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Abstract. We recently observed a Bose-Einstein condensate in a dilute gas of 4He in the 23S1 metastable
state. In this article, we describe the successive experimental steps which led to the Bose-Einstein transition
at 4.7 µK: loading of a large number of atoms in a MOT, efficient transfer into a magnetic Ioffé-Pritchard
trap, and optimization of the evaporative cooling ramp. Quantitative measurements are also given for the
rates of elastic and inelastic collisions, both above and below the transition.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.75.Fi Phase coherent atomic ensembles; quantum
condensation phenomena – 05.30.Jp Boson systems

1 Introduction

Recently two groups in France reported the first obser-
vation of Bose Einstein condensation (BEC) of helium
4 atoms in the 23S1 metastable state [1,2], following the
condensation of 87Rb, 23Na, and 7Li in 1995 [3–5] and of
atomic hydrogen in 1998 [6]. The method to reach BEC
with metastable helium atoms uses similar routes as for
alkali atoms, namely laser cooling and trapping followed
by a final step of evaporative cooling.

However the case of the metastable helium BEC is dif-
ferent from all the other atomic condensates. It carries a
large internal energy (19.8 eV per atom), which can be
exploited in several ways. For instance, each atom can be
detected with a large efficiency, almost one by one [1].
Also, the collision with most of the atoms and molecules
results in ionization (Penning ionization).

The aim of the present article is to precisely describe
the experimental procedure used to reach metastable he-
lium BEC by our group at ENS. We describe briefly the
preparation of the cold cloud in an optimized magneto-
optical trap (MOT) and give details on the optical de-
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tection scheme. The subsequent loading into a tight mag-
netostatic trap as well as the evaporative cooling phase
are discussed. Relevant collisional parameters and results
from phase transition measurements are given and dis-
cussed.

2 MOT

Despite the fact that producing a MOT has become rou-
tine in many laboratories, some care has to be taken when
one has to produce a MOT intended as the first step to-
wards BEC. It is necessary to trap a sample containing
a large number of atoms, with a lifetime as long as pos-
sible. In this respect, metastable helium is more delicate
in comparison with alkalis. First, one has to start by ex-
citing the ground state helium beam (by electron bom-
bardment through a high voltage discharge), and this pro-
cess has a low efficiency. Second, metastable helium atoms
have very large inelastic collision rates in a MOT, due to
Penning collisions enhanced by light, which severely limit
the atomic density.

The loading of the MOT is explained in detail in refer-
ence [7]. The cold gas of helium atoms is first trapped into
a MOT at the center of a small quartz cell (4× 4× 5 cm),
evacuated by a turbo molecular pump. The ultra high
vacuum without the atomic beam running is on the or-
der of 10−11 torr, and increases to about 5× 10−11 when
the atomic beam is on. A description of the infrared
laser we use to manipulate the metastable atoms can be
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found in [7]. It operates at 1083 nm on the 23S1 → 23P2

transition. It uses a laser diode oscillator followed by an
Yb doped fiber amplifier, which results in a robust user
friendly laser system requiring neither maintenance nor
frequent readjustment.

The coils Q1 and Q2 of the MOT are the same as those
used in the magnetostatic trap described in Section 4.1
(see Fig. 2): they have 144 turns each, the current is 6.5 A
and the field gradient they produce along the axis y of
symmetry is 55 gauss/cm.

For the MOT, the detuning of the laser beams δ is
large, −45 MHz (namely 28Γ , where Γ is the inverse life-
time of the 23P2 state). Such a large detuning is chosen in
order to minimize the population in the 23P2 state, which
reduces the rate of light assisted Penning ionizing colli-
sions. To compensate for the large detuning, the intensity
of the beams is also large, 8 mW/cm2 per beam. The size
of these beams is typically 2 cm in diameter. Despite this,
the half-life of the MOT is only 100 ms, because of the
Penning collisions, which is much lower than the typical
decay time of any alkali MOT. The loading time of the
MOT from the Zeeman slowed beam is thus short: the
steady state of the MOT is reached in 1 s. The total num-
ber of trapped atoms is measured, according to the proce-
dure described in [8], to be 109 atoms, with a temperature
of about 1 mK (which corresponds to a mean velocity of
1 m/s), and rms radii of 2 mm in the weakest axis of the
quadrupole.

