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Nonclassical properties of teleported optical fields in quantum teleportation of continuous variables
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When sending a quantum state which originally has nonclassical properties such as various kinds of squeez-
ing and photon antibunching effects according to the protocol for teleportation of continuous variables@S. L.
Braunstein and H. J. Kimble, Phys. Rev. Lett.80, 869~1998!#, we investigate to what extent those nonclassical
properties can be preserved in the teleported field. Explicit conditions of the squeezing parameter for the
second- and fourth-order quadrature-phase squeezings, the squared amplitude squeezing, and the photon anti-
bunching effect to survive in the teleported field are obtained.
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In the rapidly developing field of quantum communic
tion, one of the crucial problems is how to send an unkno
quantum state from one place to another one. This trans
sion has two essential points. First, only a quantum s
itself is transported and a carrier of the quantum state is k
at the original location. Second, no information about
quantum state to be sent is given to the sender prior to
transmission. Thus, in this transmission, it would seem t
an unknown quantum state disappears at one place and
emerges at another one. So, this process is termed telep
tion of an unknown quantum state.

Bennetet al. @1# first proposed a scheme for teleportin
an unknown quantum state in a finite-dimensional Hilb
space via a classical information channel and a quan
channel which is based on quantum nonlocal correlation
tween the sender and the receiver who share the Eins
Podolsky-Rose~EPR! state @2#. Since this proposal wa
raised, a lot of effort towards accomplishing the protocol h
been made@3–5#. On the other hand, Vaidman@6# proposed
a scheme for teleporting continuous variables. In t
scheme, the perfect correlation between position and
mentum of two particles in the EPR state is used as a qu
tum channel. It is noticed that two quadrature-phase com
nents of a single-mode optical field are analogous to posi
and momentum of a particle. Braunstein and Kimble@7# pro-
posed a quantum optical version of teleportation of conti
ous variables. Furusawaet al. @8# experimentally demon-
strated the scheme for a coherent state of a single-m
optical field. The experimental success has inspired m
interest in the study of quantum teleportation of continuo
variables@9–19#.

In the protocol for quantum teleportation of continuo
variables@7#, quantum correlation between quadrature-ph
components of an optical field in a two-mode high
squeezed state is employed as a quantum channel. Sinc
squeezing degree is finite and then the quantum chann
imperfect, the fidelity of the teleportation process must
less than 1. In fact, the requirement for a complete ove
between an input state and the corresponding output on
too strict to be fulfilled because it is equivalent to requiri
that the mean photon number in the squeezed vacuum
be infinite @11#. Considering this point, we now ask a que
tion: is it possible to transmit and preserve some interes
1050-2947/2002/66~2!/024302~4!/$20.00 66 0243
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properties of a quantum state via the teleportation proc
even if the transportation of a whole quantum state is
perfect? Perhaps transferring partial information abou
quantum state is not the original idea of teleportation of
unknown quantum state. However, we think that it may p
vide us with a more effective and secure approach for se
ing quantum information than traditional methods. In R
@15#, transfer of nonclassical features of a quantum state s
as sub-Poissonian statistics of photons and the second-o
squeezing of quadrature-phase components according to
Braunstein and Kimble teleportation protocol, in which t
quantum channel is influenced by a thermal environme
was investigated by use of the quasiprobability function
was found that the mixed two-mode squeezed vacuum s
for the quantum channel may become separable in the
lution of time and then any nonclassical features of an
known state cannot be preserved in the teleported state
this paper, using a general expression for the density ma
of the teleported field, we study higher-order squeezing pr
erties of the teleported field, such as the fourth-order sque
ing of quadrature-phase components and the squeezin
squared amplitudes. Explicit conditions of the squeezing
rameter for these nonclassical features to survive in the t
ported field are derived.

Suppose that two modesA and B of an optical field are
prepared in a squeezed vacuum state

uS&AB5cosh21r exp~2cothra†b†!u0&, ~1!

wherea† (a) andb† (b) are bosonic creation~annihilation!
operators for modesA andB, respectively. WhenrÞ0, two
quadrature-phase components of the modes are entan
Now let modeA be sent to the sender~Alice! and simulta-
neously modeB to the receiver~Bob!. In this way, a quantum
channel between Alice and Bob is built. Let us suppose t
there is also a classical channel between them, via wh
they may communicate information in a usual way. Now w
hand over an arbitrary quantum stateuw i& to Alice but we do
not give her any information about this state. However,
ask Alice to send this state to Bob. According to the telep
tation scheme@7#, the task can be fulfilled by two steps
First, Alice performs a local Bell-state measurement on
subsystem which consists of the entangled modeA and the
©2002 The American Physical Society02-1
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input mode. The Bell-state measurement is composed o
ideal 50/50 beam splitter and two homodyne measurem
detectors for measuring eigenvalues of two commuta
quadrature-phase operators for the optical fields at two
put ports of the beam splitter. After the Bell-state measu
ment, the modeA and the input mode are entangled togeth
and both are projected into one of the eigenstates but
modeB is separated from the entangled modeA @18#. Sec-
ond, Alice sends the measured result regarding which of
eigenstates is measured to Bob via a classical informa
channel and then Bob performs an appropriate local uni
transformation on the modeB according to the measure
result. After these two steps, Bob can obtain an approxim
-
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copy of the input state. The above teleportation scheme
originally described by use of the Wigner function@7#. In the
recent publication@18#, Janszky et al. reformulated the
scheme in the coherent state representation and yield
simple direct description of the teleportation process. In
representation of coherent states, an input stateuw i& can be
written as

uw i&5E d2aP~a!ua&, ~2!

