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Abstract. We have investigated the intensity and phase noise of single-mode laser diodes,
either free-running or using different types of line narrowing techniques at room temperature,
namely feedback from an external grating and injection locking. We have measured an intensity
squeezing of 1.2 dB in the first case, and 1.4 dB in the second case {respectively, 1.6 dB and
2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running
‘single-made’ laser diode actually results from a cancellation effect between large anticorrelated
flucruations of the main mode and of weak longitudinal side modes. It is also shown that free-
running diodes exhibit very large excess phase noise, typically more than 80 dB above shot
noise at 10 MHz, which can be significantly reduced by the above-mentioned techniques.

1. Introduction

Quantum noise reduction in laser emission based on pump-noise suppression was first
predicted in 1984 [1].  Semiconductor lasers are particularly well suited for the
implementation of this property since it is possible to drive them with a current whose noise
is well below shot noise. If the quantum efficiency of the carrier-to-photon conversion is
high enough, the electron statistics of the pumping can be transferred to the light emission,
yielding sub-Poissonian operation of the laser. Quantum noise in the intensity of constant-
current-driven laser diodes was observed for the first time by Machida ef al in 1987 [2],
and further improved to 8.3 dB in 1991 [3]. This result was obtained in a measurement at
4 K, where the detector was closely coupled to the laser. The difficulties encountered by
other groups in reproducing this result suggested that factors other than the constant current
supply could be important for the noise reduction. In 1993, it was shown by Steel and his
group [4,5] that line-narrowing techniques (cf [6] and references therein) greatly helped in
the noise reduction by further suppressing the weak but very noisy longitudinal side' modes.
Intensity squeezing of 3 dB (4.3 dB if corrected for detection efficiency) at 10 K and of
1.8 dB (2.0 dB corrected) at room temperature was obtained by injection locking the laser
{5] or by feedback from an external grating [4], respectively.

We have investigated intensity noise but also more generally quadrature noise of laser
diodes, using various methods for line narrowing, including injection-locking with another
diode laser or a Ti:Sapphire laser, and feedback from an external grating. The best intensity
squeezing at room temperature was 1.4 dB (2.3 dB when corrected for the detection
efficiency), and was obtained with injection-locking. As far as quadrature noise is concerned,
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we have shown that the large excess phase noise of semiconductor lasers can be partially
reduced by these line-narrowing techniques.

2, Experimental set-up. General features

The laser diodes we have used are index-guided quantum well GaAlAs laser diodes (model
SDL 5422-H1 and SDL 5411-G1), operating at 850 and 810 nm. The rear facet reflection
coefficient is 95%, the front facet is AR coated with a reflection coefficient of about
4%. The laser diodes are temperature stabilized and carefully electromagnetically shielded.
Appropriate electrical filtering is used on the power supplyj. The free-running laser diodes
have a rather low threshold of 18 mA and a differential quantum efficiency (slope above
threshold) of 66%. The operating current in the experiments described below is typically
5-7 times larger than the threshold current, and the resulting high overall quantum efficiency
is at the origin of the squeezing. No squeezing was found in similar experiments performed
on laser diodes with higher threshold (80 mA), which operate only 2 times above their
threshold.

The quantum noise in the intensity is measured in the standard way with balanced
detection [7]. The beamn going out of the laser is split in two equal parts by a beamsplitter.
Each output of the beamsplitter is sent into a high efficiency (90%) photodiode (EG&G
model FND100 or C30809E). The DC parts of the photodiode currents are filtered out
while the AC parts are amplified using 20 MHz bandwidth amplifiers. The amplifiers’
outputs, proportional to the noise signals, are either subtracted or added by a RF +/— power
combiner. When set on the difference position, the circuit gives a signal proportional to the
shot noise, while in the sum position, it gives the full intensity noise of the beam impinging
on the beamsplitter. The output of the +/— power combiner is sent to a spectrum analyser
and noise spectra are recorded for the sum and the difference signals. The electronic noise
is then substracted on each recording,

Consistency between the shot noise of a laser diode measured in this way and the
noise of a white light source was carefully checked. The beamsplitter is either a 50/50
coated plate or a polarizing beamsplitter preceded by a half-wave plate. In the latter
case, a polarizer must be placed at the output of the laser diode, in order to eliminate
the small component of polarization perpendicular to the main polarization direction [5, 8].
Otherwise, the interference between the two components, which are mixed by the polarizing
bearnsplitter, may give rise to etrors in the noise measurements.

