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Abstract. We report a versatile instrument, based on a monolithic optical parametric amplifier, which
reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power am-
plitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this
light, including a full quantum state tomography. In addition we demonstrate the direct detection of the
squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical
properties directly visible and allows complete measurement of the statistical moments of the squeezed
quadrature.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states;
quantum state engineering and measurements

1 Introduction

The most well-known non-classical state of light is the
so-called squeezed state. It is special since its optical
noise is redistributed such that it is less in one quadra-
ture than the standard quantum noise limit while the
fluctuations are correspondingly larger in the orthogonal
quadrature. Squeezed light has been generated for many
years [1]. Several metrology applications have been devel-
oped, including gravitational wave detection [2], polarisa-
tion and Mach-Zehnder interferometry [3,4], atomic spec-
troscopy [5] and laser Doppler anemometry [6]. During the
last few years, squeezed state experiments have been dom-
inated by quantum information applications such as quan-
tum nondemolition measurements [7,8], quantum telepor-
tation [9–11], quantum computing [12,13], dense coding
[14,15] and quantum cryptography [16–18]. They all rely
on encoding information in more than one quadrature
and will either require squeezed light directly, or entan-
gled light beams which can be generated by combining,
on a beam splitter, two squeezed beams [9,19]. Finally,
a new class of applications of squeezed states has been
proposed [20] and experimentally realised [21], where the
spatial properties of the beam of light is modified. This
can be used to improve the resolution in the measurement
of very small displacements of the laser beam with a split
detector below the quantum noise limit.

a Present address: Institute of Optics, Information and Pho-
tonics, Max-Planck Research Group, University of Erlangen-
Nuernberg, 91058 Erlangen, Germany.
e-mail: andersen@kerr.physik.uni-erlangen.de

All these applications rely on a stable, reliable, strong
and flexible squeezing source. Triggered by those require-
ments, recent developments of squeezed light sources have
been focused on technical issues, such as reliability of the
electronic locking loops and hence the long-term stability
of the system. In addition, a flexible source is required
since some applications require squeezed light with no co-
herent excitation (vacuum squeezing), others prefer light
with either a small (dim squeezing) or a large (bright
squeezing) coherent excitation. Finally, some applications
are considerably simplified if the bright squeezed light has
reduced phase quadrature noise, instead of the more com-
mon amplitude quadrature noise suppression.

An optical parametric amplifier (OPA) or oscillator
(OPO) has proven to be the most efficient source of
quadrature squeezed light. In a nondegenerate mode, the
source generates two spatially separable quantum cor-
related fields which can be used to create two-mode
squeezing and strong Einstein-Poldolsky-Rosen entangle-
ment [25,26]. However, in this paper we focus on the
degenerate OPA, which has a long standing reputation
as a generator of single-mode squeezed light. In 1965,
Takahashi [24] proposed that an optical parametric ampli-
fier (OPA) can be regarded as a serious and very interest-
ing candidate for squeezed state generation. In 1986, Wu
et al. [27] demonstrated a sub-threshold OPO experiment
and achieved 3.5 dB of vacuum squeezing. Polzik et al.
extended this experiment and generated frequency tun-
able squeezed light for spectroscopy [5]. These experiments
were performed with a MgO:LiNbO3 and a KNbO3 crystal
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inside ring cavities respectively. Using a MgO:LiNbO3

crystal as a monolithic cavity design Breitenbach et al. [28]
obtained 5.5 dB whilst Lam et al. [29] achieved 7 dB of
vacuum squeezing. Bright amplitude squeezing was first
generated by Schneider et al. [30] and further improved
in reference [31] where an impressive 6 dB of squeezing
was obtained over many hours of operation. Breitenbach
et al. [32] used optical homodyne tomography to create
the phase-space distribution such as the Wigner function
of squeezed fields from an OPA.

