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Cluster entangled states are often used as the fundamental resources for one-way quantum computation. In this
paper, we put forward a scheme of generating the spatial cluster entangled states of Laguerre–Gaussian modes in a
large-Fresnel-number degenerate optical parametric oscillator operating below threshold with type I phase match-
ing, which is pumped by two spatial Laguerre–Gaussian modes with the same frequency. The nonlinear para-
metric process of each pump mode satisfies momentum, energy, and orbit angular momentum conservation.
Eleven-partite spatial cluster entangled states of Laguerre–Gaussian modes can be produced in the optical mode
comb under feasible experimental condition, which can be demonstrated by using the entanglement criterion
proposed by van Loock and Furusawa. © 2016 Optical Society of America
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1. INTRODUCTION

Quantum entanglement has been extensively applied in quan-
tum information fields, such as quantum teleportation, quan-
tum dense coding, and quantum key distribution [1–3], etc.
Multipartite entanglement poses a fundamental challenge in
the quantum system, because it is ubiquitous to any of the
quantum computation algorithms and quantum communica-
tion protocols [4]. There are two typical continuous-variable
(CV) multipartite entanglement states: cluster entangled states
[5,6] and Greenberger–Horne–Zeilinger (GHZ) entangled
states [7,8]. Cluster entangled states are special entangled
states and have large entanglement persistency (in the case
of N > 4 ), which are more difficult to be destroyed by local
operations than GHZ states [9]. As an important resource in
many branches of physics, cluster entangled states not only
can be used as a medium to transfer quantum information in
quantum communication protocols, but also can speed up
computation in quantum algorithms. Therefore, the research
on the generation of cluster entangled states has become one
of the most crucial works nowadays.

In order to realize measurement-based quantum computa-
tion, quantum information processing and spatial quantum im-
age, large-scale CV cluster entangled states have aroused much
interest in theory and experiment. Quantum optical frequency
comb is one of the most effective ways to generate large-scale

cluster entangled states. Fifteen quadripartite entangled cluster
states were generated experimentally from a single optical
parametric oscillator (OPO) in 2011 [10]. Sixty-mode cluster
states in the quantum optical frequency comb were also dem-
onstrated by experiment in 2014 [11]. Multimode entangle-
ment frequency combs were obtained in a below-threshold
synchronously pumped OPO in 2013 [12]. And the ultra-
large-scale CV cluster entangled states in the time domain were
generated sequentially in the same year [13]. Beyond that, we
also proposed a scheme to generate a multiplexed entanglement
frequency comb in a nondegenerate optical parametric ampli-
fier [14] and got the low-frequency signal beyond shot-noise
level from the optical frequency comb [15]. The optical spatial
mode comb is another promising way to generate large-scale
cluster entangled states in the spatial domain. The multispatial
mode amplifier configuration was put forward in 2014, which
can yield a dual-rail CV cluster state over the optical spatial
mode comb in theory [16].

Based on the above research, we design a scheme to generate
the spatial cluster entangled states of Laguerre–Gaussian mode
utilizing two pump modes (lgpl , index l � �1 is referred to
as the azimuthal mode index) with the same frequency �2ω0�
in a large-Fresnel-number (or self-imaging) degenerate optical
parametric oscillator (DOPO) operating below threshold with
type I phase matching. The large-Fresnel-number DOPO
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cavity is constructed by spherical mirrors. And the self-imaging
OPO cavity is composed of a plane mirror, a lens, and a spheri-
cal mirror. These two kinds of cavities can allow simultaneous
and sustainable nonlinear interaction and resonance of several
transverse modes [17,18].

In this paper, arrangements of details are outlined as follows:
In Section 2, our theoretical model for CV spatial cluster en-
tangled states is introduced concisely and the evolution equations
of the spatial modes and quadrature fluctuation are deduced.
Then we employ the boundary conditions of optical cavities
to calculate the amplitude and phase quadratures of the spatial
modes. In Section 3, the entanglement criterion proposed by van
Loock and Furusawa for the inseparability of optical fields [19]
is used to estimate whether there is entanglement among CV
spatial cluster states of Laguerre–Gaussian modes. Finally, a brief
summary is presented in Section 4.

