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Abstract
We propose a quantum teleportation scheme in which a quantum state is
teleported from the sending station (Alice) to either of two receiving stations
(Bob1, Bob2). In this scheme, two pairs of EPR beams with identical
frequency and constant phase relation are used to produce two pairs of
conditional entangled beams by composing their modes on two
beamsplitters. One output of a beamsplitter is sent to Alice and the two
outputs of the other beamsplitter are sent to Bob1 and Bob2. Which
receiving station actually receives the teleported state can be decided by
correlating the in-phase or out-of-phase quadrature components of two
two-mode squeezed vacuum states. The switch system manipulated by
squeezed state light might be developed as a practical quantum switch
device for the communication and teleportation of quantum information.
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Quantum information technology aims to achieve performance
in communication and computation systems superior to those
based on classical physics by utilizing the nonlocal quantum
correlations of entangled states. It has also significantly im-
proved understanding of the quantum systems involved in the
factual realization of a quantum computer, and raised many in-
teresting problems such as the encoding of information [1], en-
tanglement of states [2], quantum cryptography [3], quantum
information manipulation [4] and quantum communication of
teleportation [5]. One of the most striking features of quantum
information is quantum teleportation. In the quantum tele-
portation scheme, quantum information of an unknown state
is faithfully transmitted from a sender to a remote receiver
via initially shared EPR pairs which function as a quantum
information channel for the faithful transmission. Quantum
teleportation was originally proposed for a discrete variable in
finite-dimensional Hilbert space, later it was successfully de-
veloped from a discrete quantum system into a quantum sys-
tem for continuous variables [6–9]. Teleportation of optical
fields holds great promise due to the power of the required op-
tical tools and the maturity of relevant optical communications
technology. Quantum teleportation represents the basic build-

ing block of future quantum communication networks between
distant parties [10].

Some attempts have been made to enhance the
performance of a quantum teleportation system. One of
them is to teleport a quantum state from the sender to
either of two receivers using three-particle entanglement
at a certain condition of measurement [11]. Because of
the experimental difficulties in generating the multiparticle-
entanglement state [12], this teleportation scheme has not been
implemented in experiments. In this paper, we propose a
novel scheme to teleport a quantum state from Alice to two
different receivers in turn using a two-mode squeezed state as
the quantum switch to manipulate the transmission route. In
this scheme, the EPR entangled beams shared by Alice and the
two Bobs are produced by mixing a pair of two-mode squeezed
state lights with identical frequency and constant phase relation
on two 50% beamsplitters. As in the usual teleportation
scheme [9], one performs a certain joint measurement on the
unknown input quantum state and one output of a beamsplitter
at Alice, and Alice’s measurement results are split into two
identical parts by radio frequency (RF) power splitters and
transmitted to two Bob receivers, then the receivers perform
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Figure 1. Schematic of the quantum teleportation switch, BS:
beamsplitter, LO: local oscillator for homodyne detection, DXc:
homodyne detector of in-phase quadrature component, DYc:
homodyne detector of out-of-phase quadrature component, RF: RF
power splitters, AM: amplitude modulator, PM: phase modulator.

linear displacement of the two outputs of the other beamsplitter
in order to produce the desired input state. Converting the
squeezing parameters or correlations between the in-phase
and out-of-phase quadrature components, which can be easily
realized by converting the relative phase of the pump field and
injected field of an OPA between 0 and π/2 [13], the original
unknown input quantum state can be conditionally mimicked at
either of the two Bobs in turn, so that the squeezing direction of
the two-mode squeezed state light plays the role of a quantum
switch between two spatially separated receivers.

The scheme of the proposed system is shown in figure 1. A
pair of two-mode squeezed state lights are used as the two EPR
sources (EPR1 and EPR2). In the Heisenberg representation,
the in-phase quadrature and out-of-phase quadrature phases X̂

and Ŷ for two modes of each two-mode squeezed state are
expressed as follows [12, 14]:
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Ŷb1 = (e−rb Ŷ
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where the subscripts a1, a2 and b1, b2 are designated for the two
modes in the two-mode squeezed state from EPR1 and EPR2,
respectively. The superscript ‘(0)’ denotes initial coherent
modes, ra and rb are the correlation parameters between the a1

and a2 as well as the b1 and b2 modes.
For the case of finite squeezing, when the uncertainty prod-

uct for the variances of the two inferences 〈�2X̂inf〉〈�2Ŷinf〉 =
〈�2(X̂1 − gxX̂2)〉〈�2(Ŷ1 + gyŶ2)〉 is less than the limit of

unity associated with the Heisenberg uncertainty relation, the
EPR paradox for continuous variables is demonstrated [15,16],
here gx,y is the scaling factor for minimizing the variances of
〈�2X̂inf〉 and 〈�2Ŷinf〉. From equation (1) we can calculate
〈�2X̂inf〉〈�2Ŷinf〉 = (1/ cosh 2ra(b))