The aim of this paper is two-fold: first, using a mono-
lithic OPO/A, we demonstrate reliable squeezing in four
different modes of operation; vacuum squeezing, low power
or dim amplitude squeezing, high power or bright ampli-
tude squeezing and phase squeezing. Secondly, the cor-
relations contained in squeezed light are visualised by
two-dimensional correlation plots. All correlations at one
frequency, both those caused by classical or those by quan-
tum effects, are observed. It provides a deeper insight in
the properties of nonclassical fluctuations since it directly
shows the time evolution of the quantum noise in a state
and hereby the correlation and not just the variances as
displayed by a spectrum analyser.

2 Theoretical model for the OPA
and the detection

A detailed theoretical analysis of the OPO and OPA has
been published by other authors [22]. Here we summarise
this work to provide a background to the results we are
presenting in the following sections. We use a type I de-
generate OPO or OPA where a second order nonlinear
medium, placed inside an optical cavity, couples two op-
tical waves; a harmonic wave of frequency νp (the pump)
and a sub-harmonic wave of frequency ν = νp/2 (the sig-
nal). In some cases our device will be operated as an ampli-
fier and we consider the configuration where a seed beam
is injected into the back port of the cavity. Only the sub-
harmonic field will be resonating inside the cavity and the
quantum Langevin equation of motion for this field can
then in the Heisenberg picture be written as:

da(t)
dt

= −γa(t) + 2
√

µa(t)†Bin(t) − µa(t)†a(t)2

+
√

2γbAin(t) +
√

2γlF
l
in(t) +

√
2γcF

c
in(t). (1)

Here a(t) is the boson annihilation operator for the sub-
harmonic field inside the cavity. F l

in(t) and F c
in(t) are aux-

iliary beam operators, with zero mean, governing all losses
inside the cavity and loss due to the output coupling. Fur-
thermore Ain(t) and Bin(t) represent the input annihila-
tion operators for the subharmonic (seed) and the har-
monic modes (pump), respectively. Those operators are
assumed to be independent noise sources and obey the
following stochastic correlations:

〈Fin(t)F †
in(t′)〉 = 〈Ain(t)A†

in(t′)〉 = 〈Bin(t)B†
in(t′)〉

= δ(t − t′). (2)

The decay rate for internal losses is γl and the damp-
ing associated with the coupling mirror and back mir-
ror is γc and γb, respectively. The total damping is de-
noted γ = γc + γl + γb. The strength of the interaction
is characterised by the nonlinear coupling parameter µ,
which is assumed to be independent of frequency [34].
Coupling between the two beams is ensured by the sec-
ond term in equation (1), which is then responsible for
the parametric gain and hence the squeezed state gener-
ation. Two-photon absorption is described by the third
order term and can also, in some cases, lead to squeez-
ing. However, this term is negligible when the OPA works
as an de-amplifier, but becomes important in the case of
the inverse process of amplification. The cavity is assumed
to be in exact resonance with the subharmonic field. Fi-
nally, equation (1) is complemented with the boundary
condition Aout(t) =

√
2γca(t) − Ain(t) creating a propa-

gating beam which is detected. The time varying operators
Aout(t) and A†

out(t) contain all signal information includ-
ing modulation signals, classical noise, quantum noise and
squeezing.

After expansion of the operators into a steady state
amplitude, α, and time dependent fluctuating compo-
nents, δA(t), so that A(t) = α+δA(t), we linearise the the
equations by retaining only first order fluctuation terms.
The frequency noise spectrum may then be found by tak-
ing the Fourier transform of the linearised equations, and
evaluating the variance in the frequency domain. In par-
ticular one obtains the spectra for the amplitude quadra-
ture, δX+

out(Ω) = δAout(Ω) + δA†
out(Ω), and the phase

quadrature, δX−
out(Ω) = −i(δAout(Ω) − δA†

out(Ω)).

When the injected seed field is in-phase with the pump
field, the phase quadrature is squeezed, and when the two
fields are out of phase with respect to each other, the am-
plitude quadrature is squeezed, hereby creating two differ-
ent types of squeezing. Furthermore, the power of the seed
field determines three different types of squeezing; vacuum
squeezing, dim amplitude squeezing or bright amplitude
squeezing associated with a vacuum, dim or bright seed
field, respectively.