2. THEORETICAL MODEL AND EQUATIONS
DERIVATION

A. Theoretical Model

The spatial cluster entangled states of Laguerre–Gaussian modes
are generated in a large-Fresnel-number (or self-imaging) DOPO
operating below threshold �σ < 1�, which is pumped by two
spatial Laguerre–Gaussian modes (lgpl ) with the same frequency
�2ω0�. There is a type I phase-matching nonlinear crystal χ�2�

within the cavity. This kind of cavity can guarantee simultaneous
and sustainable nonlinear interaction and resonance of all the
pump and down-converted modes. A phase compensation piece
or the crystal with special structure can be used to compensate
the phase for different modes. Two pump fields of energy ℏωp
can convert to two fields, signal and idler, of energy ℏωs and
ℏωi, respectively. The nonlinear interaction must satisfy energy
(ℏωp � ℏωs � ℏωi, ωp � 2ω0, ωs � ωi � ω0), phase-
matching �ℏ→ kp � ℏ→ ks � ℏ→ ki�, and orbit angular
momentum �l pℏ � l sℏ� l iℏ� conservation [20]. The setup is
described in Fig. 1.

The structure diagram of the down-converted Laguerre–
Gaussian modes with degeneration frequency ω0 is depicted
in Fig. 2(a). All Einstein–Podolski–Rosen (EPR) pairs concatenate
into the spatial Laguerre–Gaussian modes lgl s;i sequence
�…lg−4; lg3; lg−2; lg1; lg0; lg−1; lg2; lg−3; lg4…� [Fig. 2(a)].

These EPR pairs of the spatial mode comb are connected by
curved arrows, which compose a closed CV spatial cluster state.
The quantum graph states of the spatial mode comb can be ex-
pressed as a dual-rail CV spatial cluster state in Fig. 2(b).

B. Hamiltonian and Langevin Equations

The interaction Hamiltonian is

Ĥ � iℏχ�2�
"XN∕2

s�0

b̂p1 â
†
s â

†
i �

XN∕2

s�0

b̂p2 â
†
s â

†
i

#
�H:C:;

with χ�2� representing the effective nonlinear coupling parameter;
b̂pi denoting the annihilation operators for the intra-cavity pump
modes with the frequency 2ω0; and â†s and â

†
i being the creation

operators of signal and idler modes with the frequency ω0.
For the periodicity of the structure diagram and dual-rail

cluster states, we consider only two pump modes and seven
down-converted modes for simplicity. The Langevin equations
describing the evolution of the quadrature fluctuations inside
the DOPO are given by

τ _̂b1�t� � −γpb̂1�t� � ϵ1 − χ1â0�t�â1�t� − χ2â−1�t�â2�t�
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ffiffiffiffiffiffiffiffi
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b̂in1 �t� �

ffiffiffiffiffiffiffiffi
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âin1 �t� �
ffiffiffiffiffiffiffiffi
2γc1

p
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âin2 �t� �
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τ _̂a−2�t� � −γ−2â−2�t� � χ2b̂−1�t�â†1�t� � χ3b̂1�t�â†3�t�
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τ _̂a3�t� � −γ3â3�t� � χ3b̂1�t�â†−2�t� �
ffiffiffiffiffiffiffiffi
2γb3

p
âin3 �t�

� ffiffiffiffiffiffiffiffi
2γc3
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ĉ3�t�;

τ _̂a−3�t� � −γ−3â−3�t� � χ3b̂−1�t�â†2�t� �
ffiffiffiffiffiffiffiffiffiffi
2γb−3

p
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� ffiffiffiffiffiffiffiffiffi
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where τ is the round-trip time of the optical field inside the
DOPO; χ1; χ2; χ3 are the effective nonlinear coupling param-
eters; and b̂i and âi are the amplitude operators of the pump
modes and the down-converted modes inside the cavity, respec-
tively. ϵ1 and ϵ−1 are the pump fields that enter the cavity,
which will be described classically. b̂ini and âini denote the input
amplitude operators of the pump modes and the down-
converted modes.

