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Abstract: Low-frequency (Hz~kHz) squeezing is very important in many 
schemes of quantum precision measurement. But it is more difficult than 
that at megahertz-frequency because of the introduction of laser low-
frequency technical noise. In this paper, we propose a scheme to obtain a 
low-frequency signal beyond the quantum limit from the frequency comb in 
a non-degenerate frequency and degenerate polarization optical parametric 
amplifier (NOPA) operating below threshold with type I phase matching by 
frequency-shift detection. Low-frequency squeezing immune to laser 
technical noise is obtained by a detection system with a local beam of two-
frequency intense laser. Furthermore, the low-frequency squeezing can be 
used for phase measurement in Mach-Zehnder interferometer, and the 
signal-to-noise ratio (SNR) can be enhanced greatly. 
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1. Introduction 

Squeezed and entanglement states are the key quantum resource, and have been applied to 
many important protocols in quantum information processing, such as gravitational-wave 
detection [1,2], quantum key distribution [3], quantum communication, quantum teleportation 
[4], quantum secret sharing [5], noiseless amplification [6], quantum dense coding [7], and 
quantum logic operation [8]. Some issues, such as gravitational-wave detection, 
magnetometer, atomic force microscopy, biological measurement, are appealing to obtain 
low-frequency squeezed state [9]. Low-frequency squeezing has attracted many interests in 
recent years. Squeezing below 300 kHz by optical parametric process was reported [10–12]. 
Squeezed vacuum light of 1 dB below shot-noise level(SNL) at 795 nm in Rb vapor via 
resonant polarization self-rotation was obtained from 30 kHz to 1.2 MHz in 2008 [13]. And 
lower frequency (Hz~kHz) squeezing were generated. The generation of a stable low-
frequency squeezed vacuum field at 1064 nm using PPKTP in a subthreshold OPO has been 
demonstrated [14]. A squeezed quantum noise of up to 9 dB below the shot-noise level was 
observed in the detection band between 10 Hz and 10 kHz [15]. 10 dB of shot-noise 
suppression down to 10 Hz is directly observed [16]. Gravitational wave detectors are 
approaching their shot noise limit, which can be successfully overcome with squeezing at 
audio frequencies [17,18]. Optical parametric oscillators (OPO) are the common choice of 
systems to produce squeezed states. In fact, the level of low-frequency squeezing is usually 
limited by the introduction of noise from a variety of sources. The noise sources that limit the 
squeezing in these systems are pump noise [19–21], seed noise [22,23] and other excess 
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technical noise. Keisuke Goda et al. theoretically studied the effect of photothermal 
fluctuations on squeezed states of light through the photo-refractive effect and thermal 
expansion in a degenerate optical parametric oscillator (OPO) [24]. These frequency range 
represent a different regime experimentally to the majority of squeezed state production. It is 
more difficult to get low-frequency squeezing because of the potential limitation of noise 
sources. 

An alternative way to conquer this difficulty is combining two-frequency laser with 
broadband squeezing at higher frequency. J. Gea-Banacloche and G. Leuchs theoretically 
showed that, in Michelson interferometers stabilized with phase modulation technique, 
broadband squeezing is needed [25]. Yurke et al proposed a two-frequency interferometer 
with a squeezed state to perform sub-shot-noise measurement of low-frequency signals [26]. 
A two-frequency intense laser and a squeezed light of high-frequency sidebands are applied in 
the interferometry instead of a one-frequency laser as usual [27]. 

In this paper, we propose a scheme for generation of low-frequency squeezing immune to 
laser technical noise from frequency comb, which can be used to enhance the squeezing 
degree directly for the same squeezing generator, and the signal-to-noise ratio (SNR) can be 
improved greatly for quantum measurement. This technique of low-frequency squeezing from 
frequency comb can be applied in some existing experiments. It can avoid the impact of those 
excess noises of low-frequency, and higher bandwidth photodetectors are not necessary 
anymore. 