Detection of the quadratures of the light field usually
involves a homodyne arrangement where the weak beam
that is to be determined is mixed with a strong local os-
cillator on a beamsplitter as shown in Figure 1. The two
output beams from the beamsplitter, δX1 and δX2, are
sent to two high efficiency photodetectors that create pho-
tocurrents with fluctuations that are proportional to those
of the photon fluxes. The bandwidth of the detection at
this stage is set by the bandwidth of the photodiodes and
the amplifiers in the detectors. By taking the difference
between the two photocurrents the fluctuation statistic
generated is proportional to that of the original signal
from the OPA. The particular quadrature that is mea-
sured is determined by the phase of the local oscillator
relative to the squeezed beam. The spectral density of the
quadrature, for example amplitude V +

out(Ω) or the phase
V −

out(Ω), can then easily be recorded using an electronic
spectrum analyzer.
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Fig. 1. Schematic of the experimental setup. SHG: second har-
monic generator, OPA: optical parametric amplifier, MC: mode
cleaner, 50/50: beamsplitter, which is 50% reflective, PDH:
pound-Drever-Hall locking, TL: tilt-locking, GL: green phase
locking, HL: homodyne phase locking, SD: sum and difference
generator. Shown here are two ways of detecting the squeez-
ing. The standard technique is to send the difference current
δX1(t) − δX2(t) to a spectrum analyser and record the power
spectrum which is later normalised by the quantum noise. Al-
ternatively one can measure the correlation between the indi-
vidually mixed down output currents δX1(t) and δX2(t).

An alternative technique, that is presented in this pa-
per, is to demodulate the individual detector photocur-
rents in the frequency interval Ωd ± δΩ and to monitor
them as an x/y plot on an oscilloscope. This technique
records the joint density probability distribution of the
noise for the two-mode squeezed state generated by the
squeezed light beamsplitter.

3 Experimental details of the OPA system

Figure 1 shows a schematic diagram of our squeezed light
source. The primary source in the experiment is a diode
pumped Nd:YAG non-planar ring oscillator, which pro-
vides a frequency stable laser beam at 1064 nm. Most of
the laser light is directed to a second harmonic generator,
which serves as a pump for the OPA. This is a symmet-
ric, 7.5 mm long, monolithic MgO:LiNbO3 crystal with a
10 mm radius of curvature at the end faces. The back port
of the OPA is highly reflective at both the harmonic and
the subharmonic wavelengths whilst the coupler mirror is
highly transmissive for the harmonic wave and 95.6% re-
flective at 1064 nm. The local oscillator and seed beam
are passed through a mode-cleaning cavity. This improves
the homodyne detection of the squeezing by ensuring a
TEM00 spatial mode. It also improves the squeezing band-
width by filtering some of the technical noise from the
seed beam. Depending on phase of the pump beam the
injected seed beam is either subjected to amplification or
de-amplification and finally sent to a homodyne measuring
system.

Situations that call for squeezed light sources often
require stable operation over many hours as long inte-
gration times are a crucial parameter in many applica-
tions. A technical goal during the construction of our
squeezed light source was, therefore, to obtain a system
that could generate stable squeezing for hours at a time.
To reach this goal we employed numerous electronic feed-
back loops. Besides the temperature stabilisation required
for the non-linear crystal ovens, we used five high-speed
electronic servo control systems. The intrinsic frequency
stability of the monolithic OPA cavity made it a good
choice for the frequency reference. Thus the mode-cleaner
was locked to the OPA cavity, the laser was locked to
the mode-cleaner, while the SHG cavity was locked to the
laser. The electronic feedback loops for locking the SHG
cavity to the laser and the mode-cleaner to the OPA, were
of the Pound-Drever-Hall (PDH) type [35]. Phase mod-
ulations at 30 MHz and 15 MHz were imposed onto the
beams inside the SHG cavity and OPA cavity respectively.
Error signals were then extracted using low noise photo-
diodes. In the case of the SHG, the transmitted field was
monitored, while for the OPA, the reflected field was used
to gather the locking signal. The photocurrent from the
SHG detector was mixed down at 30 MHz to obtain an
error signal that was processed by a servo controller and
high-voltage amplifier before being fed-back to the piezo
actuator in the SHG cavity. The signal reflected from the
OPA cavity was mixed down at 15 MHz to obtain the er-
ror signal. This error signal was used to control the piezo
actuator in the mode cleaner cavity and the temperature
of the mode-cleaner spacer. The laser was locked to the
mode cleaner via the tilt-locking method [36]. This is a
modulation free technique that relies on spatial mode in-
terference to gather the cavity locking signal. The method
has proven to possess the same stability as the well-known
PDH-method [37]. The tilt error signal was obtained on
reflection from the mode-cleaner cavity and fed-back to
the laser frequency.