In order to simplify the calculation, we suppose the two
pump fields ϵ1 and ϵ−1 are identical. The losses of the pump

Fig. 1. Schematic: the two green lines represent the pump modes
�lgp1; lgp−1� with frequency �2ω0�, which can generate spatial
Laguerre–Gaussian modes (lgl s;i , index l s;i � �1;�2;�3… is also
the azimuthal mode index) with frequency �ω0� through parametric
down-conversion. The black lines connecting solid circles and squares,
respectively, represent the spatial modes generated by the pump fields
lg
p
1 and lgp−1 . In a transverse plane, phase smoothly advances with angle

φ along the direction of curved arrows, clockwise for l < 0 and counter-
clockwise for l > 0 in a transverse plane.
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modes are defined as γp � γpb � γpc , where γpb ; γpc correspond
to the losses of output and intra-cavity losses for the pumpmodes.
The output coupling losses and the intra-cavity losses are the same
for the down-converted modes, γb0 � γb�1

� γb�2
� γb�3

� γb,
γc0 � γc�1

� γc�2
� γc�3

� γc . The total loss is γ � γb � γc ;
therefore, γ0 � γ�1 � γ�2 � γ�3 � γ.

The nonlinear coupling parameter χ�2� is proportional to
the overlap integral Γp;i;s between the down-converted modes
and the pump modes in the transverse plane, that is,
χj � Γp;i;sχ

�2�. The overlap integral is defined as [21] Γp;s;i �R∞
−∞ up�r�us�r�ui�r�dr. Here the expression of the Laguerre–
Gaussian modes is given by [22]

up;l �r��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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2r2
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−r2

ω�z�2−
ikr2

2R�z�

�
exp

�
−i�2p�jl j�1�arctan

�
z
zR

��
;

where ω�z� is the size of the waist, Ljl jp �x� is the generalized
Laguerre polynomial, arctan�z∕zR� is the Gouy phase (taking
no account of it), and e−ilϕ represents the phase variation in a
helical structure of the wavefront.

The overlap coefficients are given by Table 1 (we hypothesize
that the phase matching is perfect and the parametric down-
conversion (PDC) process meet the orbit angular momentum
conservation). We consider only five pairs of down-converted
modes from two pumps, respectively, because the overlap inte-
grals of higher-order pairs are too small; thus 11-mode spatial
cluster entangled states can be realized. Furthermore, in order

to have large parametric interaction and larger-scale entangle-
ment, many details should be considered, such as perfect mode
matching, alignment of interactional modes, and the structure
of the special pump transverse mode. From Table 1, we can
get the nonlinear coupling parameters: χ1 � χ�2�, χ2 �
0.530χ�2�, χ3 � 0.271χ�2�.

C. Steady-State Solutions and Quadrature
Fluctuations

The steady-state equation of Eq. (1) is then obtained to be
−γpβ1 � ϵ − χ1α0α1 − χ2α−1α2 − χ3α−2α3 � 0;

−γpβ−1 � ϵ − χ1α0α−1 − χ2α1α−2 − χ3α2α−3 � 0;

−γα0 � χ1β1α
	
1 � χ1β−1α

	
−1 � 0;

−γα1 � χ1β1α
	
0 � χ2β−1α

	
−2 � 0;

−γα−1 � χ1β−1α
	
0 � χ2β1α

	
2 � 0;

−γα2 � χ2β1α
	
−1 � χ3β−1α

	
−3 � 0;

−γα−2 � χ2β−1α
	
1 � χ3β1α

	
3 � 0;

−γα3 � χ3β1α
	
−2 � 0;

−γα−3 � χ3β−1α
	
2 � 0; (2)
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δX̂ c−1�ω�
δX̂ c2�ω�
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δX̂ c3�ω�
δX̂ c−3�ω�

1
CCCCCCCCCCCCCCCA
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Here, β�1, α0, α�1, α�2, α�3 are the steady-state amplitudes
of the modes b�1, a0, a�1, a�2, a�3. The oscillation threshold
ϵth and the pump parameter σ are expressed by ϵth �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1∕
ffiffiffi
2

pq
γγp∕χ1, σ � ϵ∕ϵth. The steady-state solution of

Eq. (2) below threshold �σ < 1� is given by β�1 � ϵ∕γ,
α0 � α�1 � α�2 � α�3 � 0. Through linearization we can
set bi � βi � δbi, ai � αi � δai, aini � δaini . Substituting
the quantum fluctuations into Eq. (1), and taking the
Fourier transformation, we can obtain the fluctuation dynamics
equations. Applying the definition of the amplitude and phase
quadratures—X̂ � â� â†, Ŷ � �â − â†�∕i—the amplitude
quadratures of two pump modes and seven down-converted
modes can be expressed in Eq. (3). In a similar way, the matrix
form of the quadrature phase can be obtained. The coefficients
of the matrix form are given by Eq. (4).

Using the boundary conditions [23] δX̂ out
i � ffiffiffiffiffiffiffiffi

2γbi
p

δX̂ i−
δX̂ in

i , δŶ out
i � ffiffiffiffiffiffiffiffi

2γbi
p

δŶ i − δŶ
in
i , �i � 0;�1;�2;�3�, we

Table 1. Overlap Integrals and Normalizations of the Down-converted Modes and Pump Modes

p1 � p−1 Γ1;1;0 � Γ−1;−1;0 Γ1;2;−1 � Γ−1;−2;1 Γ1;3;−2 � Γ−1;−3;2 Γ1;4;−3 � Γ−1;−4;3 Γ1;5;−4 � Γ−1;−5;4

Overlap integral 0.849 0.450 0.230 0.116 0.058
Normalization 1 0.530 0.271 0.137 0.069

Fig. 2. (a) Structure diagram: the EPR pairs generated in the DOPO
(at the same frequency n the mode is denoted by the black line). The
green curved arrows (top) connecting EPR pairs are generated by pump
lg
p
−1 , and the red curved arrows (bottom) connecting EPR pairs are

generated by pump lg
p
1 . (b) Quantum graph states: the spatial modes,

which are connected sequentially, can yield the dual-rail cluster states.
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can obtain the amplitude and phase quadratures fluctuations of
the output modes �δX̂ out

0 ; δX̂ out
�1; δX̂

out
�2; δŶ

out
0 ; δŶ out

�1; δŶ
out
�2�.

3. CHARACTERISTICS OF CV SPATIAL
CLUSTER ENTANGLED STATES

The entanglements of CV spatial cluster states are indicated by
the correlations of their amplitude and phase quadratures. The
entanglement criterion proposed by van Loock and Furusawa
for the inseparability of optical fields [19] can be used to testify
the quantum entanglement of CV spatial cluster states:

S0;1 � Δ2�X̂ out
0 − X̂ out

1 − g1X̂
out
−1 �

� Δ2�Ŷ out
0 � Ŷ out

1 � g2Ŷ
out
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2 �
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−1 � Ŷ out

0 � g4Ŷ 1� < 4;
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out
0 � < 4;
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−2 − g7X̂
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0 �

� Δ2�Ŷ out
1 � Ŷ out

−2 � g8Ŷ
out
3 � < 4;

where S0;1, S−1;0, S2;−1, S1;−2 represent the quantum correlation
spectra, X̂ out

j and Ŷ out
j �j � 0;�1;�2;�3� are the amplitude

and phase quadratures operators of the output fields. The op-
timum g factor gk�k � 1; 2; 3…8� can be obtained to be
g1 � g4 � g5 � g6 � 0.4, g2 � g3 � g7 � g8 � 0.2:
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: (4)

Figure 3 clearly shows that the quantum correlation spectra
of S0;1, S−1;0, S2;−1, and S1;−2 versus normalized analyzing
frequency Ω � ωτ∕γ. They all satisfy the criterion and their
entanglement properties are similar. First, the entanglement
degree grows with the normalized analyzing frequency and ex-
hibits maximum entanglement at Ω � 0.65. Then, the entan-
glement decreases gradually and disappears roughly at Ω � 5.
It is evident that the correlations are existent in a wide range of