2, once squeezing exists,
i.e. ra(b) > 0, the uncertainty product 〈�2X̂inf〉〈�2Ŷinf〉 < 1,
thus the imperfect squeezed state corresponds to the non-
ideal EPR pairs. Under the limit of perfect correlation
ra(b) → ∞, the uncertainty product 〈�2X̂inf〉〈�2Ŷinf〉 = 0
and gx,y = 1, the two-mode squeezed state approaches the
eigenstates of X̂a(b)1 − X̂a(b)2 and Ŷa(b)1 + Ŷa(b)2, which cor-
responds to perfect EPR pairs having the in-phase quadrature
phase correlation and out-of-phase quadrature phase anticor-
relation. Otherwise, if −ra(b) > 0, the uncertainty product
〈�2(X̂a(b)1+gxX̂a(b)2)〉〈�2(Ŷa(b)1−gyŶa(b)2)〉 < 1. Especially
for ra(b) → −∞, it approaches the eigenstates of X̂a(b)1+X̂a(b)2

and Ŷa(b)1 − Ŷa(b)2, which are also the perfect EPR state with
the anticorrelated in-phase quadrature components and corre-
lated out-of-phase quadratures components. Therefore we say
that the two-mode squeezed vacuum state produces EPR en-
tanglement of quadrature phase components. When r = 0 we
have 〈�2X̂inf〉〈�2Ŷinf〉 = 1, that is the classical limit of EPR
entanglement.

In order to perform a teleportation switch, the sender has
to share the entanglement with two receivers for the different
cases. Initially, mode a1 shares the entanglement with mode
a2 and mode b1 shares the entanglement with mode b2, then we
mix modea1 anda2 with the modeb1 andb2 at the beamsplitters
BS1 and BS2, respectively. The output modes of the two
beamsplitters are

X̂3 = (X̂a1 − X̂b1)/
√

2, Ŷ3 = (Ŷa1 − Ŷb1)/
√

2

X̂4 = (X̂a1 + X̂b1)/
√

2, Ŷ4 = (Ŷa1 + Ŷb1)/
√

2

X̂5 = (X̂a2 + X̂b2)/
√

2, Ŷ5 = (Ŷa2 + Ŷb2)/
√

2

X̂6 = (X̂a2 − X̂b2)/
√

2, Ŷ6 = (Ŷa2 − Ŷb2)/
√

2.

(2)

From equation (2), we get

〈�2(X̂3 − gxX̂5)〉〈�2(Ŷ3 + gyŶ5)〉

= 2 + exp[2(ra + rb)] + exp[−2(ra + rb)]

exp[2ra] + exp[−2ra] + exp[2rb] + exp[−2rb]
,

〈�2(X̂3 − gxX̂6)〉〈�2(Ŷ3 + gyŶ6)〉

= 2 + exp[2(ra − rb)] + exp[−2(ra − rb)]

exp[2ra] + exp[−2ra] + exp[2rb] + exp[−2rb]
.

(3)

The dependence of the uncertainty product for the
variances of the two inferences of 〈�2(X̂3 − gxX̂5)〉〈�2(Ŷ3 +
gyŶ5)〉 and 〈�2(X̂3 − gxX̂6)〉〈�2(Ŷ3 + gyŶ6)〉 upon the
squeezing of two two-mode squeezed states is shown in
figures 2 and 3. Figure 3 shows that for both cases of ra > 0
and rb > 0, 〈�2(X̂3 − gxX̂6)〉〈�2(Ŷ3 + gyŶ6)〉 < 1 which
demonstrates the EPR entanglement for modes 3 and 6. In
figure 2 it is shown that only for the case of ra > 0 and rb < 0,
modes 3 and 5 will present the EPR entanglement.

In the case of perfect squeezing, the relations between
modes 3 and 5, 6 can be written as

294



Quantum switch for continuous variable teleportation

ra

rb

Figure 2. The uncertainty product for the variances of the two
inferences of 〈�2(X̂3 − gxX̂5)〉〈�2(Ŷ3 + gyŶ5)〉 is plotted versus the
squeezing parameters ra and rb of two two-mode squeezed states.
Demonstration of the EPR paradox requires
〈�2(X̂3 − gxX̂5)〉〈�2(Ŷ3 + gyŶ5)〉 < 1. It is obvious that when
ra > 0 and −rb > 0, the product will go below 1 which
demonstrates the EPR entanglement between modes 3 and 5.

ra
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Figure 3. The uncertainty product for the variances of the two
inferences of 〈�2(X̂3 − gxX̂6)〉〈�2(Ŷ3 + gyŶ6)〉 is plotted versus the
squeezing parameters ra and rb of two two-mode squeezed states.
The EPR entanglement between modes 3 and 6 requires that both
two two-mode squeezed state are squeezed, i.e. ra > 0 and rb > 0.

