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Abstract. – The quantum teleportation of continuous variables is formulated through the
state evolution in the Schrödinger picture from the viewpoint of general quantum-mechnical
measurement theory. This method provides the connection between the teleportation and the
reversible quantum operations. In this way, the state evolution process of teleportation can
be presented clearly step by step, the criterium of teleportation for a coherent state is also
deduced.

Introduction. – Quantum teleportation has attracted much interest in quantum com-
putation for error correction protocols, optical quantum communication for sending secret
messages and superdense coding of information. Hence, we see that it plays an important role
in the relatively new, but rapidly growing, field of quantum information science.

The first proposal of quantum teleportation was made by Bennett et al. in spin-(1/2) parti-
cle systems [1]. Recent experiments [2,3] demonstrated that this effect could be accomplished
by teleporting the polarization state of a single photon. More recently, Vaidmann presented
a principle to extend the teleportation scheme to the systems with continuous variables [4].
More realistic theories for quantum teleportation of continuous variables in different ways
such as in terms of Wigner function, quadrature representation and discrete basis state [5–10]
have been developed. This analysis has also been applied to continuous variable entanglement
swapping [11–13] and super-dense quantum coding [14]. The experimental realization of tele-
portation for continuous variables of an optical coherent state was demonstrated [15], where
the squeezed lights are exploited to the source of EPR pair. In fact there is no possibility
to produce perfect EPR pairs for continuous variables, thus the criterium for evaluating the
efficiency of realistic teleportation has to be considered [5, 16–18].
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Quantum teleportation is a process of disintegrating a quantum state in one place and
then reconstructing it at a remote site. The physical mechanisms behind it are the quantum
nonlocal correlation and the Bell-operator measurements. Because of the nonlocal correlation
between the EPR pairs [19], when performing joint Bell-operator measurements on the input
state and one half of the EPR pair, the other half of the EPR pair automatically collapses
into a quantum state which relates to the input teleported state, then, by means of a definite
unitary transformation according to the outcome of the Bell measurement, the teleported
state is reconstructed. The teleportation can be understood as a reversing quantum operation
consisting of the reversible measurements and unitary transformation operation [20, 21]. In
this paper we provide an approach in which we analyze the state evolution process of the
continuous variable teleportation with the coherent-state representation and apply the scheme
of reversible quantum operation in the quantum measurement theory. To our knowledge it
has not been presented before. All published papers deal with teleportation process in the
Q- and W -representation [5, 16] or in the Heisenberg picture [7]. A similar discussion using
the quantum measurement theory has been given [6,9], but only the case of perfect two-mode
squeezed state is considered. In our calculation there is no any approximation on the squeezing
parameter of the two-mode squeezed state, therefore a general expression of teleportation for
continuous variables is obtained and the fidelity is deduced directly from the original definition.

EPR entanglement for continuous variables. – The first step of teleportation is the
preparation of EPR quantum entangled pairs. In the teleportation scheme for continuous
variables proposed in ref. [5], the EPR entangled state is a two-mode squeezed vacuum state,
which is expressed as [6, 8]

ρ1,2 = (1 − λ2)
∞∑
n

∞∑
n′

(−λ)n+n′ |n, n〉1,2〈n′, n′| , (1)

where λ = tanh r (0 < λ < 1) is a parameter quantifying the strength of squeezing, the indices
1, 2 denote the two modes of the squeezed state, |n, n〉 is the Fock state corresponding to 1 and
2 modes. In the limit r → ∞, i.e., λ → 1, the squeezed vacuum state is maximally squeezed,
in this case the two-mode squeezed state approaches a simultaneous eigenstate of X̂1 +X̂2 and
Ŷ1 − Ŷ2 as described in ref. [4], where X̂1,2 = (â1,2 + â+