where P(a)5^auw i&/p. Using the approach proposed
Ref. @18# and completing the above teleportation steps,
can finally place the modeB in the unnormalized state
cked at
t
igenvalues
ity

ed as
sity
uf~xa ,pb!&5A2

p
cosh21r exp@22~12tanhr !uzu2#E d2aP~a!exp@2 1

2 uau21A2~12tanhr !z* a#

3exp$@a tanhr 1A2~12tanhr !z#tanhb†%u0&, ~3!

wherez5xa2 ipb and (xa ,pb) are outputs of the homodyne measurement detectors. If outputs of the detectors are lo
a fixed value (xa ,pb), the state vector~3! is the conditional teleported state in the modeB. If a series of entirely equivalen
states are in sequence given to Alice in the teleportation process and the detectors are able to respond to all of the e
of the two commutative quadrature-phase operators, the modeB will be in a mixed state which is described by the dens
matrix

r̂5E dxadpbuf~xa ,pb!&^f~xa ,pb!u. ~4!

The quality of the teleportation process can be measured by the so-called fidelity, which is defin
z^w i uf(xa ,pb)& z2/^f(xa ,pb)uf(xa ,pb)& @7#. Since (xa ,pb) are continuous variables and detected in the probability den
^f(xa ,pb)uf(xa ,pb)&, an averaged fidelity is appropriate for measuring the teleportation quality and is given by

Fa5^w i ur̂uw i&

5
1

2
~11cothr !E d2ad2bd2jd2hP~a!P~j!P~b!* P~h!* exp@2 1

2 ~ uau21uju21uhu21ubu2!#

3exp$ 1
2 @~a1j!~h* 1b* !1cothr ~a2j!~h* 2b* !#%. ~5!
-
hoton
ime

-

In the following part, we will use the above explicit ex
pressions for the density matrix of the teleported field a
the fidelity to investigate the preservation of nonclassi
properties of an input state in the teleportation process.
use of Eq.~4!, the mean photon number in the teleport
field is given by

^n̂& t5^n̂& i1e22r , ~6!

where n̂5b†b and ^& i ,t refers to averaging over an inpu
stateuw i& and the teleported field~4!, respectively. It is no-
ticed that the input field is amplified in the teleportation pr
cess but the gain of the mean photon number is indepen
of a quantum state to be teleported. In fact, the gain is
the amount of noise in the squeezed quadrature-phase
ponent of an optical field in the state~1!. The variance of the
mean photon number in the teleported field is given by
d
l
y

-
nt

st
m-

^~Dn̂!2& t5^~Dn̂!2& i1~2^n̂& i11!e22r1e24r , ~7!

where ^(Dn̂)2&5^n̂2&2^n̂&2. We see that the variance in
creases and the change depends on an input state. The p
antibunching effect appears when the normalized equal-t
second-order correlation function is less than 1@20#, that is,

g(2)~0!5 ^b12b2&/^b1b&2 ,1. ~8!

From Eq.~4!, we have the correlation function of the tele
ported field,

gt
(2)~0!5

^n̂2& i2~124e22r !^n̂& i12e24r

~^n̂& i1e22r !2
. ~9!
2-2
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When the teleported field exhibits the photon antibunch
effect, the conditiongt

(2)(0),1 holds. This results in the
following condition of the squeezing parameter:

r .2 1
2 ln$A^n̂& i

22@^~Dn̂!2& i2^n̂& i #2^n̂& i%. ~10!

In order to investigate squeezing effects in the telepor
field, we introduce two quadrature-phase operators for
modeB,

X̂15 1
2 ~b1b†!, ~11!

X̂25~1/2i ! ~b2b†!. ~12!

When the condition

^~DX̂1,2!
N&,~N21!!!/2N ~13!

is satisfied, the field is said to be in anNth-order squeezed
state@21#. For the second-order moment of the fluctuation
quadrature-phase components of the teleported field, f
Eq. ~4!, we have

^~DX̂1,2!
2& t5^~DX̂1,2!

2& i1
1
2 e22r . ~14!