3 Optical detection of the cold cloud

The same optical detection scheme of the cold cloud is
used through all the temperature range from the MOT
down to the condensate. It is represented in Figure 1.
The source is a DBR laser diode (SDL-6702-H1), oper-
ating at 1083 nm. It propagates through an optical fiber,
is then expanded to a diameter of about 1 cm and finally
sent through the quartz cell (which is not antireflection
coated). Its polarization is circular and it operates at res-
onance with the atomic frequency. We image the shadow
of the atomic cloud on a CCD camera using achromat
doublet lenses.

The camera (model Hamamatsu C4880) has a low
quantum efficiency at 1.08 µm, which we measured to be
1.5%. In order to obtain a sufficient signal to noise ratio
on the pictures, it is required to operate at not too low
an intensity (typically I/Isat = 0.2), with large exposure
times (typically 100 µs) and a moderate magnification.
The magnification of the imaging system is chosen to be 1,
which we use to observe the cold gas at all stages of the
experiment, from the gas in the large size MOT to the
small condensed cloud. The resolution is thus limited to
24 µm by the pixel size of the camera. One uses a standing
wave in order to avoid as much as possible any pushing ef-
fect due to the radiation pressure occurring if a travelling
wave were used. But in this configuration, the impact on
the absorption of the residual kinetic effects is difficult to
determine.

z

x

y

λ/2

CCD

He*

λ/4λ/4

DBR LD
Optical
Isolator

Fiber

PD

Fig. 1. Detection setup. DBR LD is a Distributed Bragg Re-
flector Laser Diode, PD a photodiode and CCD a CCD camera.

From the absorption images taken by the camera we
extract the size and the temperature of the cloud. Deduc-
ing the absolute number of atoms with a good precision
from these pictures turned out to be a difficult task, as
already discussed in [2].

To measure the total number of atoms, we illuminate
the cloud with the probe beam at resonance, but in a
travelling wave configuration here. The detection set-up
sketched in Figure 1 allows one to switch from a stand-
ing to a travelling wave, by simply rotating a λ/2 plate.
We measure the power absorbed in the probe beam on
the photodiode PD (see Fig. 1). When the intensity of
the probe beam is sufficient to saturate the transition, the
absorbed power P is expected to be proportional to the
number of atoms N , as P = NhνΓ/2 in the limit of full
saturation (ν is the laser frequency). This requires about
10 mW. It allows us to measure the number of atoms in
the MOT, where the absorption is about 1 mW, which
corresponds to 109 atoms. When the cloud is evaporated
in the magnetic trap, the power absorbed in the probe
pulse becomes weaker, so that it is difficult to measure the
total absorption on the photodiode PD for low tempera-
ture clouds. To overcome this problem, a solution, which
we didn’t implement, would consist in making the probe
beam size smaller.

Instead, the number of atoms in the evaporated clouds
is deduced from the absorption images on the CCD cam-
era. The value of the absorption cross-section (3λ2/2π)
is corrected down in order to take into account various
effects that tend to lower it, as Doppler effect, light and
atom polarization, and finite linewidth of the probe laser
(see the discussion in [2]). The precision of this measure-
ment is rather poor, but proper corrections allow a reason-
able agreement (within a factor 2) between the number of
atoms we extract from the image of a cloud at relatively
high temperature (1 mK) with the one we measured by
saturating the absorbed intensity.
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Fig. 2. Magnetostatic trap. ZS is the Zeeman slower coil, Q1,
Q2 and Q3 the Ioffé-Prichard coils, H1 and H2 are the bias
compensation coils. C4 is a coil used to compensate the field
created by ZS at the center of the cell.

4 Loading the magnetic Ioffé-Pritchard trap

4.1 Description of the trap

The magnetostatic trap that we are using for the confine-
ment of the cold gas is sketched in Figure 2. It is consti-
tuted by three coils Q1, Q2 and Q3 of relatively small size
which realize a Ioffé-Pritchard trap. A set of two larger
Helmholtz coils H1 and H2 are added in order to compen-
sate the bias field. The third coil Q3 has 108 turns of 1 mm
diameter copper wire, with an inner diameter of 2 cm.
The Helmholtz coils are made of 44 turns of hollow cop-
per tube of 5 mm diameter. Their inner diameter is about
11 cm, they produce a field of 110 G for 46.6 A, which
compensates the bias field down to about 5 G. Also, we
can use an additional set of Helmholtz coils wound on top
of coils H1 and H2, in order to finely adjust the bias and
reduce it even more for further compression of the trap.
The curvature of the field is 190 G/cm2 along x, with gra-
dients of 265 G/cm along the radial directions, when we
run 46.6 A through the three coils Q1, Q2, Q3. The trap
depth is then about 16 mK. The trap frequency along x
is νx = 115 Hz. The radial frequency is νperp = 190 Hz
without the compensation of the bias, and 985 Hz with a
5.1 G bias field.

