基因序列，设计若干寡针对不同亚类 Ig 一级区 FR1、FR4 的 5'端和 3'端引物。为了便于克隆，在 pUC19 载体外侧各加有 XbaI 酶切位点，3'端引物外侧加有 SpeI 酶切位点，在 5'端和 3'端分别加上 XbaI 及 EcoR I 酶切位点。

1.4 体外扩增重，轻链可变区基因

以 cDNA 为模板，加入通用引物对 dNTP, 10 x PCR 缓冲液、三蒸水等，100℃ 10 min，冰上加入 Taq DNA 聚合酶，反应体系为 100 μL，进行聚合酶链反应（PCR）；94℃ 1 min, 60℃ 1 min, 72℃ 1 min, 循环 30 周期，再 72℃ 延伸 10 min。扩增产物经 1.2 g/L (1.2%)琼脂糖凝胶电泳分析。

1.5 将 PCR 产物克隆到 pUC19 载体

回收扩增的 Vh 基因片段，用 XhoI 和 SacI 双酶切后，与预先同样双酶切的 pUC19 载体进行粘端连接，连接产物转化感受态大肠杆菌 Top10 中，经蓝色/白色筛选，XhoI 和 SacI 双酶切鉴定重组质粒，以同样方法重组轻链片段。

1.6 DNA 序列测定

纯化重组质粒 DNA，送中国科学院上海生物所进行 DNA 测序。序列分析参照已发表的抗体序列（Gene Bank、EMBL、DDBJ、PDB）等的已知序列进行比较及分析。

2 结果

2.1 Vh、Vl 基因的体外扩增及鉴定

以合成的 cDNA 第一链为模板，加入针对鼠 IgV 区基因的双引物进行 PCR，扩增可变区基因，扩增产物经琼脂糖凝胶电泳观察，结果显示 Vh 基因片段为 357 bp 左右，Vl 基因片段为 320 bp 左右。

2.2 NP30 Vh、Vl 基因的克隆、序列测定及计算机分析

将回收的 PCR 扩增片段与 pUC19 载体相应双酶切后重组，双酶切鉴定见预期大小的片段，表明基因克隆成功。

测序结果表明 NP30 Vh 基因全长 357 bp，内无起始密码子及终止密码子，为一开放阅读框，编码 119 个氨基酸，22 位、96 位及 105 位为骨架区的三个半胱氨酸，是链内二硫键形成部位。Vl 基因全长 381 bp，内无起始密码子及终止密码子，编码 106 个氨基酸，有 3 个互补决定区（CDR），第 23 位及 88 位为骨架区的两个半胱氨酸，是链内二硫键形成部位。

将基因序列输入计算机，与已发表的鼠单抗链可变区基因比较分析表明，该 Vh 基因属鼠免疫球蛋白轻链第 II 亚类，由种系的 V、D、S 和 Jh 基因重排而来。与 Vh 基因同源性最高的种系成员为 NQ11，同源性达 77%。该 Vh 基因序列被 Gene Bank 收录（accession No. AF289756）。Vl 基因属鼠免疫球蛋白轻链第 IV 亚类，由种系的 V 和 Jh 基因重排而来。与之同源性最高的是种系成员 NQ11，同源性达 88.67%。该 Vl 基因序列已被 Gene Bank 收录（accession No. AF206720）。

3 讨论

日本血吸虫单克隆抗独特型抗体 NP30 为本室自制，由于其模拟的抗原点是糖衣表位或蛋白多糖性质，难以用基因工程方法制备。本研究分离出 NP30 的功能性 Vh、Vl 基因，进一步研究其表达产物在免疫反应中的作用及对吸血虫感染的保护，为研制糖衣抗原疫苗提供一条新途径。

参考文献

3. 张卫华, 刘昌富, 姜文辉, 等. 日本血吸虫单克隆抗体表达载体及小鼠非特异性抗体的构建, 中国寄生虫学与寄生虫病杂志, 1999, 26: 99–106

2001 年 3 月 21 日收到 国家自然科学基金 (39970790) 资助

工业技术

[TN248.1006K033]
表 1 全国化成 532 nm 单模单频绿激光器的性能指标

<table>
<thead>
<tr>
<th>参数</th>
<th>最大输出功率/mW</th>
<th>稳定性 (5 分钟)</th>
<th>并发率 (%)</th>
<th>信噪比 (dB)</th>
<th>峰值功率 (W)</th>
<th>简信功率 (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>单频</td>
<td>210</td>
<td>< 0.5%</td>
<td>± 1%</td>
<td>± 2%</td>
<td>< 1.2%</td>
<td>< 5MHz</td>
</tr>
<tr>
<td>双频</td>
<td>550</td>
<td>< 1.5%</td>
<td>± 1%</td>
<td>± 2%</td>
<td>< 1.2%</td>
<td>< 10MHz</td>
</tr>
</tbody>
</table>