When biased with a high voltage (V > 70 V), the photodiodes do not exhibit any DC
saturation, for detected powers up to at least 45 mW. The AC response has a slight linear
dependence on the detected bC power. However, the response is the same for the sum and
difference positions of the power combiner, and so the balanced detection is not affected
by the change in the AC response. At high powers, heating of the photodiodes causes a
small decrease in the noise signal when the detectors have been illuminated for a few tens
of seconds. In such cases, noise measurements were performed using short time intervals.
Finally, consistency checks for high values of detected power were done by measuring the
noise reduction as a function of the value of a neutral density filter, inserted in the beam
before the photodiodes.

Two types of set-ups were investigated to achieve line narrowing: cavity extension with
an external grating and injection-locking with another laser.

1 We have used RC fikers (R=47Q,C=1 uF) fora driving current less than 100 mA, and LC filters (L=1mH,
C =1 uF) for higher currents.
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The extended-cavity laser diode is shown in figure 1. The beam going out of the laser
diode is collimated with a f = 8 mm objective placed in front of the output facet of the
diode. The cavity is extended to 10 cm with a reflection holographic grating (Jobin—Yvon,
1200 lines/mm) reflecting the first order into the cavity, while the zero order goes out of the
cavity (Littrow configuration). The grating is glued on a piezoelectric transducer, which is
mounted on a finely orientable mirror mount. The efficiency of the grating is 60% in the
zero order (output coupling) and 24% in the first order (feedback to the laser), with 16%
losses. The alignment of the grating is critical. When it is achieved, the threshold of the
laser is lowered from 18-13 mA and the DC power of the side modes goes down to —60 dB
below the DC power of the main mode, while the total intensity noise is decreased below
the shot-noise level.

The injection-locking scheme is depicted in figure 2. The master laser is either an
external-grating diode laser or a Ti:Sapphire laser. It is injected into the slave laser by
means of an optical isolator. The master beam enters through the escape port of the polarizer
placed after the Faraday rotator. Locking is observed over a rather broad power rangef of
the master laser, from 1-4 mW. The direction of the master laser must be carefully adjusted
for optimum noise reduction.

The detection scheme for the quadrature noise measurement is described in the
corresponding section (section 4).

1 It should be mentioned that only 2 small fraction (a few per cent) of this injected power is actally coupled to
the lasing mode of the dicde due to the imperfect mode overlap.



604 7-C Zhang et al

3. Intensity squeezing

3.1. Experimental results

We have investigated intensity squeezing in the two cases described above. Noise spectra
were recorded for various supply currents. Squeezing was observed for currents higher than
50 mA (I/ly, = 2.8) for the injected laser and 30 mA ({/I,; = 2.4) for the extended cavity
laser, at noise frequencies from 1-30 MHz (limited by our detection bandwidth). The noise,
measured with a resolution bandwidth of 1 MHz, was nearly constant from 7-30 MHz. The
optimum squeezing was observed in the injection-locking scheme. At 7 MHz, with a driving
current of 130 mA, we obtained a noise reduction of 27%, i.e. 1.4 dB. Taking into account
the total detection quantum efficiency of 65% from the laser output power to the photodiode
current (through the optical isolator), we infer a value of 2.3 dB at the output of the laser
diode. The best squeezing obtained with the grating-extended cavity is 25% (1.2 dB) at
30 MHz and 110 mA, from which we infer 2 1.6 dB noise reduction at the output of the

%

Figure 3. Noise reduction (full circles) and ratio of the detector eurrent to the driving current
{crosses} versus driving current normalized to threshold, (z) for the grating and (b) injection-
locked.
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grating. The fact that the squeezing is better with the injection-locking scheme can. be
attributed to the large losses due to the grating.

