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Quantum entanglement and squeezing of the quadrature difference of bright light fields

Jing Zhang, Changde Xie, and Kunchi Peng*
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University,

Taiyuan 030006, People’s Republic of China
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In this paper we present a scheme in which the amplitude-quadrature difference and phase-quadrature
difference of two bright nonclassical beams serve as a pair of observed complementary variables that can be
measured directly and can form a new squeezed state. Mixing such two quadrature-difference squeezed-state
beams on a beam splitter produces characteristic of the Einstein-Podolsky-Rosen quantum entanglement. The
experimental schemes producing such nonclassical beams and its possible applications in quantum information
are discussed.

DOI: 10.1103/PhysRevA.66.042319 PACS number~s!: 03.67.Hk, 03.65.Ud
a

av
a
in
-

te
tin
ce
m
r

el
f-
pr
m
io
ro
a
l
o

a
of
ur
am
it

r
h

g
m
ra
nt
ht
ea
p
-

ian

ned
ode
ned
ir
of
pro-
lso
he
pro-
of

m
tum
two-

o-
ssi-
nd
ob-
for

el
wo

dif-
of

the
re
two
nt
litter
f the
ined
ing
s of
tum

-

I. INTRODUCTION

In developing quantum information science, nonloc
quantum entanglement plays a determining role@1,2#. Re-
cently, both theoretical and experimental investigations h
focused on quantum states of continuous variables in
infinite-dimensional Hilbert space, because the Einste
Podolsky-Rosen~EPR! entangled state of light can be effi
ciently generated using squeezed light and beam split
For example, the continuously entangled EPR pairs resul
from two-mode squeezed vacuum states have been suc
fully employed in demonstrating unconditional quantu
teleportation@3#. Two bright amplitude-squeezed sources a
also proposed to be used for quantum teleportation in a r
tively simpler protocol@4#. The schemes realizing highly e
ficient dense coding for continuous variables have been
posed, in that the two-mode squeezed-state entangle
may be utilized to achieve unconditional signal transmiss
@5–7#. The bright EPR beams have been experimentally p
duced by means of a nondegenerate optical parametric
plifier ~NOPA! @8# and the Kerr nonlinearity of an optica
fiber @9#. The dense coding for continuous variables based
the bright EPR beams has been experimentally demonstr
@10#, in which the bright EPR beams with anticorrelation
amplitude quadrature and correlation of phase quadrat
are generated from a NOPA operating in the state of de
plification and the Bell-state measurement is achieved w
simple direct detection@7#. In many proposed protocols fo
quantum information processing using continuous lig
fields, a local oscillator~LO! has to be utilized for measurin
the phase quadrature with homodyne detection sche
@3,11,12#. In this case, the problem of spatial and tempo
mode matching increases the difficulty of the experime
and limits the detection efficiency. Especially, for brig
squeezed-state light, such as from laser diodes, it is not
to find an appropriate LO beam. Thus, sometimes, the ap
cation of bright EPR beams in quantum information is lim
ited by the detection of phase quadrature.

Different kinds of squeezed states for arbitrary Hermit
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operators have been studied and reviewed, e.g., in Ref.@13#.
Two-mode and multimode first-order squeezing@14,15# have
been introduced for the quadrature operator, which is defi
as a linear superposition of the bosonic operators. Two-m
and multimode higher-order squeezing have been defi
and investigated@16,17#. The higher order means that the
‘‘quadrature’’ operators are defined in terms of a product
the mode’s operators. The quantum Stokes parameters
vide operator representations of the polarization, which a
apply to nonclassical light. Recently, the application of t
quantum Stokes parameters to bright squeezed light was
posed @18# and demonstrated experimentally by a pair
spatially separated optical parametric amplifiers@19#. The
specific families of the two-mode and multimode quantu
states connect to the polarization state. In fact, the quan
Stokes operators are identical to the operators defined in
mode difference squeezing@16# which is the two-mode
second-order squeezing.