S2,-1, S1,-2

S0,1, S-1,0

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S

Fig. 3. Quantum correlation spectra S0;1, S−1;0, S2;−1, and S1;−2
versus normalized analyzing frequency Ω � ωτ∕γ with γp � 0.03,
γpb � 0.028, γpc � 0.002, γ � 0.02, γb � 0.018, γc � 0.002,
χ1 � χ�2�, χ2 � 0.530χ�2�, χ3 � 0.271χ�2�, and σ � 0.9.
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normalized analyzing frequency when we select the optimized
pump parameter σ � 0.9.

Figure 4 shows the quantum correlation spectra of S0;1,
S−1;0, S2;−1, and S1;−2 versus pump parameter σ � ϵ∕ϵth (nor-
malized to the pump threshold). The largest entanglement
degree can be obtained near the threshold of the DOPO.
The CV spatial cluster entangled state generated from the
DOPO operating below the threshold �σ < 1� can be realized
within a wide pump parameter range.

As clearly shown in Figs. 3 and 4, the correlation spectra sat-
isfy S0;1 � S−1;0, because the spatial mode EPR pairs lg0 ∼ lg1
and lg−1 ∼ lg0 corresponding to the same nonlinear coupling
parameter χ1; similarly, S2;−1 � S1;−2. In addition, for the non-
linear coupling parameter χ1 > χ2, the correlation spectra of
S0;1, S−1;0 are always lower than the correlation spectra of
S2;−1, S1;−2. We testify the deterministic entanglement among
five spatial Laguerre–Gaussian modes by considering all related
noise of seven modes. Finally, we believe that at least 11-partite
spatial cluster entangled states of Laguerre–Gaussian modes can
be produced when considering the overlap integral of the para-
metric modes and the periodicity of quantum graph states.

For this scheme, we can use a two-tone balanced homodyne
detection with the spatially tailored local oscillator modes to mea-
sure the amplitude and phase quadratures in real experiment.
The results of the addition or subtraction for the amplitude
and phase quadratures are fed into a spectrum analyzer, which
is set to display the noise power. In this way, the level of entan-
glement can be created by reporting the amount of squeezing.

4. CONCLUSION

In summary, we theoretically propose a scheme to generate CV
spatial cluster entangled states of Laguerre–Gaussian modes
from the DOPO and use the criterion proposed by van
Loock and Furusawa for the inseparability to estimate entan-
glement among CV spatial cluster states. Eleven-partite spatial
cluster entangled states of Laguerre–Gaussian modes can be
produced with strong pump power and big χ�2�. Based on
this scheme, for higher-order PDC, the creation conditions,
quantum dynamical equation, and the boundary conditions,

etc., are the same while the nonlinear coupling parameters
are different. Therefore, if we have stronger power and optimal
mode for pump, bigger χ�2� and higher overlap integral, a large-
scale cluster entangled state (more than 11-partite) will be
achieved. This scheme provides theoretical basis and experi-
mental guidance for further realization of large-scale spatial en-
tanglement states, which is a versatile resource for facilitating
fundamental studies of measurement-based quantum compu-
tation, quantum information processing, and quantum image.

Funding. National Natural Science Foundation of China
(NSFC) (11504218, 61108003, 91536222, 61405108);
Natural Science Foundation of Shanxi Province, China
(2013021005-2); National Key Research and Development
Plan (2016YFA0301404).

REFERENCES

1. T. J. Johnson, S. D. Bartlett, and B. C. Sanders, “Continuous-variable
quantum teleportation of entanglement,” Phys. Rev. A 66, 042326
(2002).

2. S. L. Braunstein and H. J. Kimble, “Dense coding for continuous
variables,” Phys. Rev. A 61, 042302 (2000).

3. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen,
“Continuous variable quantum key distribution with modulated
entangled states,” Nat. Commun. 3, 1083 (2012).

4. G. Adesso, A. Serafini, and F. Illuminati, “Multipartite entanglement
in three-mode Gaussian states of continuous-variable systems:
quantification, sharing structure, and decoherence,” Phys. Rev. A 73,
032345 (2006).