These numbers are close to those of [4,5]. They are below the theoretical maxima
expected from the quantum efficiency of the laser, which are, respectively, 58% (3.8 dB) at
130 mA for the injected laser and 42% (2.4 dB) at 110 mA for the grating-extended cavity.
To check the dependence of the noise reduction on the laser diode quantum efficiency, in
figure 3 we have plotied the intensity squeezing and the ratio of the detector current to the
driving current against the driving current for the grating-extended laser {figure 3(a}) and for
the injection-locked laser (figure 3(b)). It can be noticed that the ratio between the intensity
squeezing and the current-to-current efficiency goes towards a maximum asymptotic value
of 0.75, instead of the expected value of unity. Steel and coworkers, using similar laser
diodes, obtained comparable values for this ratio: 0.83 for an injection-locked laser at
10 K [5] and 0.72 for a room temperature laser with external grating feedback [4]. This
non-unity value can be attributed to additional noise sources in the semiconductor devices
which are not included in the simple theoretical prediction mentioned above. Let us note
that Richardson et al [3] observed a squeezing of 85% with a current-to-current efficiency
of only 48%. This was attributed to the existence of another non-lasing junction, connected
in parallel to the lasing one, and to the fact that ‘electrical splitting’ does not introduce
partition noise [9,10]. These various observations show that a comprehensive theoretical
model of the quantum noise of laser diodes is still needed.

3.2. Role of the longitudinal side modes

The free-running laser diode apparently operates on a single mode. However, the
longitudinal side modes have a non-negligible power, the closest ones being only —10
to —25 dB below the main mode (figure 4). The arguments given in [4, 5] to explain why
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Figure 4. Power of individual longitudinal modes (optical power in dB, with respect to the main
mode), measured with a high-resolution monochramator, for a driving current of 80 mA. On the
x-axis each mode is labelled by a number, the number 0 comesponding to the main mode. The
full circles are for the free-unning laser, the open circles for the injection-locked laser, and the
full wiangles for the external grating configuration,
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side-mode suppression reduces the total intensity noise to below the shot-noise level, tend
to suggest that because these side modes are very noisy, the less powerful they are the
Iess they wiil contribute to the total intensity noise. In order to explore these arguments
more precisely, we have investigated the noise properties of individual modes by sending
the faser beam through a high-resolution spectrometer. We have observed that the intensity
noise of the main mode of a free-running laser diode is much larger (40 dB above shot
noise) than the total intensity noise (2 dB above shot noise). This low value of the total
intensity noise is then explained by very strong anticorrelations between the intensity noise
of the main mode and the one of the whole set of side modes [11]. This effect will be
analysed experimentally and theoreticaily in a forthcoming publication [12].

4. Phase noise

4.1. Quadrature noise detection scheme

The investigation of the phase noise of a laser beam requires a phase-to-amplitude converter,
i.e. a device whose complex transmission 7 depends on the frequency w. In this paper,
for this purpose we use the reflection off an empty detuned Fabry—Pérot cavity [13] as
shown in figure 5. When the rear mirror is highly reflecting, this system has the advantage
over a Mach—Zehnder interferometer that the mean-field transmission |7 (e = 0} does not
depend on the cavity detuning and is always equal to unity. This makes the shot-noise
reference level independent of the quadrature analysed. Phase noise analysis is then carried
out conveniently for frequencies in the range of the cavity bandwidth.

Explicit expressions of the quadrature rotation after reflection off a detuned Fabry—
Pérot cavity are given in appendix A. A simple way to understand this effect is to
have in mind that in Fourier space, the guadrature component X () can be written as
X(®) = (@) + alW))/v2 = (a(w) + [a(—o)]")/vZ. The key point which yields a
quadrature rotation is that the various frequency components at 0 {mean field), @ and —w
do not undergo the same phase shift when the laser is scanned across the resonance peak
of the cavity. The quadrature rotation is zero in two cases: when the laser is tuned exactly
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Figare 5. Phase noise detection set-up. Great care has been given in order to avoid any feedback
from the analysing cavity to the laser, and optical isolation (o1} of about 30 dB has been used.

The rear mirror is 2 high reflector and its position is controlled by a piezo electrical transducer
{PZT).
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on resonance, wWhere the phase shifts for both frequency components +e cancel out, and
when it is tuned far outside the peak, where all frequency components undergo the same
phase shift of 0 or .

In our set-up the Fabry-Pérot cavity has a half-width at half-maximum (HWHM) of
8 MHz and a finesse of F = 125. The rear mirror is highly reflecting, but its small leaks
nevertheless allow us to monitor the intracavity intensity to adjust the mode matching. One
of the mirrors is mounted on a piezo-electrical transducer, so that the length of the cavity
can be scanned.