In this paper we extend the general theory of the tw
mode first-order squeezing and utilize this type of noncla
cal light in which the amplitude-quadrature difference a
phase-quadrature difference of two modes are a pair of
served complementary and noncommutation variables
quantum information. When the variance ofX̂â1

2X̂â2
or

Ŷâ1
2Ŷâ2

of two modes falls below the quantum noise lev
of that of two equally coherent beams, we say, the t
modes present the squeezed characteristic of quadrature
ferences and we call them the squeezed-state light
amplitude-quadrature or phase-quadrature difference. In
following, we will theoretically demonstrate that quadratu
difference squeezed-state lights can be obtained by
bright squeezed lights, and combining two cohere
quadrature-difference squeezed-state lights on a beam sp
can provide the EPR entanglement. The dependence o
squeezing and the quantum entanglement of the comb
light fields on the nonclassical properties of the constitut
beams are analytically discussed. Finally, the application
the quadrature-difference squeezed-state lights in quan
teleportation and quantum dense coding are proposed.

II. OBSERVED VARIABLES OF TWO OPTICAL MODES

The two optical modesâ1 andâ2 have the boson commu
tation relations
©2002 The American Physical Society19-1
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@ âk ,âk8#5@ âk
1 ,âk8

1
#50, @ âk ,âk8

1
#5dkk8 , k,k851,2.

~1!

The quadrature phase amplitudes of the two optical mo
are given by

X̂âk
5âk1âk

1 , Ŷâk
52 i ~ âk2âk

1!. ~2!

The quadrature phase amplitudes obey the commutation
lation

@X̂âk
,X̂âk8

#5@Ŷâk
,Ŷâk8

#50, @X̂âk
,Ŷâk8

#52idkk8 ,

k,k851,2. ~3!

The unitary transformation performed on the modesâ1 and
â2 is given by

b̂15Aâ11Bâ2 , ~4!

b̂25Câ11Dâ2 ,

whereA,B,C,D satisfy the following conditions:

uAu5uDuanduBu5uCu, ~5!

uAu21uDu251,

A* C1B* D50.

It is obvious from Eqs.~4! and~5! that the operatorsb̂1 , b̂2

satisfy the commutation relations just like modesâ1 andâ2 ,

@ b̂k ,b̂k8#5@ b̂k
1 ,b̂k8

1
#50, @ b̂k ,b̂k8

1
#5dkk8 k,k851,2.

~6!

The amplitude and phase quadratures of the opera
b̂1 , b̂2 also obey the commutation relation

@X̂b̂k
,X̂b̂k8

#5@Ŷb̂k
,Ŷb̂k8

#50, @X̂b̂k
,Ŷb̂k8

#52idkk8 ,

k,k851,2. ~7!

In the unitary transformationA52B5C5D51/A2, Eqs.
~4! become

b̂15
1

A2
~ â12â2!, ~8!

b̂25
1

A2
~ â11â2!.

The amplitude and phase quadratures of the opera
b̂1 , b̂2 equal

X̂b̂1
5

1

A2
~X̂â1

2X̂â2
!, Ŷb̂1

5
1

A2
~Ŷâ1

2Ŷâ2
!, ~9!
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X̂b̂2
5

1

A2
~X̂â1

1X̂â2
!, Ŷb̂2

5
1

A2
~Ŷâ1

1Ŷâ2
!.

According to the commutation principle, the correspondi
uncertainty relations for the quadratures are

^dX̂b̂1

2
&^dŶb̂1

2
&>1, ~10!

^dX̂b̂2

2
&^dŶb̂2

2
&>1.

If the quadratures satisfy the conditions^dX̂b̂1

2
&^dŶb̂2

2
&,1 or

^dX̂b̂2

2
&^dŶb̂1

2
&,1, we call them two-mode squeezed state

III. DIRECT DETECTION OF QUADRATURE
DIFFERENCES

For simplification and without losing generality, we co
sider the two bright modesâ1 and â2 having equal average
intensitieŝ â1&5^â2&5” 0. A bright light field can be decom
posed to a carrierâ(0) oscillating at the center frequencyv0
with an average amplitude (ass) which equals the amplitude
of its steady-state field, and surrounded by ‘‘noise sid
bands’’â(V) oscillating at a frequency ofv06V with zero
average amplitude

^â~V50!&5ass, ^â~V5” 0!&50. ~11!

The noise spectral component at frequencyV is the hetero-
dyne mixing of the carrier and the noise sidebands. The
plitude and phase quadratures are expressed by

X̂a~V!5â~V!1â1~2V!,

Ŷa~V!5
1

i
@ â~V!2â1~2V!#, ~12!

with

@X̂a~V!,Ŷa~V8!#52id~V1V8!. ~13!