1,2) and Ŷ1,2 = −i(â1,2 − â+
1,2) are the

quadrature phase amplitudes for the two modes a1 and a2 of the squeezed state. For the eigen-
state, the quantum fluctuations of X̂1+X̂2 and Ŷ1−Ŷ2 are equal to zero. This is an analogue of
the EPR state with both entanglements between quadrature amplitudes X̂1 and X̂2 as well as
between quadrature phases Ŷ1 and Ŷ2. For the finite squeezing, when the uncertainty product
for the variances of the two inferences 〈∆2X̂inf〉〈∆2Ŷinf〉 = 〈∆2(X̂1 + gxX̂2)〉〈∆2(Ŷ1 − gyŶ2)〉
is less than the limit of unity associated with the Heisenberg uncertainty relation, the EPR
paradox for continuous variables is demonstrated [22,23]; here g is the scaling factor for min-
imizing the variances. From eq. (1) we can calculate [22] 〈∆2X̂inf〉〈∆2Ŷinf〉 = (1/ cos h2r)2,
thus once squeezing exists, i.e. r > 0, the uncertainty product 〈∆2X̂inf〉〈∆2Ŷinf〉 < 1. When
r = 0 (i.e. λ = 0) we have 〈∆2X̂inf〉〈∆2Ŷinf〉 = 1, that is just the classical limit of EPR
entanglement. For the general case the EPR paradox is violated for the minimum uncertainty
squeezed states.

The state evolution for teleportation of continuous variables. – In this section, we explore
how the state evolves in the process of teleportation of continuous variables. For this purpose
and more generality, we consider the quantum system in the Schrödinger picture in terms of
coherent-state representation. In this case we expand the entangled state in coherent-state
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basis as
ρ1,2 =

√
(1 − λ2)

∫ ∫
d2µd2νe−

1
2 |µ|2e−

1
2 |ν|2e−λµ∗ν∗ |µ〉1|ν〉2 ⊗ h.c. (2)

In the Glauber-Sudarshan coherent-state representation, the input state of the signal mode
can be expressed as

ρ̂in =
∫

d2αP (α)|α〉in〈α| , (3)

where |α〉in represents a coherent input state, α is a complex variable and P (α) is called the
p function, which is a quasi-probability density function in the phase space, and usually is
normalized as

∫
d2αP (α) = 1.

In the Alice sending station, the density operator of the initial state combining the input
unknown state with the EPR pair is

ρ̂0 = ρ̂in ⊗ ρ̂1,2 . (4)

The second step of teleportation is to perform a joint measurement on the input teleported
state and a half of the EPR pair. In practice, this process is accomplished by combining the
input state with a half of the EPR pair on a 50:50 beamsplitter and then homodyne detecting
the quadrature amplitude of one output mode of the beamsplitter and the quadrature phase
of the other output mode [15].

As is well known, a 50:50 lossless beamsplitter is described by the unitary operator Û [24],

Û = e
π
4 (âinâ†

1−â1â†
in) ; (5)

for simplicity, we have ignored the phase shift introduced by the beamsplitter in eq. (5).
Equation (5) shows that a lossless beamsplitter is characterized by the generators of the
SU(2) Lie group whose input and output relationship in the Heisenberg picture is given by
âout
in = (âin + â1)/

√
2 and âout

1 = (â1 − âin)/
√

2.
In the Schrödinger picture, the density matrix of the output state of the beamsplitter is

obtained through the unitary transformation of the density matrix ρ̂0 of the initial state [25,
26]:

ρ̂BS = Û†ρ̂0Û . (6)

Using the decomposition formula of the SU(2) Lie algebra [27],

Û† = eâ†
inâ1(

√
2)â†

inâin−â†
1â1e−âinâ†

1 , (7)

and the following relations:

(
√

2)−â†
1â1 |γ〉1 = e−

1
4 |γ|2 |γ/

√
2〉1, (

√
2)â†

inâin |α〉in = e
1
2 |α|2 |

√
2α〉in, (8)

we substitute eqs. (4) and (7) into eq. (6) and calculate the density matrix of the output state
of the beamsplitter in coherent-state basis:

ρ̂BS =
(1 − λ2)

π4

∫
d2αP (α) ×

×
∫∫

d2βd2γe−
3
4 |γ|2e

1
2 |λγ|2e−

1
2 |β|2e−

1
2 |α|2e−αγ∗

eβ∗γ/
√

2e
√

2αβ∗ |β〉in|γ/
√

2〉1|−λγ∗〉2 ⊗

⊗
∫∫

d2ζd2η2〈−λη∗|1〈η/
√

2|in〈ζ|e− 3
4 |η|2e

1
2 |λη|2e−

1
2 |ζ|2e−

1
2 |α|2e−α∗ηeζη∗/

√
2e

√
2α∗ζ . (9)
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In the general case of continuous variable teleportation, the amplitude quadrature X̂ of
one output beam of the beamsplitter and the phase quadrature Ŷ of the other one are simul-
taneously measured with two homodyne detection systems. In the Schrödinger picture the
measured outcomes correspond to the amplitude quadrature of the input state and the phase
quadrature of a half of the EPR pair, that are