5. J. Zhang and S. L. Braunstein, “Continuous-variable Gaussian analog
of cluster states,” Phys. Rev. A 73, 032318 (2006).

6. P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster
states by linear optics,” Phys. Rev. A 76, 032321 (2007).

7. P. van Loock and S. L. Braunstein, “Multipartite entanglement for
continuous variables: a quantum teleportation network,” Phys. Rev.
Lett. 84, 3482–3485 (2000).

8. Y. H. Ma, G. H. Yang, Q. X. Mu, and L. Zhou, “Greenberger-Horne-
Zeilinger state generation among remote nodes,” J. Opt. Soc. Am. B
26, 713–717 (2009).

9. P. Dong, Z. Y. Xue, M. Yang, and Z. L. Cao, “Generation of cluster
states,” Phys. Rev. A 73, 033818 (2006).

10. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister,
“Parallel generation of quadripartite cluster entanglement in the opti-
cal frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).

11. M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of
multipartite entanglement of 60 modes of a quantum optical frequency
comb,” Phys. Rev. Lett. 112, 120505 (2014).

12. J. Roslund, R. Medeiros de Araujo, S. Jiang, C. Fabre, and N. Treas,
“Wavelength-multiplexed quantum networks with ultrafast frequency
combs,” Nat. Photonics 8, 109–112 (2014).

13. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji,
S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A.
Furusawa, “Ultra-large-scale continuous-variable cluster states
multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).

14. R. G. Yang, J. Zhang, S. Q. Zhai, K. Liu, J. X. Zhang, and J. R. Gao,
“Generating multiplexed entanglement frequency comb in a nonde-
generate optical parametric amplifier,” J. Opt. Soc. Am. B 30, 314–318
(2013).

15. R. G. Yang, J. Zhang, Z. H. Zhai, S. Q. Zhai, K. Liu, and J. R. Gao,
“Scheme for efficient extraction of low-frequency signal beyond the
quantum limit by frequency-shift detection,” Opt. Express 23,
21323–21333 (2015).

16. R. Pooser and J. T. Jing, “Continuous-variable cluster-state generation
over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).

17. C. N. Benlloch, G. J. de Valcarcel, and E. Roldan, “Generating highly
squeezed hybrid Laguerre-Gauss modes in large-Fresnel-number

S0,1, S-1,0

S2,-1, S1,-2

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

Fig. 4. Quantum correlation spectra S0;1, S−1;0, S2;−1, and S1;−2
versus pump parameter σ � ϵ∕ϵth with γp � 0.03, γpb � 0.028,
γpc � 0.002, γ � 0.02, γb � 0.018, γc � 0.002, χ1 � χ�2�,
χ2 � 0.530χ�2�, χ3 � 0.271χ�2�, and Ω � 0.65.

2428 Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B Research Article



degenerate optical parametric oscillators,” Phys. Rev. A 79, 043820
(2009).

18. B. Chalopin, F. Scazza, C. Fabre, and N. Treps, “Direct generation of
a multi-transverse mode non-classical state of light,”Opt. Express 19,
4405–4410 (2011).

19. P. van Loock and A. Furusawa, “Detecting genuine multipartite con-
tinuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).

20. M. Lassen, G. Leuchs, and U. L. Andersen, “Continuous variable
entanglement and squeezing of orbital angular momentum states,”
Phys. Rev. Lett. 102, 163602 (2009).

21. M. Lassen, V. Delaubert, C. C. Harb, P. K. Lam, N. Treps, and H.-A.
Bachor, “Generation of squeezing in higher order Hermite-Gaussian
modes with an optical parametric amplifier,” J. Eur. Opt. Soc. 1, 06003
(2006).

22. A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital
angular momentum for applications in quantum experiments,” J. Opt.
B 4, S47–S51 (2002).

23. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and
traveling-wave light fields produced in parametric amplification,” Phys.
Rev. A 30, 1386–1391 (1984).

Research Article Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B 2429


	XML ID funding

