实用化多功能光压缩器*

郭蕊香 贾晓军 谢常德 彭堃墀

(山西大学光电研究所,量子光学与光量子器件国家重点实验室,太原 030006)(2001年9月24日收到,2001年11月10日收到修改稿)

激光二极管抽运的 YAP/KTP 内腔倍频单频激光器及其抽运的半整块非简并光学参量振荡腔(NOPO)被固定 在一体的殷钢底座上构成了全固化多功能光压缩器——Squeezer.通过控制不同的工作条件,在此装置上可以产生 多种类型压缩光 ;阈值以上产生约 6dR(74%)量子相关孪生光束;在阈值以下,通过注入信号光参量缩小过程产生 2.1dB 明亮正交振幅压缩光 将参量放大器出射的两个频率简并偏振垂直的孪生光束分开 获得振幅反关联位相正 关联明亮 EPR 源.

关键词:光压缩器,光学参量振荡腔(OPO),全固化 PACC:4250,4262,4265,4265K

1.引 言

具有量子关联特性的非经典光场是量子测量及 量子信息处理的关键光源.由光学参量振荡腔 (OPO)所产生的非经典光场已被成功应用于亚散粒 噪声极限光学测量,量子非破坏测量,量子离物传态 (Quantum Teleportation)及量子保密通讯等领 域^{1-3]}.近年来随着以 EPR(Einstein-Podolosky-Rosen)纠缠态的非局域关联为基础的量子信息科学 的迅速发展,使可以方便地产生连续变量的 EPR 关 联^{1]}的双模压缩态光场显示出它更广泛的应用前 景.

虽然压缩态光场在精密测量和信息科学等领域 展示出诱人的应用前景,但目前压缩态光场实际应 用受到产生装置庞大、操作复杂、稳定性不理想等因 素严重制约,因此实现稳定、可靠、易于操作的实用 化压缩光产生器就成为一个重要的研究课题.随着 大功率激光二极管(LD)的出现和商品化,尤其是产 品化的整块小型 YAG 激光器⁴¹出现为研制 1.06μm及其谐波为基础的全固化、稳定、小型的压 缩光产生系统奠定了基础,德国 Constanz 大学的 Mlynek小组采用这种整块 YAG 激光器外腔谐振倍 频获得 0.53μm 单频绿光,用它抽运由一块 LiNbO₃ 晶体构成的 OPO,分别获得可以长期稳定运转的正 交位相真空压缩光和明亮的正交振幅压缩光⁵⁶¹, 但是 LiNbO₃ 晶体为 1 类匹配晶体 ,两个下转换模 无法分离 ,因而难于在此装置上产生强度差压缩光 和明亮 EPR 对 ,限制了它在量子信息领域的进一步 应用 .我们实验室在一系列连续激光二极管抽运的 固体激光器研究基础上⁷¹,将全固化技术与非经典 光场产生技术结合 ,开展了 LD 抽运的非经典光场 产生器的研究⁸⁹¹,本文报道了全固化的多功能光 压缩器的理论与实验研究结果.

理论分析表明在非简并光学参量振荡腔 (NOPO)中可以产生多种类型非经典光场,实验上, 我们首先设计完成了全固化 YAP/KTP 内腔倍频单 频激光 获得功率为 110mW,波长为 540nm 单频绿 光输出.由于 YAP 激光器发出的 1.080µm 激光可 以在Ⅱ类非临界相位匹配的 KTP 晶体中实现倍频 和简并的频率下转换^{10]},用它抽运由 α-切割 KTP 晶体构成的非简并光学参量振荡腔 通过控制不同 的运行条件 获得了多种类型的非经典光场 完成了 多功能光压缩器的实验研究:在阈值以上产生近 6dB(74%) 量子相关孪生光束; 在阈值以下, 通过注 入信号光参量缩小过程产生 2.1dB 明亮正交振幅 压缩光 同时将参量放大器出射的两个频率简并偏 振垂直的孪生光束分开 就是进行量子离物传态所 必需的量子纠缠态----明亮" EPR "源 11,12].因此, 该非经典光场产生器——"光压缩器" 必将成为量子

^{*}国家自然科学基金(批准号 169837010)和山西省青年科学基金(批准号 20001015)资助的课题.

测量及量子信息等领域的一个非常有用的工具.