X̂ = (âin + â†
in)/2 , Ŷ = −i(â1 − â†

1)/2 . (10)

According to the general theory of quantum-mechanical measurement, the quantum mea-
surement is mathematically described by a positive operator-valued measure (POVM) includ-
ing a projection operator. Therefore, the positive operator-valued measurement of the two
quadrature phases of X and Y are given by [28]∏

in

(X) = |X〉in〈X| ,
∏
1

(Y ) = |Y 〉1〈Y | , (11)

where the states |X〉in and |Y 〉1 are the eigenstates of the quadrature components satisfying
the completeness relations:

∫ ∞
−∞ |X〉in〈X|dX = Î,

∫ ∞
−∞ |Y 〉1〈Y |dY = Î. When the values are

measured, the normalized density matrix of the conditional output state of the other half of
the EPR pair collapses into

ρ̂2(X,Y ) =
Trin,1{ρ̂BS

∏
in(X)

∏
1(Y )}

P (X,Y )
, (12)

where Trin,1 stands for the trace operation with respect to the input state and half of the EPR
pair. P (X,Y ) is the probability distribution of the measured results:

P (X,Y ) = Tr2Trin,1{ρ̂BS

∏
in

(X)
∏
1

(Y )} , (13)

where Tr2 stands for the trace operations with respect to the other half of the EPR pair.
To calculate the conditional output state of the other half of the EPR pair, we use the

expressions of the coherent state in the momentum and position basis to give the wave function
of the quadrature components of the coherent state:

in〈X|β〉in =
(

2
π

)1/4

e−X2+2βX− 1
2 |β|2− 1

2 β2
,

1〈Y |γ/
√

2〉1 =
(

2
π

)1/4

e−Y 2+i
√

2γY − 1
4 |γ|2+ 1

4 γ2
. (14)

Substituting eqs. (11), (9) and (14) into eq. (12) and integrating out the parameters β and
γ, eq. (12) becomes

ρ̂2(X,Y ) =
(2/π)(1 − λ2)

P (X,Y )
e−2(X2+Y 2)

∫
d2αP (α)f(α)f∗(α) ×

×D̂(λ[α −
√

2(X − iY )])|0〉2〈0|D̂†(λ[α −
√

2(X − iY )]) , (15)

where D̂(λ[α −√
2(X − iY )]) is a displacement operator and the function f(α) is

f(α) = e−
1
2 |α|2e

√
2α(X+iY )e

1
2 λ2|α−√

2(X−iY )|2 .
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The probability distribution measured for observables X and Y is given by

P (X,Y ) = (2/π)(1 − λ2)e−2(X2+Y 2)

∫
d2αP (α)f(α)f∗(α) . (16)

We note that, for perfect squeezing of λ = 1, i.e., for the ideal entangled EPR pairs, the
probability of obtaining the observables goes to zero. This implies that after the measurement
of Bell basis, no information of the input state can be obtained which is the necessary condition
for faithful teleportation. We can easily prove that for all observables the probability is
normalized: ∫ ∞

−∞

∫ ∞

−∞
dXdY P (X,Y ) = 1 . (17)

According to the protocol of teleportation, the last step is to perform a unitary trans-
formation on the other half of the EPR pairs with the above-measured results to mimic
the input unknown state. In the experimental setup of ref. [15], this transformation is car-
ried out by a beamsplitter which combines the other half of the EPR pair with a strong
local oscillating coherent light modulated by the classical information of the measured val-
ues X and Y . We denote the complex amplitude of this modulated intense coherent light
as M(X,Y ) = |M(X)|eiΦ(Y ), which is proportional to the classical outcomes of X and Y ,
M(X,Y ) ∝ X − iY . When the beamsplitter has a negligible transmittance for the local oscil-
lator and a high reflectance for the other half of the EPR pairs, the beamsplitter displays the
displacement properties with a displacement equal to Z = tM [29]. Taking Z =

√
2g(X− iY ),

the state described by eq. (15) is transformed into

ρ̂out
2 =

(2/π)(1 − λ2)
P (X,Y )

e−2(X2+Y 2)

∫
d2αP (α)f(α)f∗(α) ×

×D̂(λα +
√

2(g − λ)(X − iY ))|0〉2〈0|D̂†(λα +
√

2(g − λ)(X − iY )) , (18)

where g represents a normalized classical gain for the transformation from the classical mea-
sured values X and Y to complex field amplitudes Z. Equation (18) expresses the output
teleported state depending on the measured values of X and Y .

