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A frequency-doubled and frequency-stabilized ring Nd:YAP laser with a six-mirror cavity is demon-
strated. This laser satisfies both the thermal insensitivity and optimal frequency-doubling conditions.
A second-harmonic output to 1 W at 0.54 pm is achieved. The intensity fluctuation is less than +=1.5%

and the frequency stability is better than +1 MHz (5 min).
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1. Introduction

The intracavity frequency-doubled and frequency-
stabilized Nd:YAP laser is an important light source
for nonlinear optics and quantum optics. Potassium
titanyl phosphate (KTP) is a well-known crystal for
frequency doubling Nd:YAG lasers (1.064 pm).!
The large nonlinear coefficient together with a wide
phase-matching temperature range, large acceptance
angle, and extremely low absorption loss (between
0.5 and 1.4 pm) make KTP a promising candidate for
high conversion efficiency application. However, it
is difficult to realize type II 90° noncritical phase
matching with one single KTP crystal for the
1.064-pm light emitted by a Nd:YAG laser. To elim-
inate the beam walk-off effect and to realize three-
mode resonance, one must place a pair of properly
oriented KTP crystals with angle phase matching in
a laser cavity or optical parametric oscillator cavi-
ty.12 In this case, the efficiency of frequency dou-
bling and quantum correlation between the twin
beams are inevitably degraded because of higher in-
tracavity losses. Recently, Garmash et al.3 reported
type II 90° noncritical phase matching in an a-cut
KTP crystal at 1.08 pm, thus suggesting new possi-
bilities for better performance of KTP in intracavity
cw frequency doubling. Ou et al.* reported the ex-
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periments for frequency doubling from 1.08 to 0.54
pm with a single a-cut KTP crystal inside an external
cavity. Following this lead, here we report on an
intracavity frequency-doubled and frequency-
stabilized cw ring Nd:YAP laser with output of 1 W at
0.54 pm, intensity fluctuations of *1.5%, and fre-
quency stability of =1 MHz (5 min).

2. Experimental Arrangement

A schematic diagram of the laser is shown in Fig. 1.
The base of the laser housing is a granite stone struc-
ture upon which a six-mirror (M1-M6) ring cavity
with a total length of ~140 cm was built. The laser
head consists of one high-pressure krypton lamp and
one single elliptical condenser to ensure high pump
efficiency. The size of the Nd:YAP rod is 3 X 77
mmd, which was provided by the Fujian Institute of
Research on Structure of Matters, Academia Sinica,
China. M1, M2, and M4 are plane mirrors with a
reflectivity of 99.8% at 1.08 um. M3 is a thin-film
polarizer with R =~ 99.5% for S polarization and R <
8% for P polarization. M5 and M6 are concave mir-
rors with a 102-mm radius of curvature and 99.8%
reflectivity at 1.08 wm. M6 is the output coupler
with antireflection coating for the second-harmonic
wave at 0.54 pm. M5 and M6 form a near-confocal
configuration. To reduce both the astigmatism from
the concave mirrors and polarization imbalance of
the KTP crystal, the incident angles on M5 and M6
are as small as possible (~3°). The two concave mir-
rors are symmetrically positioned in the laser, and
thus the optical length PM1M4M5 is almost equal to
PM2M3M6 = L2 (P is the center of the Nd:YAP rod).
An a-cut KTP crystal of 3 mm X 3 mm X 10 mm is
positioned in the center between M5 and M6, the
location of the smallest beam waist. The tempera-
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Fig. 1. Schematic diagram of the experimental setup: M1-MS6,
mirrors; /2, half-wave plate; F-R, Faraday rotator; D1-D4, pho-
toelectric detectors; A1-A4, filters; F-P1, confocal reference cavity;
F-P2, monitor cavity.

ture of the KTP crystal is actively stabilized around
the phase-matching point of 63.5 °C with a precision
of =0.01 °C. The laser frequency is stabilized by a
standard locking system and its stability is moni-
tored with scope 1. The intensity fluctuations of the
1.08- and 0.54-p.m lights are monitored with scopes 2
and 3, respectively.