X̂3 − X̂5 = [(X̂a1 − X̂a2) − (X̂b1 + X̂b2)]/
√

2

Ŷ3 + Ŷ5 = [(Ŷa1 + Ŷa2) − (Ŷb1 − Ŷb2)]/
√

2

X̂3 − X̂6 = [(X̂a1 − X̂a2) − (X̂b1 − X̂b2)]/
√

2

Ŷ3 + Ŷ6 = [(Ŷa1 + Ŷa2) − (Ŷb1 + Ŷb2)]/
√

2.

(4)

It is obvious that the modes 3 and 5 become the perfect
EPR pairs if one of the two-mode squeezed states is the
eigenstate of X̂a1 − X̂a2 and Ŷa1 + Ŷa2 (i.e. ra → ∞), and
the other one is the eigenstate of X̂b1 + X̂b2 and Ŷb1 − Ŷb2

(i.e. rb → −∞). Meanwhile, mode 3 will be perfectly
entangled with mode 6 at the conditions of ra → ∞, rb → ∞.
According to the different entanglement condition the quantum

information from a sender can be controllably transmitted to
Bob1’s mode 5 or Bob2’s mode 6.

In Alice’s station an unknown input quantum state
represented by the quadrature operators X̂in and Ŷin is
superposed with mode 3 at the beamsplitter BS3. Two
balanced homodyne detectorsDXc andDYc are used to measure
the observables of the in-phase quadrature phase X̂c = (X̂in −
X̂3)/

√
2 of one output of BS3 and the out-of-phase quadrature

phase Ŷc = (Ŷin + Ŷ3)/
√

2 of the other output of BS3. The
resulting classical outcomes are scaled by the operators

X̂c = [X̂in − (X̂a1 − X̂b1)/
√

2]/
√

2

Ŷc = [Ŷin + (Ŷa1 − Ŷb1)/
√

2]/
√

2.
(5)

Now we rewrite modes 5 and 6 in the following forms:

X̂5 = X̂in + [(X̂a2 − X̂a1) + (X̂b2 + X̂b1)]/
√

2 −
√

2X̂c

Ŷ5 = Ŷin + [(Ŷa2 + Ŷa1) + (Ŷb2 − Ŷb1)]/
√

2 −
√

2Ŷc

X̂6 = X̂in + [(X̂a2 − X̂a1) − (X̂b2 − X̂b1)]/
√

2 −
√

2X̂c

Ŷ6 = Ŷin + [(Ŷa2 + Ŷa1) − (Ŷb2 + Ŷb1)]/
√

2 −
√

2Ŷc.

(6)
After measurement which yields the classical results Xc

and Yc, Bob1’s mode 5 and Bob2’s mode 6 in equation (6)
collapse into [17]

X̂5 = X̂in + [(X̂a2 − X̂a1) + (X̂b2 + X̂b1)]/
√

2 −
√

2Xc

Ŷ5 = Ŷin + [(Ŷa2 + Ŷa1) + (Ŷb2 − Ŷb1)]/
√

2 −
√

2Yc

X̂6 = X̂in + [(X̂a2 − X̂a1) − (X̂b2 − X̂b1)]/
√

2 −
√

2Xc

Ŷ6 = Ŷin + [(Ŷa2 + Ŷa1) − (Ŷb2 + Ŷb1)]/
√

2 −
√

2Yc.

(7)
Due to the entanglement between modes a3 and a5, or a3

and a6 for the cases of ra → ∞, rb → −∞ or ra → ∞,
rb → ∞, the measurements lead to the collapse of the modes
a5 or a6 into a state which differs from the unknown input
state in the classical phase-space displacement. Thus for the
possibility to recover the input state at the two locations, each
of the classical outcomes is divided into two identical parts
with RF power splitters (RF1 and RF2) [18], and the classical
information is sent separately to the two remote locations for
performing appropriate displacements on modes 5 and 6:

X̂5 → X̂out
5 = X̂5 +

√
2g1Xc

Ŷ5 → Ŷ out
5 = Ŷ5 +

√
2g1Yc

X̂6 → X̂out
6 = X̂6 +

√
2g2Xc

Ŷ6 → Ŷ out
6 = Ŷ6 +

√
2g2Yc.