Figure 1 shows a schematic representation of direct detec
of quadrature differences of two bright modesâ1 andâ2 with
orthogonal polarizations. The modesâ1 and â2 are coher-
ently combined on a polarizing beam splitter~PBS1! with a
certainly relative phase (u) controlled by a phase shifter an
then the mixed outcome is split again into two modesê and
f̂ by PBS2. The modesê and f̂ are

ê5â1 cos
u

2
1 i â2 sin

u

2
,

f̂ 5â2 cos
u

2
1 i â1 sin

u

2
. ~14!
9-2
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The bright output beamsê and f̂ are directly detected byD1
andD2, then the detected photocurrents are sent to subtra
as shown in Fig. 1~a!.

~1! Whenu50, the normalized output spectra of phot
current difference are given by

î 2
0 ~V!5

1

A2
@X̂â1

~V!2X̂â2
~V!#. ~15!

This measurement is equivalent to the result of the meas
ment setup Fig. 1~b!. The amplitude-quadrature differenc
measurement of two modesâ1 and â2 can be achieved by
direct detection.

~2! Whenu5p/2, the normalized output spectra of ph
tocurrent difference are given by@7#

î 2
p/2~V!5

1

A2
@Ŷâ1

~V!2Ŷâ2
~V!#. ~16!

This measurement is equivalent to the result of the meas
ment setup Fig. 1~c! @7#. The phase-quadrature differenc
measurement of two modesâ1 and â2 can be achieved by
direct detection without the help of LO beam. Since t
phase-quadrature sum of two modes cannot be measure

FIG. 1. The direct detection of amplitude- and phase-quadra
difference.
04231
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direct detection, we consider only amplitude- and pha
quadrature differenceX̂â12â2

and Ŷâ12â2
of two modesâ1

and â2 and neglect amplitude- and phase-quadrature s
X̂â11â2

and Ŷâ11â2
of two modesâ1 and â2 as redundant

variables. Thus the amplitude- and phase-quadrature di
ence of two modesâ1 and â2 will exhibit a squeezed state
just like the amplitude and phase of a single mode. When
normalized variances of the quadrature differences sat
the inequalities

^dX̂â12â2

2
&5K dS 1

A2
@X̂â1

~V!2X̂â2
~V!# D 2L

,1,^dŶâ12â2

2
&

5K dS 1

A2
@Ŷâ1

~V!2Ŷâ2
~V!# D 2L

or

K dS 1

A2
@Ŷâ1

~V!2Ŷâ2
~V!# D 2L

,1,K dS 1

A2
@X̂â1

~V!2X̂â2
~V!# D 2L ,

we say, they constitute an amplitude-quadrature differenc
a phase-quadrature difference squeezed-state light field.
generating the quadrature-difference squeezed-state lig
modesâ1 andâ2 may be two bright amplitude-quadrature
phase-quadrature squeezed lights, and also quantum c
lated EPR beams such as the signal and idler modes
duced by a NOPA, which will be discussed in detail later.
the quadrature-difference squeezed-state lights the a
squeezed complementary components with large noise
respectively, the phase-quadrature difference for
amplitude-quadrature difference squeezing and
amplitude-quadrature difference for the phase-quadra
difference squeezing.

IV. GENERATION OF EPR ENTANGLED BEAMS USING
QUADRATURE-DIFFERENCE SQUEEZED-STATE

LIGHTS

Combining two quadrature-difference squeezed-s
lights with classical coherence on two beam splitters~BS1
and BS2! we can obtain EPR entangled beams. The sc
matic representation is shown in Fig. 2. The amplitude- a
phase-quadrature differences of output beams from b
splitters BS1 and BS2 are given by

X̂ĉ12 ĉ2
5

1

2
~X̂â12â2

2Ŷâ12â2
1Ŷâ32â4

1X̂â32â4
!, ~17!