The frequency locking servos described so far are
enough to produce a squeezed beam, but not sufficient
to guarantee stable squeezing detection. Also required is
servo control of the squeezing phase. Locking to either am-
plitude or phase squeezing requires that the power of the
beam transmitted through the OPA is maximised or min-
imised. This may be done using the 15 MHz modulation
signal present on the squeezed beam. The power trans-
mitted through the OPA cavity may be detected and the
photocurrent mixed down to give an error signal. The dis-
advantage of this method is that it relies on down-stream
detection of the squeezing. An alternative is to again look
at signal reflected from the OPA cavity. The phase of the
green beam was modulated at 30MHz due to the signal
used for the SHG cavity locking. This has the effect of
modulating the field reflected from the OPA at 30 MHz.
The size and phase of this 30 MHz modulation depends
on the phase between the pump and seed beams. Demod-
ulation of the reflected power at 30 MHz therefore gives
an error signal for green phase. Regardless of the method
used, the green phase error signal was fed back to a piezo
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actuator in the green beam path. The final locking loop re-
quired is for the phase of the local oscillator used for homo-
dyne detection. Depending on the quadrature to be mea-
sured, two different locking methods were implemented
in the system. When the amplitude quadrature was to
be measured continuously the error signal was obtained
by monitoring the subtracted photocurrent from the two
homodyne detectors, and mixing down at 15 MHz. In or-
der to display the phase quadrature noise continuously we
used the dc value of the subtracted photocurrents directly
as our error signal. Regardless of the method, the error
signal was used to control a piezo actuator in the local
oscillator beam.

4 Classical gain

As a tool for optimising the mode-matching of the green
beam into the OPA cavity we have systematically in-
vestigated the classical gain factor of the infra-red seed
beam injected into the back port of the OPA [39]. If the
green pump is turned off, the throughput for the non-
impedance matched seed beam is given by: 〈Ano pump

out 〉 =
2
√

γcγb〈Ain〉/γ. The seed beam is subjected to either am-
plification or de-amplification, depending on the chosen
relative phase between the pump beam and the seed beam.
The theoretical OPA gain can be found from the clas-
sical counterpart of equation (1) by taking the expecta-
tion values, setting the derivative to zero and solving for
the (classical) subharmonic field. The general solution is
rather complex since it includes a term in third order of
the circulating subharmonic field. However, when the seed
beam is de-amplified this cubic term, which reflects the de-
pletion of the pump, can be ignored. The de-amplification
factor then reduces to

gdeamp =
〈Aout〉2

〈Ano pump
out 〉2 =

(
1 +

〈Bin〉
〈Bth〉

)−2

(3)

where 〈Bth〉 is the pump amplitude at threshold for the
corresponding OPO. At threshold we have gdeamp = 1/4,
a result which is independent of the cavity parameters
and the magnitude of the seed beam. The experimentally
observed de-amplification is plotted in Figure 2 together
with the theoretically predicted curve. The difference is
due to the fact that the phase-matching temperature was
optimised for maximum pump power. Consequently, some
phase mismatch occurred at lower pump powers. When
the pump and seed beam are in phase the gain of the
device is inverted and the seed beam is now amplified.
In this regime the cubic term mentioned above cannot be
neglected. A theoretical plot of the degree of amplification
is shown in Figure 2 together with experimental data. The
maximum gain at threshold is given by the expression:
gmax
amp = (4γγc)2/3(〈Bth〉/〈Ain〉)4/3. From this formula we

see that the maximum gain depends on the power of the
seed beam, 〈Ain〉. In the measurement shown in Figure 2
an amplification factor of 106 ± 12 was obtained, but by
using a seed beam of extremely low power gain factors of
up to 10, 000 have been observed in this apparatus [29].
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Fig. 2. Classical amplitude of the output of the parametric
amplifier. (a) De-amplification of the input seed and (b) am-
plification of the input seed.