The distance of the 3 coils from the center of the cell
is 26 mm for Q1 and Q2, but 28 mm for Q3. Due to
geometrical constrains, this 3 coils trap is asymmetrical.
As a consequence the center of this trap is shifted by 5 mm
compared to the center of the initial MOT.

4.2 Compression, molasses, optical pumping

When the loading of the MOT is over, the center of the
cloud has to be shifted by about 5 mm along the x-
direction in order to be at the central position of the mag-
netostatic trap.

This displacement is produced by the magnetic field of
the Zeeman Slower (ZS in Fig. 2). During the loading of
the MOT, the coil C4 (see Fig. 2) placed at the end of ZS
produces a field along x fairly homogeneous at the center
of the cell, where it compensates the field produced by
ZS. When the loading is over, C4 is switched off whereas

ZS remains on. This shifts the position of the zero of the
quadrupolar field created by Q1 and Q2 towards the cen-
ter of the magnetic trap. The center of the MOT is also
shifted when the field gradient provided by Q1 and Q2 is
decreased. We typically decrease this gradient by a factor
of 2, at the same time when C4 is switched off, in order
to shift the cloud by the required 5 mm. This also de-
compresses the MOT. During this process, which lasts for
10 ms before reaching an equilibrium, the laser beams of
the MOT are left on.

The spatial shift of the cloud is followed by a compres-
sion phase, in order to increase the density before loading
the magnetic trap. The field gradient being now fixed, one
decreases the detuning down to 30 MHz keeping the same
intensity in the MOT beams. This detuning is adjusted
so that the cloud gets compressed without any sensible
losses due to Penning collisions. At the end of this 6 ms
compression phase, the final rms radii are about 2 mm.

We then apply an optical molasses phase, in order to
decrease the temperature of the gas before the loading
into the magnetic trap. The MOT magnetic field gra-
dient is thus turned off. The laser beams are kept on
with a different detuning (typically −1 MHz) and a lower
intensity, these two parameters being adjusted to avoid
loosing trapped atoms. The molasses pulse duration is
of 0.5 ms, the equilibrium temperature being typically
300 µK, which is still large compared to the Doppler limit
(40 µK). Large absorption of the laser beams might pre-
vent the molasses to be fully efficient.

The next step is an optical pumping phase. It is used to
put as many atoms as possible in the same low-field seek-
ing magnetic substate of the 23S1 state so as not to loose
most of them when loaded into the magnetostatic trap,
which only retains atoms in the mJ = +1 sublevel. The
optical pumping laser field is made out of two independent
beams, aligned along the x-axis, forming a standing wave,
where both beams are σ+ polarized with respect to the
direction of the bias filed. The pulse that optimizes the
transfer efficiency lasts 50 µs, its intensity is I/Isat = 1.4,
and its frequency is detuned by −6 MHz from resonance.
The efficiency of the optical pumping pulse is measured by
comparing the number of atoms transferred in the mag-
netic trap with and without optical pumping. Using the
optical pumping pulse typically multiplies this number by
a factor of 2.

4.3 Mode-matching and compression

In order not to loose on the phase-space density, a proper
mode matching has to be made to adapt the atomic cloud
in the MOT to the potential created by the magnetic trap.
The best method is to keep the same aspect ratio (1.65)
and temperature (300 µK) before and after transfer. One
calculates that this requires to transfer the atoms in the
trap created by the three coils Q1, Q2 and Q3, using a
current of only 5 A. The trap is typically switched on at a
current of 5 A within about 2 ms. After 10 ms, the number
of atoms that remain trapped is only one third of the
initial number when the optical pumping pulse is not used,
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Fig. 3. Lifetime of the cloud in the magnetostatic trap at a
temperature of 1.4 mK.

as expected if one assumes that atoms are initially equally
distributed among the three Zeeman sublevels. Using the
optical pumping pulse, we end up with 7 × 108 trapped
atoms, compared to 109 atoms initially in the MOT.