4.2. Experimental results

‘We have measured the quadrature noise of a laser diode in the same three configurations
which were used for the intensity noise measurements described above. These results are
presented in figure 6. The phase noise (quadrature angle /2 with respect to the mean field)
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is inferred from the experimental curves by fitting them with a simple model (see
appendix A). This model has a single adjustable parameter which is the excess phase noise.
This value has then to be cormrected for various losses: propagation from the output of
the laser to the detectors (3 dB), scattering losses inside the analysing cavity (3 dB on
resonance), imperfect mode matching to the cavity (1 dB).

The phase noise inferred at the laser output for the free-running diode, the external
grating configuration and the injection-locked scheme are of 82 dB, 72 dB and 46 dB,
respectively, above the shot-noise level.

Let us compare these experimental results with the prediction given by the Schawlow—
Townes model [14] (see appendix B). Within this model, the phase noise normahzed to the
shot-noise level at a noise angular frequency w = 2xf is

8DI 2ie2(1 + o2
Vw(w)=1+—2—°(1+a2)=1+—”—(¥—)- (1
i3} fid}

where I, is the flow of photon outside of the laser (photons/sec), « is the cavity decay
rate for intensity, o is the line enhancement factor [13] (also called the phase-amplitude
coupling coefficient), and D is the Schawlow—Townes phase diffusion coefficient defined
in (B17). The first term is the contribution ¢f the vacuum fluctuation (shot noise) and the
second term is due to the phase diffusion assuming a random walk of the phase in the laser.

Using the value of « deduced from the experiment} one can calculate a theoretical
estimation of the phase noise if the factor {1 + &%) is known. Conversely, by using the
experimental value of the phase noise in (1), one can deduce a value of (1+a?) = 10, which
is in agreement with other measurements. However, the linewidth of the laser diode was
also measured directly by sending the light through a Fabry-Pérot cavity with a linewidth -
(HWHM) of 2 MHz. We obtained D(1 + o?)/(27) = 2 MHz (HWuM linewidth). Using the
value I, = 2.5 x 10'7 photons/sec corresponding to 60 mW laser output, the above model
predicts D(1 + ?)/(27) = &*(1 + o®)/(8n I,} = 50 kHz, which is significantly smaller
than the measured value. This discrepancy could be attributed to jitter of the laser frequency
due to power supply noise and thermal fluctwations.

In the injection locking case, the phase noise reduction mechanism relies on the fact
that the slave laser locks its phase to thai of the master laser [16]. The phase noise of
this master laser is therefore of great importance. In this experiment we have used a
frequency-stabilized Ti:Sapphire laser, which has a linewidth of 300 kHz and is both phase
and intensity shot-noise limited at 10 MHz. We have observed a very significant phase
noise reduction, from 82 to 46 dB for an injected power of 2 mW (see figure 6(c)).

Finally, let us emphasize that the quadrature noise detection scheme that we used is
expected to work well only for a true single-mode laser. As was discussed previously
{section 3.2), this is not the case for so-called ‘single-mode’ laser diodes, for which weak
longitndinal side modes are very noisy and can therefore play an important role in the
overall noise behaviour. As long as the intensity noise power in the main mode is small
with respect to the total phase noise power, which is generally the case in the results
described above, these effects can be neglected. However, one has to be cautious in some
cases. For instance, it can be noticed that the experimental trace of figure 6(c) exhibits a
slight asymmetry around its basis. This effect can be modelled simply with the equations of
appendix A, using an input covariance matrix such that the main axis of the noise ellipse is
not exactly the phase axis (quadrature angle 7 /2) but is slightly tilted. In our experiments,

+ The quantity 1/ is the lifetime of the photon in the laser diode cavity, calculated from the measured free
spectral range of AA = 0.12 nm, and from the transmission coefficient of the output mirrors (R] = 95% and
Ry = 4%). This yields x = (¢AA/AZ) In¢1/{R1R2)) = 1.8 x 1011 s~1,
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this small rotation effect has only been observed for the injection-locked laser, decreases
as the driving current increases, and the dip on the right-hand side was always above the
shot noise [17,18]. It is likely that a detailed analysis of this effect should inciude the
contributions of the small modes, since intensity—phase correlations are essential in this
process.

5. Conclusions

In this paper we have reported on a detailed experimental analysis of both intensity and phase
noise of commercial laser diodes at room temperature. We have studied the free-running
diode and two other configurations using different line-narrowing techniques (injection-
locking or external grating).

