. The beams in the x–z plane and y–z plane are

symmetric.

Similarly, we can obtain the light intensity distri-

butions of the blue-detuned beams I ′′t and I ′′′t , corre-

sponding to the two sets of beams in the x–z and y–z

planes, respectively, which are similar to Eq.(10), just

with λ1, θ1, ω1 replaced by λ2, θ2, ω2, It and I ′t by I ′′t
and I ′′′t , respectively. The red-detuned beams tend to

pull the atom toward the surface of the prism while

the blue-detuned beams to push it away from the sur-

face, and the atom can be trapped at an appropriate

distant from the surface.

The optical dipole potential of the dichroic cross

trap is given by[17]

Udip =
~Γ

2

8Is

(

It + I ′t
ω1 − ωa

+
I ′′t + I ′′′t

ω2 − ωa

)

, (12)

where Is is the atomic saturation intensity.

The van der Waals potential between atoms and

the molecules at a medium surface takes the form[21]

Uvdw(z) = −ε − 1

ε + 1

1

48πε0

D2

z3
, (13)

where ε is the dielectric coefficient and ε0 the vacuum

dielectric coefficient, D the transition dipole matrix

element corresponding to the atom. Then, the total

potential is

T = (Udip + Uvdw)/kB. (14)

3. Numerical results and analysis

Fig.4. Dichroic cross traps in the x–y plane at z = 165 nm.

Atom saturation intensity Is = 2.70mW/cm2; dipole ma-

trix element of D2 line D = 3.797 × 10−29C·m; Dielectric

coefficient ε for the material is 7.4. All other parameters

are shown in context.

We discuss the caesium atom for simulation and

choose the D2 line (λa = 852.3nm) without losing the

generality. The natural line-width Γ/2π = 5.2MHz.

We select the wavelengths of blue and red-detuned

beams to be λ1 = 857.3nm and λ2 = 850nm, respec-

tively. Each beam has a power of 600mW and the

beam radius is 20µm. The material is assumed to have
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a refraction index of 1.9, such as the material of dense

flint glass, and its critical angle is 31.7 degrees accord-

ingly. The incident angle of the red-detuned beams is

60 degrees, whereas 80 degrees for the blue-detuned

beams. Figure 4 shows the 3D map of the traps in the

x–y plane within an area of 4 square micrometres ac-

cording to Eq.(4), where the van der Waals potential

has been considered. We can see that the distribution

of the lattices on the surface is not homogeneous for

both the space and the depth of the optical potential

wells in the area around the central point of x = 0 and

y = 0.

Now we take a close look at the magnified indi-

vidual trap. Figure 5 shows two typical trap in the

lattice at x = 0 and y = 0 (Fig.5(a)) and x = 0.31 µm

and y = 0.31 µm (Fig.5(b)). The sizes of the two traps

are of 0.4µm and 0.26µm, respectively, and both are

less than half-wavelength of the FORT beams.

Fig.5. Two magnified typical traps in Fig.4 at x = y = 0 µm (a), and x = y = 0.31 µm (b).

We investigate the depth of the potential. Fig-

ure 6 shows the potential depth as a function of ver-

tical distance z with different powers at two points

x = y = 0 and x = y = 0.26 µm. Higher power

is helpful to obtain a deeper trap-depth. The mini-

mum potentials appear here at about z = 165nm and

105nm for the two traps at which positions the van

der Waals interaction does contribute to the poten-

tial as discussed below. About 1mK of the potential

depth can be achieved with a few watts of laser team in

power that can be reached in experiment. The atoms

pre-cooled by a general magneto-optical trap (MOT)

can be loaded into this lattice, and the strong confine-

ment of atom can be realized.

Fig.6. Potential depth as a function of vertical distance z for different powers at points x = y = 0 (a), and

x = y = 0.26 µm (b).

Figure 7 shows the difference between with and

without considering the van der Waals potential based

on the dichroic cross configuration at the points of

x = y = 0 and x = y = 0.26 µm, respectively. The

solid line represents the result with considering the

van der Waals potential whereas the dashed line is for

the results without considering it. Clearly the van der

Waals potential changes the dichroic cross potential.

Generally, it increases the minimum potential depth,

especially in the range where the minimum potential

point is closer to the surface.
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Fig.7. The potential depths with (solid lines) and without (dashed line) considering the van der Waals interaction.

The laser beam power is 0.6W. (a) x = y = 0; (b) x = y = 0.26 µm. Other parameters are the same as those in

Fig.6.

Usually the scattering rate should be taken into

consideration. By using the formula

ΓSC(r) =
3πc2

2~ω3
a

(

Γ

∆

)2

I(r), (15)

the scattering rate under the above condition can

be obtained. The scattering rates are 2 photons/ms

(for red-detuned case) and 10 photons /ms (for blue-

detuned case), which are very smaller than those un-

der the resonant condition. And we can make them

lower by modifying the wavelength of the incident

light. For example, if 882nm and 840nm are chosen to

be the wavelengths of the incident light, then the scat-

tering rate will be 64 photons/s (for red-detuned case)

and 360 photons/s (for blue-detuned case). Com-

paring with the recent result presented by the D-

Meschede group in Germany (laser of 1064nm and

8–10W, detuning to Cs atom D2 line, trapping sin-

gle atom for 20–40 s), the scheme that we mentioned

above is feasible indeed.

4. Conclusions

We have discussed the sub-half-wavelength micro-

traps generated by using several evanescent light

waves based on a dichroic cross configuration. The

size of the lattice cell is determined basically by

λ/(2n sin θ) which is much less than half-wavelength

of the FORT beams. With a few watts of the laser

beams in power, an optical lattice with a potential

depth of around 1mK can be achieved, and the pre-

cooled atoms from MOT can be loaded into such traps

and strongly confined. Together with the newly devel-

oped atom chip, this method may be used to manip-

ulate individual atoms.
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