3. Two Key Points for the Nd:YAP Laser Design

The Nd:YAP is an optical biaxial crystal with the
space group of Dy;,'® — P6,,., which is more compli-
cated than an isotropic Nd:YAG with a single axis.
The polarization fluorescence spectrum of Nd:YAP
presents obvious anisotropic characteristics. In the
polarization fluorescence spectrum parallel with the
C axis of the Nd:YAP crystal the radiation at 1.08-p.m
wavelength is much stronger than at 1.06 pm, but for
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Fig. 2. Radii (w,) of TEM,, mode beams in the center of a KTP
crystal versus L, with different Ft (L, ~ 65 cm).
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Fig.3. Radii (wp) of TEM,, mode beams in the center of a Nd:YAP
rod versus L, with different F¢ (L, ~ 65 cm).

the spectrum parallel with the A axis the radiation at
1.06 pm is higher than that of other spectra. In our
laser all the cavity mirrors have higher reflectivities
for an s-polarized laser than for a p-polarized laser.
Therefore the orientation of the C axis of the Nd:YAP
rod should be aligned parallel with the S-polarized
cavity mirrors to ensure oscillation of the radiation at
1.08-um wavelength. A Faraday rotator and a half-
wave plate (\/2) for 1.08 pm are positioned in the
cavity to ensure that the laser operates in a unidirec-
tional fashion. The ratio of the output powers in two
directions is approximately 2000:1 in our system.
The thermal fluctuation of the laser rod results in
unstable output power. Our laser was designed to
conform with the condition of thermal insensitivity,
which is A + D = 0,5 where A and D are elements of
the ABCD transmission matrices of the laser cavity.
To obtain high frequency-doubling efficiency, the con-
figuration was also designed to satisfy optimum cou-
pling for second-harmonic generation, which is wy/w,
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Fig. 4. Fluctuation of the green light (the detector was an
FND100 photodiode): (a) the trace of green light fluctuation and
(b) the trace of ground.
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Fig. 5. Second-harmonic wave transmission through the scan-
ning F-P2 cavity.
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Fig. 6. Frequency stability of the second-harmonic wave through
the scanning F-P2 cavity (5 min).

~ 0.058,% where w, and v, are the radii of the fun-
damental laser beam waists at the centers of the KTP
crystal and the YAP rod, respectively. By use of
numerical calculations on ABCD matrices, we ob-
tained the optimum cavity parameters to achieve the
best compatibility with the two above-mentioned con-
ditions (see Figs. 2 and 3). Under a pump power of
1.44 kW for the krypton lamp, the thermal lens of the
laser rod has a focal length of Ft ~ 74 cm. With L,
~65cmand A + D = 0, we obtained L; ~ 51.8 mm,
0o ~ 0.0356 mm, and w, ~ 0.58 mm. In this case
wo/w, ~ 0.061 is close to 0.058.

4. Experimental Results

As shown in Fig. 1, F-P1 and F-P2 are two reference
cavities with a stable Invar structure with 5 and
10-cm length, 3000- and 1500-MHz free spectral
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range, and a finesse of 410 and 550 for 1.08 and 0.54
pm, respectively. Figure 4 shows the output power
fluctuation of green light at 0.54 pm. The average
power is 1 W and the fluctuation is less than =1.5%.
The transmission curve (Fig. 5) of the second-
harmonic wave through a scanned reference cavity
(F-P2) demonstrates that the laser operates in a sin-
gle longitudinal mode. Figure 6 plots the frequency
drift of second-harmonic generation with the mode-
locked system on. The frequency stability of the
second-harmonic light calculated from the data given
in Figs. 5 and 6 is better than =1 MHz (5 min).

5. Conclusion

A cw intracavity frequency-doubled and frequency-
stabilized ring Nd:YAP/KTP laser has been achieved.
The configuration of the laser was designed to func-
tion under conditions of thermal insensitivity and
optimal coupling for second-harmonic generation.
The output at 0.54 wm can be employed to pump the
optical parametric oscillator with an a-cut KTP crys-
tal to produce nonclassical light through the fre-
quency downconversion process of noncritical 90°
phase matching. By using this system we obtained
laserlike twin beams at 1.08 wm with an intensity
difference noise of 7 dB below the shot-noise limit.?
The high conversion efficiency and low intracavity
losses are the most favorable characteristics for non-
linear and quantum optical experiments. The de-
sign principle can be applied to all-solid-state lasers
to create a more compact system.
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