Then, the cloud is compressed by ramping the cur-
rent in these three coils to its final value of 46.6 A. This
compression stage has to be adiabatic, which implies to
increase the trap confinement on a time scale much longer
than the oscillation period. We choose typically 1 s. The
following step is to compensate the bias field by turn-
ing on the current into the coils H1 and H2: the field B0

along x then decreases within 1 s. After the final com-
pression stage, the same current (46.6 A) runs through
all the coils of the trap. The temperature, measured by
time of flight, has increased up to 1.4 mK. At this tem-
perature, the harmonic approximation does not hold, the
trap is semi-linear. The central density is calculated to be
8.4 × 1010 atoms/cm3, using the measured temperature
and number of atoms of the thermalized cloud.

4.4 Lifetime of the cloud in the magnetic trap

Once the atomic cloud has been loaded into the magnetic
trap, one can measure the number of atoms as a function of
time. The result of this measurement is shown in Figure 3.

The half-time is measured to be about 15 s. This rather
long lifetime shows that the Penning ionization collisions
between metastable helium atoms are inhibited by the
spin polarization in the mJ = +1 sublevel, as predicted
by theory [9–12] and already observed to some extent in a
MOT [13], and in a magnetic trap [14]. Indeed, if the colli-
sion rate had been equal to that in the non polarized case,
namely β ' 10−10 cm3/s [15–17,12,18], the half-time of
the cloud in the magnetostatic trap would not have ex-
ceeded 1 s. This thus indicates that Penning collisions are
suppressed by at least one order of magnitude.

The decay is not purely exponential yet (see Fig. 3),
as expected if inelastic collisions between trapped parti-
cles are important. Assuming that the losses are due to
collisions with the background gas as well as collisions be-
tween trapped metastable atoms, a fit of the decay gives
a lifetime of 58 s due to background collisions, and a two-
body decay rate constant β = 1.1×10−12 cm3/s. We know

from the success of the evaporation and the study of the
losses at higher densities that the two-body loss rate con-
stant is two order of magnitude smaller. This initial non-
exponential decay thus cannot be explained by inelastic
collisions. One possible explanation is that the initial loss
is due to the natural evaporation of the hottest atoms. If
we fit the last part of the decay curve with an exponential
law (straight line in Fig. 3), we extract a lifetime due to
background collisions of 40 s.

The value of the lifetime was found quite dependent on
the operation conditions of the atomic source: the higher
the pressure in the discharge chamber, the shorter the
lifetime. This indicates that helium atoms in the ground
state, not perfectly spatially filtered by the apparatus,
contribute significantly to the residual vacuum. If after
loading the magnetic trap one closes the UHV valve which
disconnects the atomic source from the rest of the set
up, the lifetime goes up to 88 s. However closing such
a valve between each measurement would be very un-
practical and one usually operates with lifetimes of about
40 s, corresponding to a pressure in the source chamber
of 2× 10−5 mbar. This value is long enough to ensure the
success of the rest of the cooling procedure.

5 Evaporative cooling

5.1 Starting the evaporation

Before starting the evaporative cooling, it is useful to es-
timate the initial collisional rate, in order to determine
whether the evaporative cooling can enter the so-called
runaway regime, where the phase space density increases
exponentially with time. This regime can be reached if
the mean rate of elastic collisions γ̄col is much larger
than the rate of inelastic collisions Γin. A good criteria
is r = γ̄col/Γin > rc = 34 for a semi-linear trap [19].

In order to estimate γ̄col, we measure the time τ it
takes for a cloud initially out of equilibrium to return to
thermal equilibrium in the trap. This thermalization time
is inversely proportional to the collisional rate: one can
show with a Monte-Carlo numerical simulation that τ =
2.7/γ̄col [20,21].

To prepare the cloud out of equilibrium, we compress
the trap by lowering the bias field within 20 ms. This is too
short to obtain thermal equilibrium, but slow enough to
ensure adiabatic compression in the transverse directions.
At the end of the compression, the temperatures along the
transverse and longitudinal directions are different. One
can then monitor the evolution of the ellipticity during the
thermalization, which relaxes to its equilibrium value in
the trap. After a variable delay, the trap is switched off and
we measure the size of the cloud after a 0.5 ms expansion
time. The evolution of the ellipticity of the cloud is shown
in Figure 4.