We have measured an intensity noise of 1.2 dB below the shot-noise level (1.6 dB
inferred at the laser output) in the external grating configuration, and an intensity noise of
1.4 dB below shot noise (2.3 dB inferred at the laser output) for the injection-locked laser.
Also, preliminary results show that these low-noise properties of quasi-single-mode laser
diodes are actually due to cancellation of the large excess noise of the main mode by the
anticorrelated noise of many weak but very noisy longitudinal side modes [12].

Concerning the measurements on quadrature noise, the main result is that laser diodes
exhibit a very large excess phase noise (up to 80 dB above shot noise for the free-running
laser), which can be partially decreased by line-narrowing techniques. The passive feedback
from an external grating reduces the spectral width of the emitted light, thereby decreasing
the phase noise from 82-72 dB above shot noise. In the injection-locking scheme, the phase
noise reduction mechanism also involves the master laser, and using a shot-noise limited
frequency stabilized Ti:Sapphire laser, we observed a reduction of the phase noise from 32
to 46 dB above shot noise. )

We believe that these results have important practical implications for spectroscopy and
quantum optics experiments involving laser diodes.
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Appendix A. Quadrature rotation after reflection on a detuned cavity

In this appendix we give the explicit input—output expression for the fluctuating amplitude
and phase quadrature components at an analysis frequency o (respectively, 8pinout () and
5qi™o* (w)) of a field refiecting off a detuned cavity. We define

. 3 En.onut
acm,auf(w) = ( agin.out ) . (Al)
We have then

8c™ (w) = R(w)de™ (@) , (A2)
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with

402%® + 1c* — 160?42 + 8222 + 161
(k2 +4242) (d0? — diwk — £ — 427)

Ri(@) = Rn(w) =

A3
Ron(@) = —Ryp(@) = 16w2kc) (83)
AE T TR = (12 + 42%) (40? — di i — K2 — 412)
where « is the cavity decay rate and A the cavity detuning.
The angle g of the quadrature rotation is given by
Ryz(w)
anf = - Ad
= @ 44

Let us now give the expression we used for the fits of figure 6, displaying the noise at a
given analysis angular frequency w of a laser light exhibiting an excess phase noise as the
length of the cavity is scanned around a resonance peak. We define the input and output
noise covariance matrix V*, V% in the p, ¢ basis as

Vin.om(m) — %(V({:;’m + V(i_r-liout} where V(i:tiom = 8c"”-"”‘(:1:m)[ac""-""’(¢co)]7 N
(A5)

These two matrices are then linked using (A2), and we obtain
Ve () = R} Vi [R(Fw))” . (A6)

The quantity plotted in the fits of figure 6 is the coefficient V5* versus the cavity detuning
A at a given w. The input noise covariance matrix used for these plots is the one of a field
whose amplitude noise is at the shot-noise level and whose phase noise is v:;" time above
shot noise (vj;,” is the adjustable parameter in the fits):

Vit(w) = ( . U‘: ) . A7

It can be mentioned that the use of non-zero off-diagonal elements for Vi models the
asymmetry resulting from a phase-amplitude coupling very well in the injection-locking
case {figure 6(c)).

Appendix B. Link between phase noise, frequency noise and linewidth

In this appendix, we wish to recall some definitions and to present formulae linking together
quantities used in the main part of the paper, such as phase and frequency noise spectra,
and the linewidth of a single-mode laser.

In a semiclassical model, the slowly varying part of the electric field of a single-mode
¢lectromagnetic field can be written as

o) = (I(:))lﬁ PRICTR O (B1)

where I(z) is the (eventually fluctuating) intensity, @, is the phase origin, and #(z) is a
fluctuating phase with (¢(t)} = 0. In this expression, as everywhere else in the paper, the
term e'* oscillating at the optical frequency has been taken out, and w = Wopr — Wy 15
a RF angular frequency. In the following, we will also consider only stationary random
processes, and brackets will denote ensemble averaging (or time averaging, which is the
same assuming ergodicity). The field variable (¢} will be considered as a c-number,
but quantum noise can be readily included using standard techniques in quantum optics.
If the P representation (normal ordering) is used, the vacuum noise contribution in the



Quantum noise of laser diodes 611

correlation functions is zero, and shot noise has to be included using the standard theory of
photodetection [20]. On the other hand, it is also possible to use the Wigner representation
(symmetrical ordering), which directly includes vacuum noise contributions, and therefore
shot noise effects in the spectra [21]. In the following, we will rather use normal ordering,
and shot noise will appear only at the end of the calculation.