Ŷĉ12 ĉ2
5

1

2
~Ŷâ12â2

2X̂â12â2
1X̂â32â4

1Ŷâ32â4
!,

re
9-3
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X̂ĉ32 ĉ4
5

1

2
~X̂â12â2

1Ŷâ12â2
2Ŷâ32â4

1X̂â32â4
!,

Ŷĉ32 ĉ4
5

1

2
~Ŷâ12â2

1X̂â12â2
2X̂â32â4

1Ŷâ32â4
!.

When input beams are amplitude difference squeezed st

^dX̂â12â2

2
&,1 and^dX̂â32â4

2
&,1, the output beam pairsĉ1 ,

ĉ2, andĉ3 , ĉ4 have anticorrelated amplitude-quadrature d
ference@^d(X̂ĉ12 ĉ2

1X̂ĉ32 ĉ4
)2& is below the corresponding

standard quantum limit~SQL!# and correlated phase
quadrature difference@^d(Ŷĉ12 ĉ2

2Ŷĉ32 ĉ4
)2&,SQL#. Con-

versely, when input beams are phase-quadrature differe
squeezed states^dŶâ12â2

2
&,1 and^dŶâ32â4

2
&,1, the output

beam pairs have correlation of the amplitude-quadrature
ference @^d(X̂ĉ12 ĉ2

2X̂ĉ32 ĉ4
)2&,SQL# and anticorrelated

phase-quadrature difference@^d(Ŷĉ12 ĉ2
1Ŷĉ32 ĉ4

)2&,SQL#.

For experiments, the beam pairs (â1 , â2 andâ3 , â4) of
quadrature-difference squeezed-state lights can be produ
for example, from two NOPAs with identical configuratio
pumped by a same laser source@20,8,10#. Two coherent in-
put signalsal anda↔ with the same frequencyv0 and or-
thogonal polarization are injected into a NOPA. For simp
fication, the polarizations of the injected signal and idler fie
are orientated along the vertical and horizontal directio
and their intensities and original phases before NOPA
considered to be identical. The amplifier is pumped with t
second-harmonic wave ofvp52v0 and amplitude of pump
field ap@al , a↔ ; in this case the pump field can be con
sidered as a classical field without depletion during the a

FIG. 2. EPR entanglement produced by two amplitude-~phase-!
quadrature difference squeezed states.
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plification process. The output signal and idler fields pol
ized along the vertical and horizontal direction are deno
with bl andb↔ . The input-output Heisenberg evolutions
the field modes in NOPA are given by@21#

b̂0l5mâ0l1nâ0↔
1 , b̂0↔5mâ0↔1nâ0l

1 , ~18!

b̂1l5mâ1l1nâ1↔
1 , b̂1↔5mâ1↔1nâ1l

1 ,

b̂2l5mâ2l1nâ2↔
1 , b̂2↔5mâ2↔1nâ2l

1 ,

where â, â1 and b̂, b̂1 denote the annihilation and cre
ation operators of the input and the output modes The s
scripts 0 and6 stand for the central mode at frequencyv0
and the sidebands at frequencyv06V, respectively. The
parametersm5coshr and n5eiup sinhr are the function of
the squeezing factorr (r}Lx2uapu, L is the nonlinear crys-
tal length,x2 is the effective second-order susceptibility
the nonlinear crystal in NOPA, andap is the amplitude of the
pump field! and the phaseup of the pump field. In the fol-
lowing calculation the phaseup is set to zero as the referenc
of relative phase of all other light fields. For a bright optic
field, the quadratures of the output orthogonal polarizat
modes at a certain rotated phaseu are expressed by

X̂b̂l~u!5
b0l* b̂1le2 iu1b0lb̂2l

1 eiu

ub0lu
5b̂1le2 i (u1w)

1b̂2l
1 ei (u1w), ~19!

X̂b̂↔~u!5b̂1↔e2 i (u1w)1b̂2↔
1 ei (u1w),

wherew5arg(b0l)5arg(b0↔)5arg(eiF1e2 iF tanhr) is the
phase of the modesb̂0l , b̂0↔ relative toup and F is the
phase of the modesâ0l , â0↔ relative toup . Taking u50
andu5p/2 in Eq.~19!, the amplitude and phase quadratur
of the output fields are obtained,

X̂b̂l5X̂b̂l~0!5b̂1le2 iw1b̂2l
1 eiw, ~20!