We fit the ellipticity by an exponential law, which gives
a thermalization time τ = 92 ms. The mean collisional
rate is thus about 30 s−1, at a temperature of 1.4 mK.
As this measurement was performed with 5 × 108 atoms,
one can estimate the elastic rate constant α = 〈σv〉 =
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Fig. 4. Thermalization of the cloud after loading the magne-
tostatic trap. The ellipticity of the cloud relaxes with a time
constant of 92 ms to its value at thermal equilibrium. The final
temperature is 1.4 mK.

γ̄col/n̄, where n̄ is the average density, σ the scattering
cross-section, v the relative velocity, and 〈 〉 denotes the
average over the thermal distribution. With n̄ = 1.1 ×
1010 cm−3, one finds α = 2.8× 10−9 cm3/s, which agrees
reasonably well with the measurement performed in [22]:
α = 5 × 10−9 cm3/s to within a factor of 3 at 1 mK,
and with the theoretical prediction of [10], where α '
4× 10−9 cm3/s. As the lifetime was measured to be 40 s,
this gives a ratio r = 1200, which exceeds rc by far: the
evaporation should thus be fast.

5.2 Optimization of the ramp

Evaporative cooling is performed by inducing RF spin-
flips with an auxiliary coil placed on top of the quartz cell,
3 cm away from the cloud. This 3-turns coil is connected
to a radio-frequency synthetizer and a 10 W RF amplifier.
The radio-frequency of the evaporation is lowered in a
piecewise linear fashion in 6 steps.

We adjust the duration and RF power of each segment
in order to increase the collisional rate, but minimizing the
loss of atoms, according to the following procedure. We
first set the initial and final frequencies of each segment.
The collisional rate is then measured for each segment as
a function of its duration. At the beginning, it increases
with time, and then reaches a plateau. We terminate each
segment as soon as the plateau is reached.

The evaporation ramp starts at a frequency of
200 MHz and lasts for about 8 s. Figure 5 shows the tem-
perature (measured by time of flight on the CCD camera
at the end of each segment of the evaporation ramp) as
a function of time. The parameter η, defined as the ratio
between the cut-off energy and the thermal energy kBT ,
remains larger than 6 during all the evaporation cooling.

Figure 6 shows the increase in phase space density as
well as the decrease in number of atoms during the evap-
oration ramp. This cooling process is very efficient as the
phase space density increases by 6 orders of magnitude,
while only two orders of magnitude are lost on the num-
ber of atoms.
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Fig. 5. Temperature during the evaporative cooling ramp. The
temperature is measured by time of flight after each segment
of the evaporation ramp.
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Fig. 6. Evolution of the number of atoms (squares) and
the phase-space density (open circles) during the evaporative
cooling.

6 Bose-Einstein condensation

When the final frequency of evaporation falls below about
14.5 MHz, one crosses the BEC transition. As compared to
the results first reported in [2], the duration of the ramp is
shortened. The final frequency is also slightly higher: this
comes from a small difference in the bias field, which we
attribute to thermal effects, as the shortening of experi-
mental sequence results in a different temperature of the
trap coils.

On the time of flight pictures taken with the CCD cam-
era, we observe a double structure in the density profile
of the cloud, corresponding to a Bose-Einstein conden-
sate and a non-condensed cloud (see Fig. 7). The pic-
tures are fitted by the sum of a g2 function, valid for
the thermal cloud close to the transition, and an inte-
grated paraboloidal distribution, that describes the den-
sity profile of the condensate in the Thomas-Fermi limit.
From the pictures, we can extract the condensed fraction
as a function of the normalized temperature (Tc(N) =
(N/1.202)1/3h̄ω̄/kB), which we show in Figure 8. We mea-
sure a critical temperature Tc = 4.7± 0.5 µK.

A proper calibration of the number of atoms at the
transition is difficult if we extract this number from the
absorption images, as already discussed in [2]. The number
of atoms at the transition is thus inferred from the critical
temperature, using Nc = 1.202(kBTc/h̄ω̄)3, where ω̄ is
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Fig. 7. Three-dimensional absorption image of the cloud after
the BEC transition has been crossed.

0,0

0,2

0,4

0,6

0,8

1,0

1

T (µK)
4321 5

T/Tc(N)

Fig. 8. Condensed fraction as a function of the reduced tem-
perature, as well as the temperature. N0 is the number of
atoms in the condensate, and N the total number of atoms.
The squares are the experimental data, whereas the line is the
prediction for a non-interacting gas.

the geometrical average of the frequencies of the trap. As
a consequence, the normalized temperature in Figure 8
is 1 at the transition. The experimental points deviate
strongly from the theoretical curve for the non-interacting
cloud, which could be explained by mean-field effects.