5 Squeezing

Our system can be operated in four different modes, all of
which can be reached by changing the green pump phase
and/or the power of the seed beam. The squeezing ob-
tained in the four operation regimes will be denoted vac-
uum squeezing, bright amplitude squeezing, dim ampli-
tude squeezing and bright phase squeezing, describing the
intensity of the beam and the quadrature squeezed. The
first three have been observed by several groups [23].
The latter type was generated by Breitenbach et al. [32]
in the special case where the sideband under observation
had a coherent amplitude, and by Zhang et al. [33] us-
ing the superposition of the two eigenmodes in a injection
seeded nondegenerate OPA. However, to the best of our
knowledge, so far there has been no demonstration of the
production of single-mode phase squeezing where the opti-
cal field has a coherent excitation at the optical frequency.

5.1 Vacuum squeezing

When the injected coherent seed beam is removed and
therefore replaced by the vacuum reservoir state, the de-
generate down conversion produces spontaneous paramet-
ric fluorescence into the subharmonic mode of the optical
parametric oscillator. In this case the intra-cavity subhar-
monic field is very low and the third order term in equa-
tion (1) can be neglected. Since the vacuum field does
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not have a coherent excitation the operator Ain has zero
mean. The spectral variance of the squeezed quadrature
can easily be found

V −(Ω) = 1 − 4η
γc

γ

〈Bin〉/〈Bth〉
(1 + 〈Bin〉/〈Bth〉)2 + (Ω/γ)2

· (4)

Here the fraction γc/γ is the escape efficiency of the cavity
and η indicates other losses which will lead to a reduction
in the degree of observed squeezing as is a general conse-
quence of the fluctuation-dissipation theorem. It includes
the homodyne and detector efficiencies and losses in the
beam path. A thorough discussion on limits to squeezing
in the system can be found in reference [29]. It is obvious
from equation (4) that the best squeezing is achieved when
the pump power reaches the threshold value for the OPO.
Although maximum squeezing is obtained near thresh-
old the squeezing performance is not reduced considerably
when decreasing the pump power to a value much lower
than the threshold value. For example, pumping with 75%
of the threshold value the maximum achievable squeezing
would be limited to 98% (17 dB) assuming no losses.

The squeezed vacuum field produced by the OPA is
subsequently detected by the homodyne system. By scan-
ning the local oscillator phase, all projections of the whole
quantum state becomes accessible. Figure 3a shows the
phase dependence of the spectral variance of our squeezed
vacuum beam at a fixed frequency of 3 MHz. The dips be-
low the quantum noise limit represents the squeezing and
as much as 5 dB of noise suppression below the quantum
noise limit was observed.

5.2 Dim amplitude squeezing

Although the spontaneous parametric OPO produces very
efficient squeezing it is difficult to obtain stable operation
due to difficulties in locking the OPO cavity frequency to
the frequency of the squeezed beam, which does not carry
any coherent excitation. However, very stable operation
can be achieved by injecting a coherent seed beam into the
OPA and using the reflected part to lock the OPA cavity to
the infra-red laser frequency. In order to avoid the transfer
of technical noise from this beam to the squeezed beam,
the seed beam carries very little power. We obtained a
squeezed beam with a power of only about 1 µW and
homodyne detection is required.

Using this method we obtained 5 dB of very stable
squeezing for hours of operation but as much as 5.5 dB has
been observed for smaller time periods. The noise suppres-
sion at a single frequency obtained for 1 hour of operation
is shown in Figure 3b. Since the subtraction of the pho-
tocurrents in the homodyne system is efficient over a wide
spectrum and the detectors used had a broadband elec-
tronic gain, we were able to record squeezing spectra from
2 MHz to 20 MHz. An example of such a measurement is
shown in Figure 4a.
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Fig. 3. Spectral densities for the fluctuations from the ho-
modyne detection system shown in Figure 1. Traces (i) are
the quantum noise limits and traces (ii) are the squeezing
for four different types of operation. (a) Vacuum squeezing,
(b) dim amplitude squeezing, (c) bright amplitude squeezing
and (d) phase squeezing.