We see that half the amount of noise in the squeezed qua
ture component of an optical field in the state~1! is added to
the variances of two quadrature-phase components of
teleported field@9,15#. The change of the variances of tw
quadrature-phase components of an input field in the tele
tation process is irrelevant to the input state. According
Eq. ~13!, we can find out that when the squeezing parame
r satisfies the condition

r .2 1
2 ln$2@ 1

4 2^~DX̂1,2!
2& i #%, ~15!

the second-order squeezing effect which is originally i
posed on an input state can be preserved in the telepo
state.

The fourth-order moment of the fluctuation in quadratu
phase components of the teleported field is given by

^~DX̂1,2!
4& t5^~DX̂1,2!

4& i13^~DX̂1,2!
2& ie

22r1 3
4 e24r . ~16!

According to Eq. ~13!, the fourth-order squeezing mean
^(DX̂1,2)

4&, 3
16 . We see that unlike the second-order sque

ing, the change of the fourth-order squeezing, in the telep
tation process depends on a state to be teleported. From
~16!, we conclude that when the squeezing parameterr sat-
isfies the condition

r .2 1
2 ln$A^~DX̂1,2!

2& i
22 1

3 @ 3
16 2^~DX̂1,2!

4& i #

2^~DX̂1,2!
2& i%, ~17!

the fourth-order squeezing effect can exist in the telepo
field.

Another kind of higher-order squeezings is the so-cal
squared amplitude squeezing@22#. Two quadrature-phas
components of the squared complex amplitude of the modB
are defined as
02430
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Ŷ15 1
2 @b21~b1!2#, ~18!

Ŷ25~1/2i ! @b22~b1!2#. ~19!

When ^(DŶ1,2)
2&2(^n̂&1 1

2 ),0, the field is said to be in a
squared amplitude squeezing state. This is also a nonclas
effect @22#. The variance ofŶ1,2 in the teleported state~4! is
given by

^~DŶ1,2!
2& t5^~DŶ1,2!

2& i12^n̂& ie
22r1e24r . ~20!

We see that the change of the variances in the teleporta
process depends on an input state. When the squared a
tude squeezing survives in the teleported field, we have
condition

^~DŶ1,2!
2& i2~^n& i1

1
2 !12^n& ie

22r1e24r<0. ~21!

FIG. 1. Fidelity of teleportation ofua&1u2a& with a50.8 and
second-order squeezing in the teleported field vs the squeezing
rameterr. The upper boundary is 0.25 and the lower one is
squeezing amount of the input state.

FIG. 2. Fidelity of teleportation ofua&1u2a& with a50.8 and
fourth-order squeezing in the teleported field vs the squeezing
rameter r. The upper boundary is3

16 and the lower one is the
squeezing amount of the input state.
2-3
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This inequality results in the requirement for the squeez
parameterr,

r .2 1
2 ln$A^n̂&2

i2@^~DŶ1,2!
2& i2~^n̂& i1

1
2 !#2^n̂& i%. ~22!

To have a concrete idea on the transfer of nonclass
properties of a quantum state in the teleportation proc
now let us consider two interesting states. As is well know
two linear superpositions of coherent statesua&1u2a& and
ua&2u2a& can display the second-order and fourth-ord
squeezings and the photon antibunching effect, respectiv
In Figs. 1 and 2, the second-order and fourth-order fluct
tions in the out-phase quadrature component of the t
ported field and the fidelity are shown against the squee
parameterr when teleporting the stateua&1u2a&. In Fig. 3,

FIG. 3. Fidelity of teleportation ofua&2u2a& with a50.8 and
second-order equal-time correlation function in the teleported fi
vs the squeezing parameterr. The upper boundary is 1.0 and th
lower one is the value of the correlation function in the input sta
. A
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the equal-time second-order correlation function and the
delity are shown against the squeezing parameterr when
sending the stateua&2u2a&. These figures show that whe
r .0.6, 0.65, 0.75, the photon antibunching effect, t
second-order, and fourth-order squeezings, which are o
nally imposed on the input states, can remain in the te
ported states. In the experiment@8#, r is about 0.69 and ap
proaches the marginal region. In these figures, we also
that whenr .1.5, the nonclassical properties of the inp
states can be well preserved in the teleported one but a
same time the fidelity is around 0.85. In order to make
fidelity close to unity, the squeezing parameterr must be
larger than 3.0. This means that the nonclassical propertie
an input state may be satifactorily transferred from a send
station to a receiving station via the teleportation proc
even though a quantum state is not truly and exactly te
ported.

In summary, nonclassical properties such as the seco
and fourth-order quadrature-phase and squared ampli
squeezings, and the photon antibunching effect in the t
ported field, are investigated. We show that these noncla
cal properties which are originally imposed on an unkno
quantum state to be teleported can be preserved in the
ported state if the squeezing parameter of the two-m
squeezed vacuum state which is used as an EPR sour
larger than a certain value. The explicit conditions of t
squeezing parameter for preserving these nonclassical p
erties in the teleported field are obtained. We also note
these nonclassical properties may be well transferred via
teleportation process even if the fidelity of the teleportat
process is not very close to unity.
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