在一个装置上实现多种压缩态光场 的理论分析

在 OPO 中插入 [] 类匹配非线性晶体就构成了 NOPO ,理论研究证明在此装置上可以产生多种类 型非经典光场.

图 1 NOPO 的理论模型

如图 1 所示 NOPO , a_0 , a_1 , a_2 分别代表抽运模 (pump) ,信号模(signal)和闲置模(idler) ,它们的共 振频率分别是 ω_0 , ω_1 , ω_2 . 低于阈值时 ,NOPO 腔的 下转换模在腔内不起振 ,但在 NOPO 腔内注入信号 光 ,通过非简并参量相互作用过程实现对注入光的 参量放大和缩小 ,可使被放大或缩小的参量在 45° 方向上的偏振耦合模噪声被抑制到散粒噪声(SNL) 以下 称为双模正交位相(振幅)压缩光 .我们定义与 a_1 模夹角成 45° 的 d_1 , d_2 模为偏振耦合模 : $d_1 = \frac{1}{\sqrt{2}}$ ($a_1 + a_2$), $d_2 = \frac{1}{\sqrt{2}}$ ($a_1 - a_2$), d_1 与 d_2 分别对应两 偏振相互垂直的' 明亮 '模和' 真空 '模 ,它们的正交 振幅分量分别为

$$\begin{split} X_{d1}(\omega) &= \frac{1}{2} \left(d_{1}(\omega) e^{-i\varphi} + d_{1}^{*}(\omega) e^{i\varphi} \right) , \\ X_{d2}(\omega) &= \frac{1}{2} \left(d_{2}(\omega) e^{-i\varphi} + d_{2}^{*}(\omega) e^{i\varphi} \right) , \end{split}$$

 φ 为下转换光平均场的位相, $\varphi = 0$ 偏振耦合模输出场正交振幅分量起伏为^[12]

$$S_{X_{d1}}^{\text{out}}(\Omega) = |\delta X_{d1}^{\text{out}}(\Omega)|^{2}$$

$$= 1 + \frac{4\lambda\xi}{\{\Omega/\gamma\}^{2} + (1-\lambda)^{2}}$$

$$+ \frac{8T_{b}^{2}\eta^{2}/T_{c}^{2}(1-\lambda)^{2}}{\{\Omega/\gamma\}^{2} + (1-\lambda)^{2}}, \quad (1)$$

$$S_{a}^{\text{out}}(\Omega) = |\partial X_{a}^{\text{out}}(\Omega)|^{2}$$

$$S_{X_{d2}}^{\text{out}}(\Omega) = |\delta X_{d2}^{\text{out}}(\Omega)|^{2}$$
$$= 1 - \frac{4\lambda\xi}{\{\Omega/\gamma\} + (1+\lambda)^{2}}.$$
 (2)

 $\lambda = \frac{|\epsilon_p|}{|\epsilon^{\text{thres}}|} = \frac{k\alpha_0}{\gamma}$ 表示相干抽运光场强与 OPO 腔阈

值之比, $\eta = \frac{|\beta|}{|\varepsilon^{\text{thres}}|}$ 为注入信号光场与 OPO 腔阈值 之比, $\xi = \frac{\gamma_c}{\gamma_b + \gamma_c} = \frac{T_c}{L + T_c}$ 为 OPO 腔耦合输出效率, 腔镜损耗速率 γ_c 及其他损耗速率 γ_b 与透射率 T_c 及其他额外损耗 T_b 的关系是

