Intracavity frequency-doubled and frequency-stabilized cw ring Nd:YAP laser

Qing Pan, Tiancai Zhang, Yun Zhang, Ruining Li, Kunchi Peng, Zhenggang Yu, and Qingming Lu

A frequency-doubled and frequency-stabilized ring Nd:YAP laser with a six-mirror cavity is demonstrated. This laser satisfies both the thermal insensitivity and optimal frequency-doubling conditions. A second-harmonic output to 1 W at 0.54 μ m is achieved. The intensity fluctuation is less than $\pm 1.5\%$ and the frequency stability is better than ± 1 MHz (5 min). © 1998 Optical Society of America OCIS codes: 140.0140, 140.3460, 190.0190, 270.0270.

1. Introduction

The intracavity frequency-doubled and frequencystabilized Nd:YAP laser is an important light source for nonlinear optics and quantum optics. Potassium titanyl phosphate (KTP) is a well-known crystal for frequency doubling Nd:YAG lasers $(1.064 \ \mu m)$.¹ The large nonlinear coefficient together with a wide phase-matching temperature range, large acceptance angle, and extremely low absorption loss (between 0.5 and 1.4 µm) make KTP a promising candidate for high conversion efficiency application. However, it is difficult to realize type II 90° noncritical phase matching with one single KTP crystal for the 1.064-µm light emitted by a Nd:YAG laser. To eliminate the beam walk-off effect and to realize threemode resonance, one must place a pair of properly oriented KTP crystals with angle phase matching in a laser cavity or optical parametric oscillator cavity.^{1,2} In this case, the efficiency of frequency doubling and quantum correlation between the twin beams are inevitably degraded because of higher intracavity losses. Recently, Garmash *et al.*³ reported type II 90° noncritical phase matching in an α -cut KTP crystal at 1.08 μ m, thus suggesting new possibilities for better performance of KTP in intracavity cw frequency doubling. Ou et al.⁴ reported the experiments for frequency doubling from 1.08 to 0.54 μ m with a single α -cut KTP crystal inside an external cavity. Following this lead, here we report on an intracavity frequency-doubled and frequency-stabilized cw ring Nd:YAP laser with output of 1 W at 0.54 μ m, intensity fluctuations of $\pm 1.5\%$, and frequency stability of ± 1 MHz (5 min).

2. Experimental Arrangement

A schematic diagram of the laser is shown in Fig. 1. The base of the laser housing is a granite stone structure upon which a six-mirror (M1–M6) ring cavity with a total length of \sim 140 cm was built. The laser head consists of one high-pressure krypton lamp and one single elliptical condenser to ensure high pump efficiency. The size of the Nd:YAP rod is 3×77 $mm\phi$, which was provided by the Fujian Institute of Research on Structure of Matters, Academia Sinica, China. M1, M2, and M4 are plane mirrors with a reflectivity of 99.8% at 1.08 µm. M3 is a thin-film polarizer with $R \approx 99.5\%$ for S polarization and R <8% for *P* polarization. M5 and M6 are concave mirrors with a 102-mm radius of curvature and 99.8% reflectivity at 1.08 µm. M6 is the output coupler with antireflection coating for the second-harmonic wave at $0.54 \mu m$. M5 and M6 form a near-confocal configuration. To reduce both the astigmatism from the concave mirrors and polarization imbalance of the KTP crystal, the incident angles on M5 and M6 are as small as possible (\sim 3°). The two concave mirrors are symmetrically positioned in the laser, and thus the optical length PM1M4M5 is almost equal to PM2M3M6 = L2 (P is the center of the Nd:YAP rod). An α -cut KTP crystal of 3 mm \times 3 mm \times 10 mm is positioned in the center between M5 and M6, the location of the smallest beam waist. The tempera-

Q. Pan, T. C. Zhang, Y. Zhang, R. N. Li, and K. C. Peng are with the Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China. Z. G. Yu and Q. M. Lu are with the College of Chemistry, Shandong University, Jinan 250100, China.

Received 18 July 1997; revised manuscript received 11 November 1997.

^{0003-6935/98/122394-03\$15.00/0}

^{© 1998} Optical Society of America

Fig. 1. Schematic diagram of the experimental setup: M1–M6, mirrors; $\lambda/2$, half-wave plate; F-R, Faraday rotator; D1–D4, photoelectric detectors; A1–A4, filters; F-P1, confocal reference cavity; F-P2, monitor cavity.

ture of the KTP crystal is actively stabilized around the phase-matching point of 63.5 °C with a precision of ± 0.01 °C. The laser frequency is stabilized by a standard locking system and its stability is monitored with scope 1. The intensity fluctuations of the 1.08- and 0.54-µm lights are monitored with scopes 2 and 3, respectively.

3. Two Key Points for the Nd:YAP Laser Design

The Nd:YAP is an optical biaxial crystal with the space group of $D_{2h}^{16} - P6_{nm}$, which is more complicated than an isotropic Nd:YAG with a single axis. The polarization fluorescence spectrum of Nd:YAP presents obvious anisotropic characteristics. In the polarization fluorescence spectrum parallel with the *C* axis of the Nd:YAP crystal the radiation at 1.08- μ m wavelength is much stronger than at 1.06 μ m, but for

Fig. 2. Radii (ω_0) of TEM₀₀ mode beams in the center of a KTP crystal versus L_1 with different Ft ($L_2 \approx 65$ cm).

