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Quantum self-homodyne tomography with an
empty cavity
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We develop a scheme to reconstruct the optical quantum state of a single-mode bright light field by using the
dispersion characteristics of the empty cavity. The input field has a strong coherent component at frequency
v0 , which serves as a local oscillator (LO) to measure its two-sideband mode at v0 6 V. We control the rela-
tive phase of the 0–2p range between the LO and the two-sideband mode by scanning the cavity length, so the
optical quantum state is tomographically reconstructed. In the proposed scheme the influence of the space-
mode mismatch between the LO and measured mode on the quantum efficiency is eliminated, and this scheme
can conveniently be used in some quantum optical systems in which LO field cannot be available. © 2000
Optical Society of America [S0740-3224(00)01510-1]
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1. INTRODUCTION
There has been much interest in research in optical ho-
modyne tomography in recent years. Significant ad-
vances in theory1 and experiment2–4 have been made.
This kind of tomography allows one to reconstruct the
Wigner function and the density matrix of a quantum
state from a set of field quadratures measured by bal-
anced homodyne detection. Reconstruction methods are
based initially on an approximately inverse Radon trans-
form of the quadrature histograms. To avoid a detour by
means of the Wigner function and determine the density
matrix directly from the measured quadrature distribu-
tion, algorithms for reconstructing the density matrix
both from quadrature5,6 and from photon number7,8 have
been developed. This method has proved to be stable and
fast enough to permit real-time data sampling. The di-
rect sampling approach to measuring the photon statis-
tics of a semiconductor laser9 and the density matrix
of a squeezed vacuum has been implemented
experimentally.10 In optical homodyne tomography the
set of distributions $Pu(xu)% is measured by optical homo-
dyne detection, which is based on the interference be-
tween the signal field and a strong coherent reference
field with an adjustable phase, that is, the local oscillator
(LO); here xu 5 @ â exp(2iu) 1 â1exp(iu)#/A2 is the phase-
rotated quadrature amplitude. The quality of mode
matching between the LO and the measured mode,11

which is determined by their spatiotemporal overlap, di-
rectly influences the overall quantum efficiency of
detection.12 Moreover, it is difficult to use the LO beam
in some practical systems, such as in the case of bright
squeezed light from a frequency doubler and from a Kerr
medium.

Recently a method of self-homodyne tomography13 with
which two-mode tomography can be performed from a
twin-beam state at the output of a nondegenerate optical
parametric amplifier was developed. One can also use
self-homodyne tomography for two modes to measure the
0740-3224/2000/111920-06$15.00 ©
single-mode light from a degenerate optical amplifier. In
the scheme proposed in Ref. 13, the strong mean field of a
single mode at central frequency v0 was used as a LO to
measure two-sideband mode v0 6 V; here V is the ana-
lytic frequency for the reconstruction. The relative phase
between the LO and the two-sideband mode was varied
by scanning of the relative phase between the input sig-
nal field and the pump field. Thus homodyne tomogra-
phy of the sidebands was accomplished.

In the research reported in Refs. 14–17 the phase of the
squeezed state is controlled by a Fabry–Perot empty cav-
ity; then the squeezing spectrum is measured. Here we
develop the scheme of using a Fabry–Perot empty cavity
to reconstruct the optical quantum state. The input field
with a strong coherent component at frequency v0 serves
as the LO with which to measure the two-sideband mode
at v0 6 V. According to the sidebands’ frequency V, a
suitable finesse of empty cavity is selected. One controls
the relative phase between the LO and the two-sideband
mode v0 6 V by scanning the cavity length; then the op-
tical quantum state is tomographically reconstructed.