$$\gamma_c$$
 = $T_c/2 au$, γ_b = $T_b/2 au$,

其中 τ 是光束在腔内传播一周的时间 , T_c 是 NOPO 腔输出镜对下转换模的透射率,T。可以看作是 NOPO 腔中除输出镜透射损耗 T。外一切损耗,包 括另一腔镜的透射损耗及腔内元件的散射、衍射、吸 收等损耗 通常称为额外损耗 ,用 L 表示. γ 表示下 转换光的总损耗速率 $\gamma = (T + L)/2\tau \Omega$ 为分析频 $\mathbf{x}_{\Omega} = 2\pi\omega$.通常耦合到腔内的注入光功率密度与 阈值处腔内抽运光的功率密度之比远远小于 1(σ = $8T_{h}^{2}\eta^{2}/T_{h}^{2}(1-\lambda)^{2} << 1$),可忽略注入光对压缩的影 响. $\varphi = 0$,对应于抽运光与注入光相对位相 $\varphi_{rel} =$ $\varphi_{2\omega} - 2\varphi = 0^{\circ}$,相当于参量放大过程,可以看出输出 场明亮模 d1 的正交振幅分量的噪声被抬高到散粒 噪声极限以上,而真空模 d2 的振幅分量的噪声被 压缩到散粒噪声极限以下,同理可以计算出 $\varphi = \pi/2$ 2 对应于抽运光与注入光相对位相 $\varphi_{rel} = \varphi_{2\omega} - 2\varphi$ =π时,下转换输出场明亮模的正交振幅分量的噪 声被压缩到散粒噪声极限以下 真空模正交振幅分 量的噪声被抬高到散粒噪声极限以上,从物理实质 上理解 由于输入" 明亮 "模与" 真空 "模的偏振相互 垂直 抽运场与注入明亮信号场和抽运场与注入真 空信号场的相对位相正好相差 π,当"明亮"模被放 大时"真空"模将会被衰减,与正交振幅分量位相相 差 π/2 的正交分量为其共轭分量 我们通常定义其 为正交位相分量,可以看出当忽略注入光对压缩的 影响时 " 明亮 "模的正交位相分量与" 真空 "模的正 交振幅分量具有相同的量子起伏 反之亦然.

当抽运光功率高于 OPO 腔阈值时,频率下转换 光在腔内发生振荡,由于两下转换模光子同时产生, 故两下转换模不仅振幅的平均值相等,而且起伏具 有量子关联性,它们被称为孪生光子,其强度差起伏 低于散粒噪声极限,可以计算出孪生光束强度差的 噪声谱^{13]}

$$S_{\Delta T}(\Omega) = S_0 \left(1 - \frac{4\xi}{\Omega^2 / \gamma^2 + 4}\right) , \qquad (3)$$

其中 *S*₀ 是散粒噪声极限 ,它等于两孪生光束平均 光强之和.

如果我们将两下转换模分开,其正交振幅和位

相分量分别为

 $X_1 = (a_1 + a_1^*), Y_1 = (a_1 - a_1^*),$ $X_2 = (a_2 + a_2^*), Y_2 = (a_2 - a_2^*).$ 计算它们之间的关联 $X_1 + X_2$ 和 $Y_1 - Y_2$ 可以

得到^[12]

 $\operatorname{Van}\left[\left(X_{1}+X_{2}\right),\omega\right] = \operatorname{Van}\left[\left(Y_{1}-Y_{2}\right),\omega\right]$

= 2 × Vaf($\delta X_{d1}^{\text{out}}, \omega$) = 2 × Vaf($\delta Y_{d2}^{\text{out}}, \omega$) (4) 即当耦合模得到完全压缩时(Var($\delta X_{d1}^{\text{out}}, \omega$) = Vaf($\delta Y_{d2}^{\text{out}}, \omega$) = 0) 信号模与闲置模之间的完全关 联将实现,Vaf($X_1 + X_2$), ω] = Vaf($Y_1 - Y_2$), ω] = 0. 此时信号模与闲置模的正交振幅分量满足 EPR 关联的要求. 而当我们获得一定压缩度的明亮 正交振幅压缩时,获得非理想的,有一定关联度的振 幅反关联位相正关联连续变量的明亮的"EPR"源.

对 NOPO 理论分析表明,在同一装置上通过控制不同的工作条件,利用参量下转换过程就有可能 产生多种类型的压缩态光场,在阈值以上工作可获 得强度差压缩光,在阈值以下工作可获得正交位相 (振幅)压缩光.同时将构成明亮的正交振幅压缩光 的信号模与闲置模分开,其两光束的正交位相(振 幅)分量直接构成"EPR"关联.

3. 实验装置及结果

实验装置如图 2 所示,自行设计建造的全固化 单频倍频 YAP/KTP 激光器输出的 0.54 μ m 单频绿 光作为抽运光,1.08 μ m 基频光作为注入信号光仔 细的模式匹配后,分别经过两个二分之一波片、一个 偏振分光棱镜 PBS),一个位相调制器(EOM),一个 法拉第旋转器(F-R)和两个匹配透镜后,通过 OPO 腔的输入输出耦合镜 M_0 和 KTP 晶体后表面(A_2) 注入 OPO 腔,入射到 OPO 腔的抽运绿光偏振方向 与 KTP 晶体 b 轴平行,注入信号光的偏振方向与 KTP 晶体 b 轴成 45°角.