5.3 Bright amplitude squeezing

We do not need a local oscillator to measure amplitude
squeezing if the optical power of the squeezed beam is
bright enough to be detected directly. To reach this goal
of direct detection we applied a very powerful seed beam
and generated a squeezed beam with a power of 100 µW,
which was directly detected. Unfortunately by doing this
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we suffered a large reduction in the green pump power and
we only observed around 3.2 dB of squeezing at 4.5 MHz
as shown in Figure 3c. This type of squeezing could also
be stabilized for long periods of times.

5.4 Phase squeezing

When the relative phase between the pump and the seed
beam is rotated such that the OPA works as an ampli-
fier, the amplitude quadrature noise is amplified while
the phase quadrature noise is suppressed and therefore
squeezed. To observe stable phase squeezing, the pump
locking servo is now locked to maximum amplification of
the seed beam, while the homodyne system is tuned to
detect phase quadrature fluctuations. In the case of phase
squeezing the intra-cavity field in the OPA cannot be ne-
glected and hence the pump depletion term plays a role in
the quantum process of amplification. The spectral vari-
ance is now given by

V −(Ω) = 1 − η
8γc

√
µ〈Bin〉 + 4γcµ〈a〉2(1 − 2V −

p )
(γ + µ〈a〉2 + 2

√
µ〈Bin〉)2 + Ω2

(5)

where V −
p is the variance of the phase quadrature of the

pump beam. Due to the importance of the pump deple-
tion term, the phase quadrature squeezing behaves quite
differently from the more common amplitude quadrature
squeezing, where, as mentioned above, the pump depletion
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Fig. 5. Theoretical estimates of phase quadrature squeezing
in an OPA as a function of the injected seed power for three
different pump powers: 99% (dotted), 80% (dashed) and 10%
(full line) of threshold power. The parameters used are those
given in Section 3, µ = 0.015 and V −

p = 1.

do not play a significant role. A theoretical plot showing
the phase quadrature squeezing at 4.5 MHz as a func-
tion of the seed input power for various powers, P , of
the pump beam is presented in Figure 5. Here we have
assumed that the pump is quantum noise limited, in par-
ticular V −

p = 1. The power is normalised to the threshold
power Pth and the thick, dashed and dotted lines repre-
sent P/Pth = 0.1, P/Pth = 0.8 and P/Pth = 0.99, respec-
tively. We see that maximum squeezing is not necessarily
achieved near threshold, but at some pump power well
below threshold. At zero seed power we see, as expected
from the previous sections, that the squeezing improves as
we approach the threshold. But an opposing impact of the
injected seed beam on the phase squeezing is clearly seen
from this figure. Just the slightest amount of seed power
leads to a drastic reduction in the squeezing near thresh-
old and lower pump powers becomes increasingly advan-
tageous. For example, a seed power larger than 40 mW
pumping with 10% of threshold value is better than using
99%. We conclude that the pump depletion term alters
the squeezing properties of an OPA and phase quadra-
ture squeezing behaves quite differently from amplitude
quadrature squeezing.

By careful optimisation of the pump power for a given
seed power, the OPA temperature and the electronic lock-
ing loops we achieved 4.2 dB of phase quadrature squeez-
ing. Very low seed powers were employed, both because of
the reason mentioned above but also because of require-
ment of the homodyne detection system, that the power
of the squeezed beam has to be much lower than that
of the local oscillator. After amplification we had around
20 µW of power in the squeezed beam and the local os-
cillator power was 2 mW. We demonstrate the long-term
stability of the device, by recording the degree of noise
suppression continuously for 1 hour. The average squeez-
ing was 3.8 dB below the quantum noise level as shown
in Figure 3d. Broadband phase quadrature squeezing is
also demonstrated from 2 MHz to 20 MHz. This measure-
ment is shown in Figure 4b. All the results presented here
have been corrected for the dark noise of our detection
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system. We have not, however, corrected for the quantum
efficiency of our detectors, which was found to be ∼93%.