2. Low-frequency squeezing generated from optical frequency comb 

Non-classical states of light are commonly generated via non-linear optical processes, such as 
parametric down conversion (PDC), in which a pump photon is converted into two photons of 
lower energy by a second order nonlinear interaction. The nonlinear optical parametric 
devices, such as degenerate optical parametric amplifier (DOPA) and non-degenerate optical 
parametric amplifier (NOPA), are the typical sources of squeezed and entangled light in the 
so-called continuous-variable regime. The optical cavity, which is used to increase the 
strength of the non-linear process, leads to spectral filtering of the down conversion output. 
The spectrum of down conversion fields are separated in frequency by the cavity free spectral 
range [FSR]. The phase matching bandwidth of the crystal in the optics cavity is much 
broader than FSR. Some unique properties such as squeezed and entangled frequency combs 
based on these quantum systems have been studied in recent years [28–30]. We consider two 
pairs of lower energy photons at least, one pair have same frequency ( Lω ) and same 

polarization, the other pair have different frequency ( L FSRω ± ) and same polarization, 
which can be simultaneously generated from an optical cavity with a crystal and the same 
pump ( L2ω ). 

Figure 1 shows the scheme of low-frequency squeezing generated from NOPA, which 
provides two pairs of longitudinal modes. And a homodyne detection system with a two-
frequency local beam is included. NOPA consists of a two-sided cavity and a nonlinear 
crystal. 
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Fig. 1. The scheme of a low-frequency squeezing generated from squeezed frequency comb of 

NOPA. 
(2)χ : Nonlinear crystal, BS: Beam splitter, D: Photo-detector, SA: Spectrum 

analyzer. 

We consider that the optical parametric process is in the triply resonating optical cavity 
with a nonlinear (2)χ crystal. 

The interaction Hamiltonian of optical parametric process in this NOPA is 

 (2)
0
† †

0
†ˆ ˆ ˆ ˆ ˆ ˆ( ).H i a a a a a aχ + − + −= −  (1) 

In the ideal case (with perfect phase matching), the equations of cavity mode after a single 
cavity round trip for the signal and idler modes can be expressed as 

 ( ) † ˆ ˆˆ ˆ ˆt+ [ ( ) (1 ) ( ) 2 ( ) 2 c ( )],i ina e a t k a t k b t tττ χτ τ τ γτ+ − + + += − + − + +  (2) 

 ( ) † ˆ ˆˆ ˆ ˆt+ [ ( ) (1 ) ( ) 2 ( ) 2 c ( )].i ina e a t k a t k b t tττ χτ τ τ γτ− + − − −= − + − + +  (3) 

Here, 0â , â+  and â−  are the annihilation operators of intra-cavity pump mode, signal and 

idler modes, ˆinb+ , ˆinb− denote the annihilation operators of input fields. ĉ+ , ĉ− are the 

annihilation operators of vacuum, which correspond to the intra-cavity optical losses. (2)χ is 

the effective nonlinear coupling parameter. It can be merged into pump field amplitude 0α and 
considered as χ . The cavity transmission factor of two modes are assumed to be equal, and 

the same treatment for the extra-losses of two modes, k k k+ −= =  and = =γ γ γ+ − .The 
detuning between the cavity mode and the cavity resonant frequency is Δ . 

When the cavity is resonant with the cavity mode, 0Δ = , We can expand the field 
operators in fluctuations around their respective mean values as ˆ ˆi i ia aα δ= + . After taking 
Fourier transforms, the following equations in the frequency domain can be obtained as 

 † ˆˆ ˆ ˆ( )[ (1 )] ( ) 2 ( ) 2 ( ),i ina e k a k bωτδ ω τ χτδ ω τδ ω γτδ ω+ − + +− − = − + + c  (4) 

 † ˆˆ ˆ ˆ( )[ (1 )] ( ) 2 ( ) 2 ( ).i ina e k a k bωτδ ω τ χτδ ω τδ ω γτδ ω− + − −− − = − + + c  (5) 
By the complex calculation for Eq. (4)and (5), the fluctuations of intra-cavity fields can be 

get as 
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By using the boundary condition ˆˆ ˆ2out inA k a bδ δ δ± ± ±= − , we can get the amplitude and 

phase quadrature variances ( ,x yV+ , ,x yV− ) of the two non-degenerate frequency longitudinal 
output modes: 
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 (9) 

Where the definitions of the amplitude and phase quadrature fluctuations of the output and 
input beams are 

 †

( ) , ( )

ˆ ˆˆ( ) , ( ) [ ( ) ( ) ]

( ) , ( )
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 (10) 