图 2 " 光压缩器 "实验装置图

NOPO 腔采用半整块(semimonolithic)结构,由 一块 α-切割的 KTP 晶体和曲率半径为 r = 30mm 的凹面镜构成,KTP 晶体的一个表面兼作 OPO 腔 的一个腔镜,减少腔的额外损耗,晶体长 l = 10mm, 置于控温精度为千分之几度的精密控温炉中,表面 (A_1)镀 1.08μm,0.54μm 增透膜,表面(A_2)镀 1.08μm 0.54μm 全反膜;凹面镜既是输入耦合镜又 作输出耦合镜,镀 1.08μm,0.54μm 反射膜,反射率 分别为 $R_{infra} \approx 97\%$ 和 $R_{green} \approx 92\%$.非线性晶体放 置在距凹面镜 24mm 处,红外模和抽运模在 NOPO 中的腰斑半径分别为 $\omega_s = 55$ μm, $\omega_p = 40$ μm.凹面镜 固定在压电陶瓷上以调节腔长,为了保证 OPO 腔的 稳定运转,我们将两个镜架固定在一体的殷钢板上, 将控温炉和压电陶瓷(PZT)分别固定在两个镜架 上.KTP晶体固定在控温炉内,输入输出镜紧密固 定在 PZT上.由激光器和 OPO 腔构成的整体腔 ——"光压缩器"被密封起来,充以净化空气,避免空 气流动、温度扰动等造成的不稳定性.

3.1. 孪生光束的实验产生及其强度差压缩的探测

0.54μm的激光可以在频率近简并条件下,在 α-切割的 KTP 晶体内实现下转换光和抽运光的90° 非临界相位匹配¹¹¹,而获得孪生光束,无须保证下 转换光频率完全简并,因此不需要对非线性晶体精 密控温,也不需要种子光参与、较容易实现.

扫描注入信号光,实测 OPO 腔的红外精细度, 自由光谱区,腔线宽分别为 170 A.8GHz,22MHz.

挡掉注入 OPO 中的红外信号光,调节注入抽运 光功率使 NOPO 腔运转在阈值(3.7mW)以上,电光 调制晶体(EOM)上加 19.2MHz 高频调制,KTP 晶 体表面 A₂漏出的下转换光由快速响应的探测器 D 探测获得的交流信号与此高频信号混频获得误差信 号,进入自制的伺服系统将 OPO 腔锁定,获得稳定 输出的孪生光束.

输出耦合镜 M₀ 输出的两个下转换光通过一个 红外全反绿光增透的双色镜(M)后输出,进入平衡 零拍探测系统进行探测^{9]},实验中,在阈值以上, 2MHz—10MHz 的噪声功率范围均可观察到强度差 噪声压缩,将 OPO 腔前的抽运功率调至 18mW,输 出红外约 6.6mW 时,在谱仪上观察到的孪生光束 的强度差压缩度最大,探测的结果如图 3 所示,曲线 *a* 为散粒噪声基准,曲线 *b* 为强度差噪声,实测电子 学噪声较散粒噪声约低 22dB,因此可以不考虑它对 散粒噪声基准,曲线 *b* 为强度差噪声,实测电子 学噪声较散粒噪声和强度噪声的分贝数直接相 减,在 3MHz 附近最大强度差压缩度 6.1dB,考虑到 90%测量效率(包括探则器的量子效率 94%和探测 装置的传输效率 96%),由 OPO 直接输出的孪生光 束强度差为 7.2dB.