2. OPTICAL HOMODYNE TOMOGRAPHY
OF A SINGLE MODE
Before introducing the tomography that uses an empty
cavity, we briefly summarize the reconstruction of the
Wigner function of a single-mode signal field described by
photon annihilation and creation operators â and â1.
Usually the reconstruction is accomplished by measure-
ment of quadrature component distributions. As shown
in Fig. 1, at a 50% beam splitter (B), signal wave (â) spa-
tially overlaps a strong coherent oscillator (âLO) of the
same frequency. The output light fields from the 50%
beam splitter can be expressed in terms of input beams:

ĉ~t ! 5 ~A2/2!@ â~t ! 1 exp~iu!âLO~t !#,

d̂~t ! 5 ~A2/2!@ â~t ! 2 exp~iu!âLO~t !#. (1)
2000 Optical Society of America
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Angle u depends on the relative phase between the signal
wave and the LO. The difference between photocurrents
from detectors D1 and D2 placed at two output ports of
the beam splitter is written as

Î2~t ! 5 ĉ1~t !ĉ~t ! 2 d̂1~t !d̂~t !

5 exp~iu!â1~t !âLO~t ! 1 exp~2iu!âLO
1 ~t !â~t !,

(2)

where ĉ, ĉ1 and d̂, d̂1 are the annihilation and creation
operators, respectively, of the output light from the beam
splitter. According to the semiclassical optical field
method,17 the fluctuating field can be considered a carrier
â(v0) oscillating at frequency v0 with an average value
ā(v0) equal to that of the steady-state field ass which is
surrounded by noise sidebands â(v0 6 V) with zero av-
erage values

ā~v0! 5 ass; ā~v0 6 V Þ v0! 5 0. (3)

A noise spectral component at frequency V can then be
considered that of the hereodyne between the carrier and
the noise sideband. For the usual experimental optical
homodyne tomography systems the condition ^âLO&
5 āLO(v0) @ ^â& is always satisfied; then the output
photocurrent at the analyzed frequency V is given as

Î2~V! 5 āLO~v0!@exp~2iu!â~v0 2 V!

1 exp~iu!â1~v0 1 V!#. (4)

The quadrature component of the measured signal field is

X̂~u, t ! 5 @ â~t !exp~2iu! 1 â1~t !exp~iu!#/A2, (5)

where â(t) 5 â(t)exp(2iv0t) and â(t) is the slowly vary-
ing electric field amplitude. X̂(u, t) is Fourier trans-
formed into18

X̂~u, V! 5 @ â~v0 2 V!exp~2iu!

1 â1~v0 1 V!exp~iu!#/A2, (6)

with

@ â~v0 2 V!, â1~v0 2 V8!# 5 2pd ~V 2 V8!. (7)

From Eqs. (4) and (6) it is obvious that the difference in
the photocurrents is directly proportional to the quadra-
ture component of the signal field. Thus, assuming that
the signal field does not change during the measurement

Fig. 1. Schematic of optical homodyne tomography.
time, Î2(V) furnishes an image of the time evolution of
the signal field, which has different quantum fluctuations
at different phase angles.

The recorded noise trace is divided into sections @u, u
1 Du#, u P @0, 2p#, in each of which the statistical dis-
tribution of fluctuations of Î2(V), that is, the probability
distribution Pu(xu) of eigenvalues xu of quadrature X̂u , is
formed. These distributions are the projection integrals
of Wigner function W(x, y) of the signal state in rotating
coordinates:

Pu~xu! 5 E
2`

`

W~xu cos u 2 yu sin u,xu sin u

1 yu cos u!dyu , (8)

where yu 5 2x sin u 1 y cos u. The Wigner function is
obtained from the set $Pu(xu)% by backprojection by use of
the inverse Radon transform.1 The alternative recon-
struction method yields elements rnm of the density ma-
trix on a Fock basis by integration of $Pu% over a set of
pattern functions that were described in detail in Ref. 7.
This method does not introduce any data filtering and in
principle offers the possibility of on-line reconstruction,
that is, of processing each data point directly after it is re-
corded.