X̂b̂↔5X̂b̂↔~0!5b̂1↔e2 iw1b̂2↔
1 eiw,

Ŷb̂l5X̂b̂lS p

2 D52 i ~ b̂1le2 iw2b̂2l
1 eiw!,

Ŷb̂↔5X̂b̂↔S p

2 D52 i ~ b̂1↔e2 iw2b̂2↔
1 eiw!.

When the injected subharmonic signal and harmonic pu
field are in phase (F5w50), the maximum parametric am
plification is achieved@6#. The difference of the amplitude
quadratures and the difference of the phase quadratures
tween two orthogonal polarization modes are

X̂b̂l2X̂b̂↔5e2r X̂âl2e2r X̂â↔, ~21!

Ŷb̂l2Ŷb̂↔5erŶâl1erŶâ↔.
9-4
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When the input modesâl , â↔ of NOPA are the coheren
state, ^dX̂âl

2
&5^dX̂â↔

2
&5^dŶâl

2
&5^dŶâ↔

2
&51, we can

readily write the variances of amplitude and phase qua
ture difference,

^dX̂b̂l2b̂↔
2

&5e22r , ^dŶb̂l2b̂↔
2

&5e2r .

Whenr .0, the output orthogonal polarization modes are
amplitude-difference squeezed state. When the injected
harmonic signal and harmonic pump field are out of pha
i.e., F5w5p/2, NOPA operates at parametric deamplific
tion @10,22#. Therefore the amplitude-quadrature and t
phase-quadrature differences are

X̂b̂l2X̂b̂↔5erŶâl1erŶâ↔, ~22!

Ŷb̂l2Ŷb̂↔5e2r X̂âl2e2r X̂â↔.

Obviously, the squeezed state of phase-quadrature differ
is obtained forr .0.

V. APPLICATION OF QUADRATURE-DIFFERENCE
SQUEEZED-STATE BEAMS IN QUANTUM INFORMATION

An important example in quantum communication
quantum teleportation, which is the disembodied transpor
an unknown quantum state from one place to another.
diagram for teleportation of continuous variable using
EPR correlation of amplitude- and phase-quadrature dif
ence is shown in Fig. 3. We assume that the two NOPAs
operated at deamplification. The outputs of two NOPAs

FIG. 3. A schematic representation of quantum teleportation
ing quadrature-difference squeezing.
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mixed on a 50% beam splitter~BS1! to generate the EPR
beams. A half of the EPR beamsb̂1 , b̂2 is sent to the sende
~Alice! where it is mixed with the input signal beam
â1

in , â2
in which have same intensity asb̂1 , b̂2 andp/2 phase

shift on the second 50% beam splitter~BS2!. The bright
output beams,ê1 , ê2 and f̂ 1 , f̂ 2, from BS2 are given by

ê15
A2

2
~ â1

in1 i b̂1!, ~23!

ê25
A2

2
~ â2

in1 i b̂2!,

f̂ 15
A2

2
~ â1

in2 i b̂1!,

f̂ 25
A2

2
~ â2

in2 i b̂2!.

The amplitude-quadrature differences of bright outp
beams,ê1 , ê2 and f̂ 1 , f̂ 2 are directly detected using th
method shown in Fig. 1. Each of the output photocurre
from subtracter is divided into two parts by a rf power spl
ter. The sum and difference of the divided photocurrents
expressed by

î 15
1

2
@~X̂â

1
in2X̂â

2
in!1~X̂b̂1

2X̂b̂2
!#, ~24!

î 25
1

2
@~Ŷâ

1
in2Ŷâ

2
in!2~Ŷb̂1

2Ŷb̂2
!#.

Thus the joint measurement between a half of the E
beams and input signal beams is achieved with this sim
direct detection. Then the photocurrentsî 1 and î 2 are sent
to amplitude and phase modulator in the receiver~Bob!, re-
spectively. The amplitude and phase modulators transf
the photocurrents into beamsb̂3. The output beamb̂38 from
modulators is expressed by

b̂385b̂31g1 î 11g2 î 2 , ~25!

whereg1 andg2 describe Bob’s~suitably normalized! am-
plitude and phase gains for the transformation from pho
current to output beam. The output amplitude- and pha
quadrature difference are given by

X̂b̂
382b̂4

5X̂â
1
in2â

2
in1~X̂b̂12b̂2

1X̂ĉ32 ĉ4
!, ~26!