The amplitude and phase quadrature variances of input and output fields are given by the 
formulas: 
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Then we consider the correlation of amplitude and phase quadrature variances (the sum of 
amplitude quadrature and the difference of phase quadrature) for the two output longitudinal 
modes. We can get 
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The FSR is assumed to be 800
2π MHz, and the optical circular frequency (radian per 

second) is used for the calculation convenience. The transmission coefficient of output 
coupler is 5%, and the intra-cavity optical loss is 0.4% for two longitudinal modes. The 
correlation variances of the sum of amplitude quadrature and the difference of phase 
quadrature for two non-degenerate frequency longitudinal modes ( L +FSRω , L -FSRω ) versus 
the side-band frequency are shown in Fig. 2. It demonstrates that the two output modes are 
entangled. On the other hand, the two output modes are actually the entangled upper and 
lower sidebands for the degenerate frequency squeezing comb. We assume that the nonlinear 
coupling of the non-degenerate optical parametric process ( L +FSRω , L -FSRω ) is the same 

with that of the degenerate optical parametric process ( Lω , Lω ). 

 

Fig. 2. The squeezed comb noise spectra vs the side-band frequency, Inset shows the detail of a 
comb tooth. 

For most experiments, squeezing can be extended to tens of megahertz among high-
frequency sidebands. In order to obtain the low-frequency squeezing, the experimental 
scheme utilizing the high-frequency sidebands of the squeezed light and a two-frequency 
local beam was proposed [27]. Instead of using one-frequency local beam at frequency Lω in 

the balance homodyne detection system, a local beam with two carrier frequencies L iω ±ω , 
interfere with the entangled upper and lower sidebands of the comb for the generation of low-
frequency squeezing. Lω  is the center frequency of the light, i2ω is the frequency interval of 

the two-frequency local beam. 1, 2i = , denotes two kinds of two-frequency local beam. 
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The relaxation oscillation and other excess technical noise sources, which are commonly 
existing, have typically confined squeezing to MHz range, and leads to dramatic degradation 
of squeezing at low frequency [16,18]. Here, the amplitude quadrature is quantum noise 
limited and the phase quadrature noise is approximated as “1/ f” noise. Thus we set 1x

inV+ = , 

1 1000 /y
inV ω− = + , and the technical noise is larger than the quantum noise limit inevitably 

for the low-frequency range [28]. All the factors, such as spontaneous emission noise, other 
technical noise consistent with existing laser, optical technologies and typical laboratory 
environments, are responsible for the low-frequency squeezing degradation. The phase 
quadrature noise spectra of output mode versus the side-band frequency are given in Fig. 3. 
As a result, the extra noise can reduce the squeezing level in the range of low frequency. And 
the squeezing vanishes near the zero frequency. 

 

Fig. 3. Phase quadrature noise spectra of output versus side-band frequency. Inset shows the 
detail of the squeezing level of the zero-order tooth. 

Now we have investigated the case of resonant. However, each tooth in the comb will 
carry the copies of noise from acoustic vibrations, thermal expansion and others. Such noise 
has degrading effects on the production of squeezing via optical path length fluctuations, 
which potentially causing a detuning of the optical cavity. We can lock the cavity in 
experiment to keep resonant. The small detuning has been considered in the model. Then the 
correlation noise of two output modes can be given by 
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When
0.3

MHz
2π

Δ = , the noise spectrum in Figs. 4(a) and 4(b) have been given 

correspondingly using dot line compared with solid line of no detuning. The squeezing level 
is reduced from −9dB to −8.5dB for the first order tooth and from −4.5dB to −4.2dB for the 
zero-order tooth. 

 

Fig. 4. Noise spectra with 
0.3

MHz
2π

Δ =  (dot line), 0Δ =  (solid line). (a) Squeezing of the 

zero-order tooth. (b) Squeezing of the first order tooth 

3. Immunity to Laser technical noise for low-frequency squeezing 

In this scheme, the two pairs of output longitudinal modes, correspond to the two-frequency 

local beam L 1 1

2
ω ± , = MHz

2
ω ω

π
or L 2 2

800
ω ± , = MHz

2
ω ω

π
. Here we choose the 

L 2 2

800
ω ± , = MHz

2
ω ω

π
local beam and the output of non-degenerate frequency longitudinal 

modes, and get a stronger low-frequency squeezing, which is not affected by the low 
frequency excess noise, and not restricted by the cavity bandwidth of NOPA, as can be seen 
in Fig. 5. 

A low-frequency squeezing immune to laser technical noise can be obtained by the two-

frequency local beam L 2 2

800
ω ± , = MHz

2
ω ω

π
. The noise spectrum versus low frequency is 
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given in Fig. 6. We can draw the conclusion that the low-frequency squeezing of −9dB is 

obtained with two-frequency laser of L

800
ω ± MHz

2π
. 