Fig. 3. Radii (ω_P) of TEM₀₀ mode beams in the center of a Nd:YAP rod versus L_1 with different Ft $(L_2 \approx 65 \text{ cm})$.

the spectrum parallel with the A axis the radiation at 1.06 μ m is higher than that of other spectra. In our laser all the cavity mirrors have higher reflectivities for an *s*-polarized laser than for a *p*-polarized laser. Therefore the orientation of the *C* axis of the Nd:YAP rod should be aligned parallel with the *S*-polarized cavity mirrors to ensure oscillation of the radiation at 1.08- μ m wavelength. A Faraday rotator and a half-wave plate ($\lambda/2$) for 1.08 μ m are positioned in the cavity to ensure that the laser operates in a unidirectional fashion. The ratio of the output powers in two directions is approximately 2000:1 in our system.

The thermal fluctuation of the laser rod results in unstable output power. Our laser was designed to conform with the condition of thermal insensitivity, which is $A + D = 0,^5$ where A and D are elements of the *ABCD* transmission matrices of the laser cavity. To obtain high frequency-doubling efficiency, the configuration was also designed to satisfy optimum coupling for second-harmonic generation, which is ω_0/ω_p

Fig. 4. Fluctuation of the green light (the detector was an FND100 photodiode): (a) the trace of green light fluctuation and (b) the trace of ground.

Fig. 5. Second-harmonic wave transmission through the scanning F-P2 cavity.

Fig. 6. Frequency stability of the second-harmonic wave through the scanning F-P2 cavity (5 min).

 $\approx 0.058,^6$ where ω_0 and ω_p are the radii of the fundamental laser beam waists at the centers of the KTP crystal and the YAP rod, respectively. By use of numerical calculations on *ABCD* matrices, we obtained the optimum cavity parameters to achieve the best compatibility with the two above-mentioned conditions (see Figs. 2 and 3). Under a pump power of 1.44 kW for the krypton lamp, the thermal lens of the laser rod has a focal length of $Ft\approx74$ cm. With $L_2\approx65$ cm and A+D=0, we obtained $L_1\approx51.8$ mm, $\omega_0\approx0.0356$ mm, and $\omega_p\approx0.58$ mm. In this case $\omega_0/\omega_p\approx0.061$ is close to 0.058.

4. Experimental Results

As shown in Fig. 1, F-P1 and F-P2 are two reference cavities with a stable Invar structure with 5 and 10-cm length, 3000- and 1500-MHz free spectral range, and a finesse of 410 and 550 for 1.08 and 0.54 μ m, respectively. Figure 4 shows the output power fluctuation of green light at 0.54 μ m. The average power is 1 W and the fluctuation is less than $\pm 1.5\%$. The transmission curve (Fig. 5) of the second-harmonic wave through a scanned reference cavity (F-P2) demonstrates that the laser operates in a single longitudinal mode. Figure 6 plots the frequency drift of second-harmonic generation with the mode-locked system on. The frequency stability of the second-harmonic light calculated from the data given in Figs. 5 and 6 is better than ± 1 MHz (5 min).

5. Conclusion

A cw intracavity frequency-doubled and frequencystabilized ring Nd:YAP/KTP laser has been achieved. The configuration of the laser was designed to function under conditions of thermal insensitivity and optimal coupling for second-harmonic generation. The output at 0.54 μ m can be employed to pump the optical parametric oscillator with an α -cut KTP crystal to produce nonclassical light through the frequency downconversion process of noncritical 90° phase matching. By using this system we obtained laserlike twin beams at 1.08 μ m with an intensity difference noise of 7 dB below the shot-noise limit.⁷ The high conversion efficiency and low intracavity losses are the most favorable characteristics for nonlinear and quantum optical experiments. The design principle can be applied to all-solid-state lasers to create a more compact system.

This research was supported by the National Natural Science Foundation of China (69438010) and by the Natural Science Foundation of Shanxi Province for the Young (95001).

References

- G. Jiangrui, W. Hai, H. Maoquan, X. Changde, P. Kunchi, Y. Zhenggang, M. Changqin, and W. Xuning, "Intracavity frequency-doubled and stabilized cw ring Nd:YAG laser with a pair of KTP crystals," Appl. Opt. 34, 1519–1522 (1995).
- P. Kunchi, H. Maoquan, L. Jing, L. Yimin, Z. Tiancai, Y. Chen, and X. Changde, "Experimental investigation about two-mode squeezed state generation of light field," Acta Phys. Sin. 42, 1080-1085 (1993).
- V. M. Garmash, G. A. Ermakov, N. I. Pavlova, and A. V. Tarasov, "Efficient second-harmonic generation in potassium titanate-phosphate crystals with noncritical matching," Sov. Phys. Tech. Phys. Lett. 12, 505–506 (1986).
- 4. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% efficiency for cw frequency doubling from 1.08 to 0.54 μ m," Opt. Lett. **17**, 640–642 (1992).
- K-C. Peng, L-A. Wu, and H. J. Kimble, "Frequency-stabilized Nd:YAG laser with high output power," Appl. Opt. 24, 938–940 (1985).
- A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 16, p. 430.
- P. Qing, Z. Yun, Z. Tiancai, X. Changde, P. Kunchi, "Experimental investigation of intensity difference squeezing using Nd: YAP laser as pump source," J. Phys. D 30, 1588–1590 (1997).