图 3 孪生光束强度差起伏噪声功率谱实验结果(分辨率带宽 100kHz 视频带宽 100Hz)

3.2. 正交位相(振幅)压缩光和 EPR 源的实验产生

与产生强度差压缩光相比,由于产生双模正交 位相压缩光要求两下转换光必须运行在频率完全简 并的条件下,因而更难实现.我们的设计是使 NOPO 腔运行在阈值以下,通过注入平均光强不为零的种

子光(1.08µm) 实现明亮的正交位相(振幅) 压缩光. 为了获得高的转换效率,我们的 OPO 运行在抽运 光,信号光和闲置光三模共振条件下,为了补偿抽运 光与下转换光之间的频率色散,色散补偿元件(光楔 W)被插入 OPO 腔中 实测 OPO 腔的精细度由 180 降到 110, 它带来约 2.1% 的损耗, OPO 阈值增加到 18mW, 当注入信号光进入 KTP 晶体后 将沿 b 和 c 轴分解成为振幅相等 偏振垂直的信号光和闲置光 , 与抽运光一同参与非线性转换,为保证光学参量放 大器工作在小干相应光学参量振荡腔的阈值以下, 抽运光功率调至16mW.对于Ⅱ类非临界相位匹配, 由于双折射和频率色散,一般情况下,抽运模、信号 模与闲置模之间不能同时共振 ,当使用锯齿波扫描 腔时 在示波器上可以看到三个分离的脉冲输出,我 们可以通过精确控制和调整晶体的温度到 63℃附 近 控温精度约 0.01℃) 补偿双折射 达到信号模 和闲置模同时共振,之后移动光楔(W)补偿频率色 散,实现三模同时共振,由 OPO 腔中反射的信号光 被探测器 D 探测后用于锁定 OPO 腔 由 OPO 腔输 出耦合镜 M。输出的下转换光经过双色镜 M1 后进 入由一个 1.08µm 50/50 分束器,两个短焦距透镜, 两个高量子效率探测器(D_1 , D_2)和一个加减法器 (±)组成 如图4)的自平衡零拍探测系统探测明亮

图 4 平衡零拍探测系统

模的正交振幅分量^[5]. 由探测器(D_1 , D_2)输出的交 流信号进入加减法器混频输出的电流 i_+ , i_- 送入 频谱分析仪(型号:HP8590L)记录下它们的噪声功 率谱 $V_{de}(i_-)$ 和 $V_{de}(i_+), V_{de}(i_-)$ 为散粒噪声基 μ , $V_{de}(i_+)$ 为明亮模正交振幅分量的噪声功率谱, 图 5 记录了在 3MHz 处扫描抽运光与信号光的相对 位相 φ_{rel} 获得的噪声功率谱 $V_{del}(i_+)$ 曲线 a)和 $V_{de}(i_-)$ 曲线 b),曲线 c为没有抽运光时测得的 注入光的散粒噪声基准. 当 $\varphi_{rel} = \varphi_{2\omega} - \varphi_{\omega} = 0^{\circ}$ 时实 现最大的参量放大,此时输出场耦合模中"明亮"模 正交振幅分量的噪声将被放大 ;当 $\varphi_{rel} = \varphi_{2\omega} - \varphi_{\omega} = \pi$ 时 ,最大的参量缩小被实现 ,输出场耦合模中"明亮 "模正交振幅分量的噪声将被压缩 ,此时从 NOPO 腔出射的红外光是明亮的正交振幅压缩光 ,实测最大振幅压缩 2.1 ± 0.2dB ,在考虑到 88%的传输损耗后 ,由 NOPO 直接输出的正交振幅压缩光应有 2.4dB 的压缩.

图 5 OPA 腔输出的明亮正交振幅分量噪声功率谱(分辨率带 宽 10kHz,视频带宽 30Hz)

将光学参量放大器输出的下转光信号模与闲置 模通过棱镜分束器分开,就得到明亮的"EPR"光束, 锁定抽运光与信号光的相对位相, $\varphi_{rel} = \varphi_{2\omega} - \varphi_{\omega} = \pi$,获得振幅反关联位相正关联的明亮"EPR" 源^{11,12}].