 

Fig. 5. Low-frequency squeezing by two-frequency local beam 

L 1 1

2
ω ± , = MHz

2
ω ω

π
and L 2 2

800
ω ± , = MHz

2
ω ω

π
, respectively. 

 

Fig. 6. The noise spectra in low frequency domain. Two curves correspond to two kinds of 

two-frequency laser: curve i, L

2
ω ± MHz

2π
; curve ii, L

800
ω ± MHz

2π
. 

Considering of two other schemes of squeezing measurement, continuous wave (CW) 
operation with one squeezing beam, modulated local beam or modulated squeezer [31], it’s 
necessary to compare them using the same parameters for the laser noise and the squeezing 
apparatus. Squeezing level of −5dB at 2MHz can be measured by traditional CW operation 
with one squeezed beam, but the low-frequency squeezing (Hz~kHz) cannot be obtained 
because of extra noise. Low-frequency squeezing of −5dB can be extracted if the frequency of 

modulated LO equals to 
2

MHz
2π

for the zero-order tooth. 

4. Phase measurement with low-frequency squeezing 

The SNR can be enhanced with low-frequency squeezing for phase measurement with an 
interferometer. 

A squeezing-enhanced Mach-Zehnder interferometer was shown in [32]. By means of a 
two-frequency laser interferometer and higher-frequen cy sidebands of the squeezed state, the 
SNR of lower-frequency phase measurement can be enhanced [27]. The SNR can be 
expressed as [27] 

 
2

/ 2 / 2

2
.

( ) ( )b i b i

NT
SNR

V w V wϕ π ϕ π

θΩ
+ +=

Ω + + Ω −
 (16) 
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Here, the average photon number in unit measurement time is L/N P ω=  , where P is the 
optical power of the two-frequency laser. Photocurrent duration is T, which is the reciprocal 
of measurement resolution bandwidth (RBW). θΩ is the signal amplitude at frequency 

Ω . /2 ( )b iV wϕ π+ Ω ± is the quadrature variance of the squeezed state at frequency iwΩ ± . 

 

Fig. 7. Application of low-frequency squeezing for phase measurement in Mach-Zehnder 
interferometer. EOM: Electro optic modulator, C: Cavity, BS1, BS2: Beam splitter, D: Photo-
detector, SA: Spectrum analyzer. 

A scheme of the SNR enhancement of quantum measurement in Mach-Zehnder 
interferometer is given in Fig. 7. The relative phase at the first 50% beam splitter is ϕ , and 

the relative phase at the second 50% beam splitter is / 2π . An electro optic modulator 
(EOM) is inside the cavity, which can provide the two-frequency laser. The power of two-
frequency laser is 1mw, the wavelength is 1064nm, the RBW is 100KHz. Ω  is very small for 
the low-frequency signal, therefore the variance of / 2 ( )b iV wϕ π+ Ω ±  can be considered as the 

same with /2 ( )b iV ϕ π ω+ . Here, the SNR of 3dB signal is assumed to be 1, and the calculated 

minimum phase is 50.38*10θ −
Ω = . SNR versus frequency is shown in Fig. 8. The two curves 

correspond to two kinds of two-frequency laser: curve i, L

2
ω ± MHz

2π
; curve ii, 

L

800
ω ± MHz

2π
. It is found that this kind of low-frequency squeezing can enhance the level of 

SNR for phase measurement indeed. 

 

Fig. 8. SNR vs frequency for low-frequency phase measurement in Mach-Zehnder 

interferometer with two kinds of two-frequency laser, curve i, L

2
ω ± MHz

2π
; curve ii, 

L

800
ω ± MHz

2π
. 
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5. Conclusion 

In conclusion, we have proposed a scheme of low-frequency squeezing immune to laser 
technical noise from squeezed comb with a two-frequency laser, and investigated the SNR 
enhancement of phase measurement in Mach-Zehnder interferometer with the low-frequency 
squeezing. We hope that this low-frequency squeezing may be helpful for quantum 
measurement. Limitations of the present scheme for the gravitational-wave detection exist 
indeed because that the FSR and mode structure of displacement enhanced cavity need to be 
the same as that of the squeezer exactly. But this scheme is promising in many metrology and 
sensor applications. If we can separate the two output longitudinal modes spatially by using 
dispersion element, the low-frequency entanglement will be generated from this NOPA, even 
many pairs of low-frequency EPR beams can be obtained from the entangled comb. It will be 
a valuable resource for quantum information. 
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