3. THEORETICAL MODEL OF THE
PROPOSED SCHEME
The proposed scheme for producing self-homodyne tomog-
raphy of a single-mode field with an empty cavity is de-
picted in Fig. 2. In frequency space, the input single-
mode field includes a strong coherent component â0

in(v0)
and a two-measured-sideband mode â1

in(v0 1 V) and
â2

in(v0 2 V). In what follows, subscript 0 of â desig-
nates the center frequency v0 and subscript 6 at the side-
bands is v0 6 V. v0 is typically an optical frequency,
whereas V is a radio frequency. The input coupler is a
partly reflecting mirror of amplitude-reflection coeffi-
cients r and transmission t (r2 1 t2 5 1). Using the
boundary conditions, we describe the field in the cavity by
semiclassical method

Fig. 2. Self-homodyne tomography with an empty cavity. The
input field has a strongly coherent component at center fre-
quency v0 . The output field reflected by the empty cavity is di-
rectly detected, and a narrow band of the output photocurrents is
selected, centered about frequency V ! v0 . PZT, piezoelectric
transducer; M2, M3, high reflectors.
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â8 5 râ 1 tâ in,

âout 5 tâ 2 râ in,

â 5 r1â8 exp~if0! 1 A1 2 r1
2âvac , (9)

where â and â8, respectively, are the intracavity fields
just before and just after reflection by input–output cou-
pler M1. â in and âout are the input and output ampli-
tudes, respectively, f0 is the cavity round-trip propaga-
tion phase shift, 1 2 r1 stands for the total cavity losses,
âvac is the vacuum noise introduced from intracavity
losses (^âvac& 5 0). The relations between the input and
the output fields for the central frequency and the two-
sideband mode are obtained from Eq. (9):

â0
out 5

r1 2 r exp~2if0!

exp~2if0! 2 rr1
â0

in~v0!

1
tA1 2 r1

2

exp~2if0! 2 rr1
âvac ,

â1
out 5

r1 2 r exp@2i~ f0 1 VL/c !#

exp@2i~ f0 1 VL/c !# 2 rr1
â0

in~v0 1 V!

1
tA1 2 r1

2

exp@2i~ f0 1 VL/c !# 2 rr1
âvac ,

â2
out 5

r1 2 r exp@2i~ f0 2 VL/c !#

exp@2i~ f0 2 VL/c !# 2 rr1
â0

in~v0 2 V!

1
tA1 2 r1

2

exp@2i~ f0 2 VL/c !# 2 rr1
âvac , (10)

where phase detuning f0 5 v0L/c 1 wr 2 2pN (N an in-
teger), 2pN 5 v0Lres /c 1 wr , L is the real round-trip
length of the cavity, which is varied in the scanning pro-
cess, Lres designates that, at resonance, wr is the total
phase shift in three cavity mirrors, and c is the speed of
light in vacuum.

A. Ideal Empty Cavity
For an ideal empty cavity and neglecting all losses, Eqs.
(10) are reduced to the following expressions:

â0
out 5

1 2 r exp~2if0!

exp~2if0! 2 r
â0

in~v0!,

â1
out 5

1 2 r exp@2i~ f0 1 VL/c !#

exp@2i~ f0 1 VL/c !# 2 r
â0

in~v0 1 V!,

â2
out 5

1 2 r exp@2i~ f0 2 VL/c !#

exp@2i~ f0 2 VL/c !# 2 r
â0

in~v0 2 V!.

(11)

From Eqs. (11) we obtain

U1 2 r exp@2if0#

exp@2if0# 2 r
U 5 1, â0

out 5 â0
in~v0! 5 const.

The noise character of the reflected field is unchanged,
and only a phase shift is added on the field. We define
the phase-shift angle of the output field:
u~ f0! 5 ArgF1 2 r exp~2if0!

exp~2if0! 2 r G . (12)

The phase-shift angle as a function of detuning f0 is
shown in Fig. 3. When u 5 p 2 d (d → 0), the corre-
sponding detuning frequency is Vp . The full width of
the cavity dispersion, defined as 2Vp , is a function of r.