4.结 论

我们设计了一种紧凑、小型、便携的全固化多功 能压缩器 通过控制不同的运行条件 在它上面可以 产生强度差压缩光和正交位相(振幅)压缩光,由于 我们采用注入平均光强不为零的红外种子光 通过 OPO 腔内的参量过程获得明亮的正交振幅(位相) 压缩光,与注入真空场^{14]}相比,突出的优点是可以 将腔锁定在注入光的频率上,有利于非线性过程的 稳定运转 同时输出场的平均值不为零大大简化了 非经典光场的探测系统^{6]},也有利于它的应用^{15]}. 在非简并光学参量放大器中,通过注入信号光的方 法还可以控制输出场的频率,采用 || 类非线性晶体, 实验上可获得频率完全简并,而偏振非简并的孪生 光束,大大扩展孪生光束的应用16],另外我们可以 通过控制抽运光与注入光的相对位相,控制输出场 的压缩分量,由于采用了Ⅱ类匹配的 KTP 晶体作为 非线性介质,下转换光容易分离,将参量放大器出射 的两个频率简并偏振垂直的孪生光束分开 就是进 行量子离物传态,量子密集编码等量子信息研究所 必需的量子纠缠态——明亮 EPR 源. 整个系统小 型、稳定,可保证长期稳定运转,另外进一步改进实 验装置,比如减小光楔损耗,增大 OPO 腔镜的输出 耦合 将可望获得更大压缩度的非经典光和具有更强 量子关联的 EPR 源.因此,以此为基础实现的非经典 光场产生器——光压缩器 必将成为量子测量及量子 信息等领域的一个非常有用的工具.

- Furusawa, Sorensen J L, Braunstein S L et al 1998 Science
 282 706
- [2] Wang H, Zhang Y, Pan Q et al 1999 Phys. Rev. Let. 82 1414
- [3] Gao J R , Cui F Y , Xue C Y et al 1998 Opt. Lett. 23 870
- [4] Kane T J and Byer R L 1985 *Opt. Lett.* **10 65**
- [5] Schneider K, Bruckmeier R, Hansen H, Schiller S and Mlynek J 1996 Opt. Lett. 21 1396
- [6] Bruckmeier R, Schneider K, Schiller S and Mlynek J 1997 Phys. Rev. Lett. 78 1243
- [7] Zhang K S et al 1996 Acta Opt. Sin. 16 1041(in Chinese] 张 宽收等 1996 光学学报 16 1041]
- [8] Zhang K S et al 2000 Acta Phys. Sin. 49 80(in Chinese] 张 宽收等 2000 物理学报 49 80]
- [9] Guo R X et al 2001 Acta Opt. Sin. 21 812(in Chinese] 郭蕊 香等

2001 光学学报 21 812]

- [10] Garmash V M, Ermakov G A, Pavlova N I and Tarasov A V 1986 Sov. Tech. Phys. Lett. 12 505
- [11] Zhang Y , Wang H , Li X Y , Jing J T , Xie C D and Peng K C 2000 Phys. Rev. A 62 23813
- [12] Zhang Y, Su H, Xie C D and Peng K C 1999 Phys. Lett. A 259 171
- [13] Heidmann A, Horowicz R J, Reynaud S et al 1987 Phys. Rev. Lett. 59 2555
- [14] Ou Z Y, Pereira S F and Kimble H J 1992 Appl. Phys. B 55 265
- [15] Zhang J, Xie C D and Peng K C 2000 Phys. Rev. A 62 064302
- [16] Snyder J J, Giacobin E, Fabre C et al 1990 J. Opt. Soc. Am. B 7 2132

Compact nonclassical light source-----" Squeezer "*

Guo Rui-Xiang Jia Xiao-Jun Xie Chang-De Peng Kun-Chi

(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China) (Received 24 September 2001; revised manuscript received 10 November 2001)

Abstract

We designed and built a compact nonclassical light source and named it "Squeezer", which can generate a variety of squeezed state light fields in principle. A laser diode pumped intracavity frequency-doubled Nd :YAP/KTP laser and a semi-monolithic nondegenerate optical parametric oscillator(NOPO) are integrated on an invar steel base closely. Above the oscillation threshold of the NOPO($\sim 3 \text{mW}$), the twin beams with intensity quantum correlation of 6.0dB were obtained; when a signal of subharmarnic wave, which is out of phase to the pump field, is injected into the NOPO , the bright two-mode quantum amplitude squeezed light of 2.1dB and the EPR beam with amplitude anticorrelation and phase correlation are produced at the pump power of milliwatt order.

Keywords : squeezer , optical parametric oscillator (OPO) , all-solid-state PACC : 4250 , 4262 , 4265 , 4265 K

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 69837010), and the Science Foundation of Shanxi Province for Youth, China Grant No. 20001015).