The formula used to estimate Nc is in principle valid
only for a perfect gas. The critical temperature is also
expected to be slightly shifted by the interactions [23,24].
As the effect of the interactions in an harmonic trap is still
a debated issue [25], we choose this value of Nc to estimate
the scattering length a, because it is easier to trace down
the error on Nc when derived from Tc. We deduce Nc =
8.2×106 atoms with an uncertainty of about 30%, whereas
the absorption image of a cloud at the threshold on the
CCD camera gives Nc = 5× 106.

This allows us to calibrate the absorption images of the
cloud in the region 5 to 1 µK, and extract the number of
atoms in the condensate by comparison with the number
at the transition (see Fig. 9).

The number of atoms in the condensate is at most
N0 = 6× 105, and is roughly constant in the range from 1
to 3 µK. We believe this number does not increase when
the temperature is decreased below the critical tempera-
ture because of strong losses, which might be due to in-
elastic collisions and secondary processes.

Finally, we can give an estimate of the scattering
length a using a = (σ/15N0)(2µ/h̄ω̄)5/2, where σ =
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Fig. 9. Number of atoms N0 in the condensate, and total
number of atoms N , as a function of the temperature.

(h̄/mω̄)1/2 is the characteristic size of the ground state
of the trap, and µ is the chemical potential. Within the
Thomas-Fermi approximation, µ can be deduced from
the measurement of the size of the condensate [26], µ =
1.4×10−29 J. We finally find a = 16±8 nm, which is con-
sistent with theoretical calculations, as well as with the
measurement of [1], which gives a = 20± 10 nm.

The typical lifetime of the number of atoms in the
condensate is about 2 s. This is significantly lower than
the lifetime due to background collisions, indicating that
losses are due to inelastic collisions between atoms in the
condensate. In the present stage of the experiment, it is
not possible to discriminate between 2-body or 3-body
decay. If one assumes now that 3-body collisions between
atoms in the condensate are responsible for the decay of
N0 [27], one can give an upper bound for the rate con-
stant L defined by Ṅ(t) = −L

∫
n3(r)d3r. Fitting our

data gives L ≤ (2.8± 0.2)× 10−27 cm6/s. This value can
be compared to theoretical predictions [28,29]: for exam-
ple, our upper limit is compatible with [28], which finds
L = 3.9h̄a4/2m = 2× 10−27 cm6/s. A more precise mea-
surement would require to improve the stability of the
experiment in order to decrease the statistical errors, and
include the presence of the atoms remaining in the thermal
cloud in the analysis of the condensate decay.

7 Conclusion

We conclude that the procedure for BEC of a metastable
helium gas is now well mastered. The final step of evapora-
tive cooling is a fast and efficient process. There are several
key points to pay attention to. The most important is by
far the achievement of a large enough initial density before
starting the evaporation, because this is the condition for
a fast enough process as compared to the intrinsic lifetime
of the cloud. This implies that great care be given to the
efficient loading of the MOT. Finally the quality of the
vacuum is also very important, even if improving it below
a certain level brings no further benefit to the experiment.

One can wonder what sort of improvements could lead
to a better condensate with more atoms. A different ge-
ometry for the MOT beams could prevent losses during
the slowing of the atomic beam (see [7] for more details),
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and increase the number of atoms in the MOT. It is also
possible to reduce further the bias field down to a frac-
tion of a gauss, and optimize the evaporative cooling in
a tighter trap. This would increase the density and the
elastic collision rates, but also the inelastic collision rates
and heating processes, so that it is not obvious that more
compression would result in more atoms in the BEC.

The detection is purely optical, which has the advan-
tage of allowing the measurement of the size of the atomic
cloud. Yet, the effect of the probe pulse and the present
difficulties of calibration of the number of atoms have to be
better understood. A detection set-up using visible light
could simplify the detection scheme, as CCD cameras have
a much better efficiency in the visible. Of course a crucial
improvement will be to introduce a channelplate as in [1].
An ideal experiment would combine both the optical and
the channelplate detection systems.

This work was supported by La Région Ile-de-France through
SESAME contract number 521027.
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