用激光二极管泵浦的全固体激光器，具有其它激光器不可比拟的优点：即小型高效、运行稳定、结构紧凑、永寿命等，可广泛应用于材料加工、医疗、仪器、通信、光纤激
例、图像记录，传感等多领域。本文以取代其他激光器
的途径。特别是全固体单频激光器以其优异的输出
来质量，常为人们首选。国外在这方面研究起步较早，
例迅速，一些大公司已开发出一系列全固体激光
器，并不断有新产品问世，但它们的产品主要是指用
大功率和较大功率，而且质量较高。国内有长春光机
和上海光机所，清华大学等单位从串单边的研制，有
和建立了专门的生产线，但主要是小功率全固体单
频激光器，输出光脉冲及单模腔，所以难以满足
用户对大功率及高稳定要求的需要。

我所 1992 年开始这一方面的研究，从一开始，就做宽
放输出的全固体单频激光器工作。1995 年，
开始小规模生产。到申请该项目前，我们全固体单频
激光器的各项技术指标已达国内同类产品水平，但
不，但仍需加强我们自身对于光学实验研究的需
和有样机出库给国内的几家规模较大。鉴于目前
小功率的单频输出的全固体单频激光器在激光
器方面的要求，并没有达到国外生产的水平相
比，还存在成本低，生产灵活，优势，希望能
实验成功的全固体单频激光器产品化。但要作
品投入市场，确实还存在一些亟待解决的技术问
间如产品稳定性、可靠性及外型设计等。在国家自然
科学基金委员会的资助下，在过去的一年时间里，我
们在激光器的稳定性入手，通过整体优化设计，研制
能满足要求的单模输出的全固体单频输出绿光激光
器 2000 年 8 月 13 日，通过了由国家自然科学基
金组织的项目成果鉴定，得到了“国内首创，有自己的
特色，技术水平属国际先进”的评价。如表 1 所示。

1. 申请了两项国家专利[1, 2]，发表论文 5 篇[3-7]。
首先，我们设计了由两个凹面镜和两个平面镜构成
1 借壳行激光腔，适当选择激光器的参数，使在激
2 借壳行激光模式匹配和最佳倍频转换元件的同时，语
3 满足热不灵敏条件，从而保证激光器的高频率，稳定
4. 其次，根据 LD 聚光光的束特性与行行激光器
5 激振器的设计，并完成由一个自聚焦棒，两个正交
6 放的衍射透镜和一个聚焦透镜组成的一种激光器系统。另
7. 根据激光器的聚光束，整体聚焦系统，谐振
腔激光器元件的设定位置，设计出一种整体腔，通过精密
机微加工而成，并对其密封。此外，我们设计并研
制出高精度 LD 恒流驱动电源和多路精密控制系统的，恒
流驱动电源稳定以及恒流的精度高较小于 2 ± 0.2
/ min 和 2 ± 3 mA/ h，恒流系统的输出精度优于
0.5％，将恒流系统用来主动串联控制 LD，激光晶体
和倍频晶体整体以及整体腔的温度，从而保证了激光器的长
期稳定运行。同时，对单频激光器的精密安装进行了研
究，设计并完成利用光封闭反馈控制单元对自动误差的碱
化同步振荡器，使其在低频段的快振较接近放大

参考文献
1. 采用新型光导体，固体激光器聚光腔激光器系统，中国专利：00247272.2
2. 激光器激光器，固体激光器聚光腔激光器，中国专利：0022443.0
3. 彭静，激光器的聚光束，中国专利，1992 年 11 月，激光器，激光器
4. 中国激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
5. 中国激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
6. 彭静，激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
7. 中国激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
8. 彭静，激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
9. 中国激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
10. 彭静，激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器
11. 中国激光器，激光器，激光器，激光器，激光器，激光器，激光器，激光器