Ŷb̂
382b̂4

5Ŷâ
1
in2â

2
in1~Ŷb̂12b̂2

2Ŷĉ32 ĉ4
!,

where g15g25A2. Under ideal conditions,̂ d(X̂b̂12b̂2

1X̂ĉ32 ĉ4
)2&→0 and ^d(Ŷb̂12b̂2

2Ŷĉ32 ĉ4
)2&→0, we obtain

from Eq. ~26!,

s-
9-5
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X̂b̂
382b̂4

5X̂â
1
in2â

2
in, ~27!

Ŷb̂
382b̂4

5Ŷâ
1
in2â

2
in.

Thus we obtain quantum teleportation of two modes diff
ence. It is easy to demonstrate quantum teleportation at
tor using direct measurement.

A scheme to demonstrate the dense coding by mean
the EPR correlation of amplitude- and phase-quadrature
ference is shown in Fig. 4. We use two NOPAs operating
amplification. The outputs of two NOPAs are mixed on
50% beam splitter~BS1! to generate the EPR beams. A ha
of the EPR beamsb̂1 , b̂2 is sent to the sender~Alice! and
the classical amplitude and phase signals are modulate
beamb̂1, which leads to a displacement ofas ,

b̂185b̂11as , ~28!

whereas is the signal sent via the quantum channel. Fr
Eqs.~17! and ~22! we know that there are very large nois

^dX̂b̂1

2&→`, ^dŶb̂1

2&→`, ^dX̂b̂12b̂2

2
&→`, ^dŶb̂12b̂2

2
&→`

for perfect EPR beams, therefore, the signal-to-noise ratiR
tends to zero,

FIG. 4. Schematic representation of dense coding.
04231
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RXs
5

^dXs
2&

^dX̂b̂1

2&
5

^dXs
2&

^dX̂b̂12b̂2

2&
→0, ~29!

RYs
5

^dYs
2&

^dŶb̂1

2&
5

^dYs
2&

^dŶb̂12b̂2

2&
→0.

No one other than Bob can attain any information of t
signal from the modulated half of EPR beams in ideal co
ditions because the signal is submerged in large noises.
signal can only be demodulated with the aid of the other h
of EPR beams (b̂3 , b̂4) which is quantum correlated with
the modulated half (b̂18 , b̂2). At Bob, the beams (b̂3 , b̂4)

are combined with the modulated half (b̂18 , b̂2) in a relative
phase ofp/2 on the 50% beam splitter~BS2!. The phase-
quadrature differences of bright output beams are dire
detected using the method shown in Fig. 1. Each of the o
put photocurrents of subtracter is divided into two parts
the rf power splitter. The sum and difference of the divid
photocurrents are expressed by

î 15
1

2
@~Ŷb̂1

2Ŷb̂2
!1~Ŷb̂3

2Ŷb̂4
!#1

1

2
Xs5

1

2
Xs , ~30!

î 25
1

2
@~X̂b̂1

2X̂b̂2
!2~X̂b̂3

2X̂b̂4
!#1

1

2
Ys5

1

2
Ys ,

where ^d(X̂b̂12b̂2
2X̂b̂32b̂4

)2&→0, ^d(Ŷb̂12b̂2
2Ŷb̂32b̂4

)2&
→0 in ideal conditions. Thus we can extract simultaneou
the amplitude- and phase-quadrature informations modul
on the signal beam with a sensitivity beyond the SQL us
a simple direct detection system.

VI. CONCLUSION

In conclusion, we have shown that the amplitud
quadrature difference and phase-quadrature difference of
light fields may serve as a pair of observed complemen
variables that can be directly detected. The experime
schemes obtaining the quadrature-difference squeezed-
lights and the EPR entanglement are proposed. Possible
plications of this type of EPR correlated beams in quant
information have been discussed. Usability of a simple dir
detection system for Bell state is the significant advantag
the proposed schemes. Since the local oscillator is
needed, the mode-mismatching trouble encountered in
periments with homodyne detection is overcome. We prov
a different way from the quantum Stokes parameters to
derstand and apply quadrature-difference squeezing of
bright light fields. Moreover, our theory may be generaliz
easily to multimode squeezing.
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