The output field reflected by the empty cavity is de-
tected directly by photodiode D1 (Fig. 1). The output
photocurrents filtered by a narrow-band filter at V are
given by the operators13

Î~V! } E
2`

1`

dt exp~iVt !:u ê~t !u2:

5 E
2`

1`

dvê1~v 1 V!ê~v!, (13)

where : : denote a general normal-ordering annihilation
operator of the output field. The output field can also be
measured by use of balanced detection. The quantum
state of the optical field is reconstructed by means of the
photocurrent of the output field directly detected by D1,
which equals the sum of two photocurrents in balanced
homodyne detection. The tomography of the coherent
state, which usually serves as a standard with which one
can judge whether the measured field is nonclassical, is
produced from the difference of photocurrents.17 Be-
cause the input field has a strong coherent component
only at center frequency v0 , relation (13) is simplified to

Î~V! 5 â0
out1âout 1 â1

out1â0
out . (14)

In the process of direct detection, highly excited central
mode â0 beats with the v0 6 V sideband modes; thus it
plays the role of a LO in normal homodyne and hereodyne
detectors. In this case the direct detection is converted
into self-homodyne detection and the output from the de-
tector becomes the measured rescaled values of the out-
put photocurrents in the case of a strong LO:

ı̂~V! 5 lim
uâ0

outu → `

TrLO@ Î~V!r̂LO#

A2uâ0
outu

, (15)

Fig. 3. Phase-shift angle as a function of phase detuning f0 .
r 5 0.9998.
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where r̂LO represents the density operator of the LO, TrLO
denotes the partial trace over the LO mode, and uâ0

outu rep-
resents the average amplitude of the LO. Thus we ob-
tain

ı̂~V! 5
1

A2
$exp@iu~ f0!#â2

out 1 exp@2iu~ f0!#â1
out1%

5
1

A2
XexpH iFu~ f0! 2 uS f0 2

VL

c D G J â2
in

1 expH 2iFu~ f0! 2 uS f0 1
VL

c D G J â1
in1C.

(16)

As was shown in Ref. 1, reconstruction of the optical
quantum state requires measurement of quadrature am-
plitude distributions of different phase angles by orthogo-
nal phase-rotated transformation. The orthogonal
phase-rotated transformation of an optical field can be
reached by selection of the suitable full width 2Vp of the
empty cavity, which must be smaller than the measured
sideband frequency V. By scanning the cavity length
with a piezoelectric transduces, one can change the fre-
quency detuning from 2Vp to Vp . When 2(VpL/c)
, f0 , VpL/c, from Eqs. (11) and (12) we obtain

uS f0 1
VL

c D ' 2p,

uS f0 2
VL

c D ' p, u~ f0! P @2p, p#, (17)

and Eq. (16) is simplified to

ı̂~V! 5 2~1/A2 !$exp@iu~ f0!#â2
in 1 exp@2iu~ f0!#â1

in1%.

(18)
Equation (18) gives the orthogonal phase-rotated

transformation1 when the phase-shift angle u( f0) is var-
ied continuously from 2p to p. So the phase-shift range
of 2p needed for tomography is gained [see approxima-
tions (17)]. Thus if we get a set of measured quadrature
amplitude distributions for the different phase angles u,
we can construct the quantum state of the optical field by
using an empty cavity. As an example, according to the
calculation method described in Refs. 19 and 20, the vari-
ances of an amplitude-squeezed state at the various
phase angles u were calculated from a set of measured
quadrature amplitude distributions and are shown in Fig.
4. The maximum squeezing was obtained at three de-
tuning frequencies, which correspond to the phase-shift
angles (u 5 2p, 0, p) of the orthogonal phase-rotated
transformation. The sets of quadrature amplitude distri-
butions between phase-shift angles from u 5 2p to u
5 p satisfy the condition of orthogonal phase-rotated
transformation in approximation (17) and are used for
quantum-state reconstruction. The data of the phase-
shift angles outside u P @2p, p# are nonorthogonal
phase-rotated transformations and are useless for recon-
struction. The zero line of the ordinate in Fig. 4 is the
level of the shot-noise limit.
B. Nonideal Empty Cavity
In the above calculations we assumed a perfect single-
ended cavity without any losses. In fact, even on highly
reflecting mirrors, losses from absorption, scattering, and
transmission are inevitable. If r1 expresses the total ex-
tra losses, the field reflected by the cavity is then given by
Eqs. (10). From Eqs. (10) we obtain the average value of
output field:

â0
out 5

r1 2 r exp~2if0!

exp~2if0! 2 rr1
â0

in~v0!. (19)

The amplitude and the phase shift of the output field are
totally changed when detuning f0 is varied. We define
the phase-shift angle of the output field:

u8~ f0! 5 ArgF rr1 exp~2if0! 2 1

r1 exp~2if0! 2 r G . (20)

The phase-shift angle as a function of detuning f0 is
shown in Fig. 4. When u8 5 p 2 d (d → 0), the corre-
sponding frequency detuning is Vp8 . So the full width of
the cavity dispersion is defined as 2Vp8 , which is a func-
tion of r and r8. It is obvious from Eqs. (10) that the full
width of the empty cavity is wider than the ideal cavity,
and the amplitude of output field is changed owing to the
intracavity losses r1, as shown in Fig. 5. For tomography
we should also ensure that the measured sideband fre-
quency V . 2Vp8 . When the scanning frequency range
is 2Vp8 to Vp8 , Eqs. (10) are reduced to the following ex-
pressions:

â0
out 5

r1 2 r exp~2if0!

exp~2if0! 2 rr1
â0

in~v0!

5 Ur1 2 r exp~2if0!

exp~2if0! 2 rr1
Uexp@iu8~ f0!#â0

in~v0!,

u8~ f0! P @2p, p#, â1
out ' 2â0

in~v0 1 V!,

â2
out ' 2â0

in~v0 2 V!. (21)

When the empty cavity is scanned, the coherent ampli-
tude component at center frequency v0 is varied. As the
coherent amplitude component is used as the strong LO
that is needed for measurement, it should be kept at a

Fig. 4. Variance of the amplitude-squeezed coherent state nu-
merically calculated relative to the detuning frequency of the
scanned empty cavity at sideband mode frequency 2pV
5 500 MHz. L 5 0.1 m, r 5 0.9998, and the amplitude
squeezing is 90%.
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specific intensity that is easy to reach by choice of the ap-
propriate cavity parameters. The influence on the mea-
sured data that is due to variance of the LO intensity dur-
ing cavity scanning can be eliminated through rescaling
of Eq. (15). Expression (13) for the rescaled output pho-
tocurrents is simplified to

ı̂~V! 5 2
1

A2
$exp@iu8~ f0!#â2

in 1 exp@2iu8~ f0!#â1
in1%.

(22)

Equation (22) is an orthogonal phase-rotated transforma-
tion when phase-shift angle u8( f0) is varied continually
from 2p to p. The phase-shift range of 2p for tomogra-
phy is also obtained. The sideband quantum character is
not affected, because two sidebands are far from the reso-
nant frequency and therefore all the sidebands are re-
flected without any loss. The measurement stability of
the cavity length and the frequency of measured signal
field should be sufficient to ensure the validity of mea-
sured data at different angles u8.

4. CONCLUSIONS
In conclusion, we propose a self-homodyne detection
scheme in which one uses the dispersion characteristics of
an empty cavity to perform quantum tomography of a
single mode that has a strong mean field. In the scheme,
the influence of space-mode mismatch between the LO
and the measured signal field on the quantum efficiency

Fig. 5. Magnitude and phase of the reflected field relative to the
input field for a nonideal empty cavity r 5 0.9998.
is eliminated, and this scheme can conveniently be used
in some quantum-optical systems in which the LO field
cannot be available. In this measurement scheme the
analyzed frequency V must be larger than the full width
of the empty cavity [see expressions (17)]; therefore, when
the measurement is performed at a small analyzed fre-
quency, a high-finesse cavity is required. In this case the
requirement for stability of the cavity length and the sig-
nal frequency is correspondingly increased and is not eas-
ily met experimentally. However, the new self-
homodyne tomography scheme is experimentally feasible
for measurements in the range of larger analyzed fre-
quencies.
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