The phase noise power spectrum at @ = 27 f, where f is the RF noise analysis
frequency, is given by

S = @0 [ e nar. ®2)
On the other hand, the instantaneous angular frequency ¢« (t) is given by
dl¢, ;
o) = 22O _ 4o ®3)

and therefore the frequency noise spectrum is given by

Sste) = @m [~

-0

e ($(1)$(0) dr. (B4)

A simple calculation yields the well known formula
Sj(w) = 0 Sy{w) . (B3)
Let us also define the quantity A ¢{(t) = ¢ (¢t + ) — ¢ (1), whose noise spectrum is

Sa.o(@) = ()2 f (A (D) A(0)) d . (86)

—-co
It is then straightforward to show that
Saew) =2(1 — coswt)S(w) . (BT
The quantity Sa_s(w) is useful in order to relate the quantities defined above to the spectral

lineshape (one has & = wyp; — @,, hence the lineshape is centred on zero instead of @,):

<]

L(w) = (2m)~1/2 f 7 (o* (T (0)} dr . (B8)

—00
Assuming that the intensity noise is negligeable (i.e. that the orthoradial fluctuations of the
Fresnel vector are much larger than the radial ones), and denoting I, the average intensity
expressed in photons/sec, we have

{0t + D)) = L{exp(—1A:¢()) - (B9)

The imaginary part of {exp(iA.¢)) vanishes for symmetry reasons. A standard assumption
at this point is that A, ¢ is a stationary Gaussian random variable [19]. Its variance, which
will be denoted by o2, is given by the integral of the spectrum

al = (2m)712 f " Sap(@)do. (B10)

-0

We can then write

(@ (T)a(0) = I, @ra?y™/? f " e("%%) cos(A ) d(A:9)

—ca
a2
= Io e (_ %) (B 1 ]_)
from which the expression of the spectral lineshape (B8) can be readily deduced.
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In the case where A;¢(t) is generated by a random walk process, it is possible to
derive analytical expressions for all these quantities. The fact that A, ¢ (¢) is a random walk
process means that the phase derivatives at different times are not correlated, ie.

VoL, t, (@) (02)) =2 D 8(t1 — 1) | ®12)
where D is a constant, and § the Dirac function. The frequency noise spectrum (cf
equation (B4)) is then given by

2D
—_— : . (B13
o (B13)

and is thus independent of o (white frequency noise). Using equation (B5), the phase noise
spectrum can be written

Silw) = (2m)~12 f - e 2D8(t)dt =

1 2D
Som @

Furthermore, it is a well known result [22] that the variance cr of a random walk process
is proportional to 7, and it is easy to show, using (B7), (B5) and (B10), that

o2 =2Djr|. (B15)

Se(w) = (B14)

The lineshape Z(w) can then be expressed explicitly, using its definition (B8) and (B11),

[==] N "

L(w) = (27)""/? f Le“ e Pl dy

—co

D /m)M?

=1 D2+ o2
which is the usual Lorentzian shape of the laser linewidth (Schawlow—Townes formula [14]).
Identifying equation (B16) with the Schawlow—Townes expression, we can relate the
coefficient D to the parameters of the laser which generated this light, and we have, for a
laser far above threshold [21]:

2= 1
=-— - 7

21, ®B17)
where « is the laser cavity (intensity) decay rate.

As was said at the beginning of this appendix, these calculations have been done
using normal ordering. The contribution of phase vacuum fluctuations (to the linewidth
for example) is therefore zero, but the shot noise will appear in the detected phase noise
power, calculated using the standard methods quoted at the beginning. We finally obtain the
total phase noise power that would be read on a spectrum analyser at frequency f = w/(2m):

Vo) = S;“(w) + Ss(w)

1 1 +2D)
T Jar \4I,  w?

_%$(1+2"). (BIS)

At a given angular frequency w, the phase noise is therefore the sum of the shot noise and
of a term proportional to the laser linewidth. In equation (1) of the text, this expression has
been normalized to the shot-noise level, and the linewidth enhancement factor (1+ &) has
been added in the second term.

(B16)
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