Consider the case g = 1, λ = 1; we have f(α)f∗(α) = e2(X2+Y 2) and we obtain the
measurement probability from eq. (16) P (X,Y ) = (2/π)(1 − λ2). In this case, we get

ρ̂out
2 =

(2/π)(1 − λ2)
∫

d2αP (α)|α〉2〈α|
P (X,Y )

=
∫

d2αP (α)|α〉2〈α| = ρ̂in . (19)

It shows that the input unknown quantum state is perfectly teleported to the receiving
station under the limit of infinite squeezing and unity classical transformation gain for the
lossless measurement system. Thus at the ideal case the above three steps ensure that the
unknown input quantum state is perfectly teleported [30].

Fidelity of teleportation for coherent state. – For the case of λ < 1 which corresponds to
the nonideal EPR pair (i.e. imperfect squeezed state), the output state is a conditional output
state of particular measurement outcomes, and the fidelity of teleportation system has to be
discussed. When we ignore the outcomes and many teleportations take place, the resulting
averaged output state behaves like a mixture of the unnormalized density matrix elements [8]

ρ̂T = (2/π)(1 − λ2)
∫ ∞

−∞

∫ ∞

−∞
dXdY e−2(X2+Y 2)

∫
d2αP (α)f(α)f∗(α) ×

×D̂(λα +
√

2(g − λ)(X − iY ))|0〉2〈0|D̂†(λα +
√

2(g − λ)(X − iY )) . (20)
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In eq. (20) we have used the normalized relation of eq. (17).
Indeed when λ < 1 and g �= 1 eq. (20) shows that the output state overlaps with the input

state partially. The extent of similarity between the output state and the input state |ε〉 is
quantitatively evaluated with the fidelity F [31]:

F = 〈ε|ρ̂T |ε〉 . (21)

For an input coherent state with the complex amplitude ε, we have P (α) = δ (ε − α).
Using eq. (20) the average fidelity can be directly given from the definition of eq. (21) by
integrating on X and Y from −∞ to ∞:

F =
1 − λ2

1 + g2 − 2gλ
e
−(1−g2) 1−λ2

1+g2−2gλ
|ε|2

. (22)

Setting λ = 0, which is the classical limit of entanglement discussed in Part 2, and g = 1,
the classical teleportation limit of F = 1/2 for a coherent state is obtained. When the fidelity
F > 1/2, some quantum information of the input state is reconstructed in the outcome of the
receiving station. The expression of fidelity is in agreement with the result calculated with
the Wigner function [5]. It is obvious that the degree of entanglement as well as the classical
gain are the important parameters for improving the fidelity of teleportation. When both
the quantum entanglement λ and the classical gain g approach unity, the fidelity reaches the
perfect value of 1. From eq. (22) we can see that for the finite squeezing λ < 1 and classical
gain g < 1 the fidelity exponentially decreases along with increasing |ε|2 which is proportional
to the intensity of the input fields, thus it is impossible to do a successful teleportation of
quantum input state of light with higher intensity, but when g = 1 or λ = 1, the fidelity will
be independent of |ε|2. As is well known, in experiment g = 1 is easier to be reached while
λ = 1 is difficult to be realized, therefore, in the final step of teleportation, one should make
g = 1 with great effort for performing the displacement transformation based on the classical
measurement results.

In conclusion, we have analyzed the quantum teleportation of continuous variables using
the theory of quantum-mechanical measurement in the general case of λ < 1 and g �= 1
in the Schrödinger picture. The evolution of the quantum state during the teleportation
process is obviously pointed step by step. It is shown that the quantum teleportation for
a continuous variable can be characterized as reversible quantum operations. According to
the state evolution equation, the fidelity for coherent states is deduced directly from the
original definition. A useful result for this analysis is that the presented approach can be
extensively used to deal with a variety of input states, especially squeezed states which have
been discussed in the Heisenberg picture [32]. To our scheme, when the input state is a
squeezed state, the input density operator should be replaced by ρ̂ = |α, ζ〉〈α, ζ|; here α is
the coherent complex amplitude, ζ is the squeezing parameter of the squeezed state, then,
following the above-mentioned evolution the results for the given state can be deduced, and
we are going to discuss the problem more extensively in a separate paper. We think that
the new approach provides a fresh discussion to the theory of teleportation and might be of
general interest.
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