(8)

According to equations (1), (5), (7) and (8), the outgoings
of two modes become

âout
5 = g1âin +

1 + g1

2
[e−ra (−X̂

(0)
a2 + iŶ (0)

a1 ) + erb (X̂
(0)
b1 − iŶ (0)

b2 )]

+
1 − g1

2
[era (X̂

(0)
a1 − iŶ (0)

a2 ) + e−rb (−X̂
(0)
b2 + iŶ (0)

b1 )]

âout
6 = g2âin +

1 + g2

2
[e−ra (−X̂

(0)
a2 + iŶ (0)

a1 )
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+e−rb (X̂
(0)
b2 − iŶ (0)

b1 )] +
1 − g2

2
[era (X̂

(0)
a1 − iŶ (0)

a2 )

+erb (−X̂
(0)
b1 + iŶ (0)

b2 )], (9)

where the parameters g1 and g2 describe the normalized gain of
two teleportation processes from a sender to Bob1 and Bob2.

Equation (9) shows that both the output modes âout
5 and

âout
6 contain some information about the teleported state but it

is not exactly the input state due to some additional noise from
the quantum channels.

For the case of ideal measurement process g1 = 1 and
ra → ∞, rb → −∞. Equation (9) becomes âout

5 = âin.
So perfect quantum teleportation is accomplished at the Bob1
receiver.

If g2 = 1 and ra → ∞, rb → ∞, we have âout
6 = âin,

then the unknown quantum state is perfectly mimicked at the
Bob2 receiver.

The fidelity quantifying the quality of teleportation is
defined for a coherent input state (|α〉) by F = 〈α|ρ̂out|α〉
[19, 20], it describes the match between the input and the
teleported state. Up to a factor π , this fidelity is the Q function
of the teleported field evaluated for α:

F = πQtel(α) = 2√
(〈δ2X̂out〉 + 1)

(〈δ2Ŷout〉 + 1
)

× exp


−2

(1 − g)2|αin|2√(〈δ2X̂out〉 + 1
)(〈δ2Ŷout〉 + 1

)

 , (10)

where δ2X̂out and δ2Ŷout are the variance of in-phase quadrature
and out-of-phase quadrature phases of the output mode,
g describes a normalized gain for the transformation from
classical values to complex field amplitude performed by the
Bob receivers, it will be g1 for Bob1 and g2 for Bob2. Using
equation (9), they are given by

〈δ2X̂out〉 = g2
1(2)〈δ2X̂in〉 +

(
1 + g1(2)

2

)2

[e−2ra + e±2rb ]

+

(
1 − g1(2)

2

)2

[e2ra + e∓2rb ]

〈δ2Ŷout〉 = g2
1(2)〈δ2Ŷin〉 +

(
1 + g1(2)

2

)2

[e−2ra + e±2rb ]

+

(
1 − g1(2)

2

)2

[e2ra + e∓2rb ].

(11)

In equation (11), the symbol ‘±’ and ‘1(2)’ represent that the
teleportation is accomplished at the output mode of â5 or â6

respectively. 〈δ2X̂in〉, 〈δ2Ŷin〉 are the variances of the input
coherent state, then we have 〈δ2X̂in〉 = 〈δ2Ŷin〉 = 1.

In the classical system without quantum correlation ra = 0
and rb = 0, we obtain F = 1/2 for the normalized gain
g1(2) = 1, so the classical limit of teleportation in this
system remains the same as the usual teleportation system
for continuous variables [20]. According to equations (10)
and (11), the best optimal fidelity for quantum teleportation
occurs around g = 1. In this case the fidelity becomes
F = 2/([e−2ra + e±2rb ] + 2), thus to meet the requirement
of the quantum teleportation F > 1/2, it requires that ra > 0

and rb < 0 for Bob1, and it requires that ra > 0 and rb > 0
for Bob2.

For experiments the most important work is to establish
two EPR beam sources with identical frequency and constant
phase relation. Two identical degenerate [9] or nondegenerate
optical parametric amplifiers [16, 21] (DOPA or NOPA)
pumped by an identical laser can be used to produce
the required two two-mode squeezed states. The mature
parametric technique is beneficial to complete the proposed
prototype. The correlation relation between two modes of
EPR pairs can be manipulated by converting the relative phase
between the pump field and injected signal field of the OPA
between 0 and π . For the parametric deamplification (the
pump field and the injected field are in phase of 0) the two-
mode amplitude squeezing is completed which corresponds
to the EPR beams with the quadrature amplitude correlation
and quadrature phase anticorrelation between two modes [22].
For a polarization nondegenerate parametric amplification (the
pump field and the injected field are out of phase, i.e. the
relative phase is π ) the two-mode phase squeezing is obtained
which corresponds to the quadrature amplitude anticorrelation
and quadrature phase correlation EPR beams [16, 21, 23, 24].

In conclusion, we propose a quantum switching system for
sending controllably an unknown quantum state to either of two
remote receivers. The control condition is only to convert the
squeezed component of one of two two-mode squeezed states
between its quadrature amplitude and phase. The conditional
teleportation system might be developed as a practical quantum
switching in future quantum communication. The well known
optical parametric technique provides great convenience for its
experimental demonstration.
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