6 An alternative detection technique:
two-dimensional correlation plots

The results given above, and almost all other data re-
ported for squeezed light, are based on using a homo-
dyne detection system that measures the variance of the
squeezed state via the difference of the photocurrents of
the two detectors. The variance is determined in the fre-
quency domain via an electronic spectrum analyser. This
is a single quadrature measurement of a single quantum
input. A demonstrated alternative is optical homodyne
tomography (OHT) [32,41]. This is also based on a homo-
dyne detection system, but the local oscillator is scanned
to allow full reconstruction of the Wigner function of the
input quantum state. The photocurrents from the detec-
tors are not sent to a spectrum analyser, instead the cur-
rents are recorded by a high speed data acquisition system.
This allows full reconstruction of the statistical moments
of the data, albeit at some cost in terms of equipment and
computing power. We have experimentally reconstructed
the Wigner function associated with the squeezed vacuum
state, generated by our OPA system. The OHT detection
system is described in details in reference [42]. In Figure 6
we show the reconstructed Wigner function of a squeezed
vacuum state (Fig. 6a) and of an ordinary vacuum state

(Fig. 6b). Using the latter state for calibration we find a
squeezing degree of 4.1 dB. An important observation is
the Gaussian nature of the Wigner functions, which is jus-
tifying the Gaussian claim made in the theoretical section.

An alternative technique, which is also based on ho-
modyne detection, will now be described. The scheme is
shown in Figure 1. Consider a homodyne system where a
squeezed signal beam, s, is mixed with a strong local oscil-
lator beam, β, at a 50/50 beam splitter, in order to create
a pair of spatially separable quantum correlated beams.
Each beam is detected and the generated photocurrents
are demodulated independently at the RF detection fre-
quency Ωd. The demodulated signal is then low pass fil-
tered with bandwidth δΩ to give a detection frequency
of Ωd ± δΩ. These two processed photocurrents may now
be sent to the x/y inputs of a digital storage oscilloscope.
The displayed result is then a scatter diagram of the in-
stantaneous amplitude quadrature fluctuations of the two
sample beams. This setup therefore provides a real-time
view of the joint fluctuations in a 2δΩ-bandwidth and the
collected data yield the joint probability distribution func-
tion.

By visualising the instantaneous fluctuations, correla-
tion between the photocurrents due to the quantum na-
ture of the signal beam may now be observed directly on
the oscilloscope. It will be shown below that the data con-
tain the θ-quadrature of the signal beam, δXθ

s , (set by
the phase of the local oscillator with respect to the signal
beam) and the amplitude quadrature of the local oscil-
lator, δX+

β . Like OHT, this technique bypasses the spec-
trum analyser therefore giving all statistical moments of
the quadratures recorded, however it does not allow recon-
struction of the Wigner function since only one quadrature
is recorded.

Besides visualizing quantum correlation this technique
provides quantitative information about the variance of
the amplitude quadratures of the two beams emanating
from the beam splitter, the quadrature variance of the
weak signal beam, the amplitude quadrature variance of
the bright beam and, finally, the correlation coefficient and
conditional variances between the two possibly entangled
beams. All this information is gained in a single measure-
ment of the joint distribution function.

6.1 A more detailed description and interpretation

The demodulated photocurrents collected by the two ho-
modyne detectors are given by:

δnθ
1(Ωd ± δΩ, t) =

1
2
β{δX+

β (Ωd ± δΩ, t)

+ δX+
s (Ωd ± δΩ, t) cos θ + δX−

s (Ωd ± δΩ, t) sin θ} (6)

δnθ
2(Ωd ± δΩ, t) =

1
2
β{δX+

β (Ωd ± δΩ, t)

− δX+
s (Ωd ± δΩ, t) cos θ − δX−

s (Ωd ± δΩ, t) sin θ} (7)
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Fig. 7. Simulation of a joint density function, P (δn1, δn2), for
two partial correlated photocurrents, δn1 and δn2. The pro-
jected marginal density functions, P (δn1) and P (δn2), are also
shown.

where δX+
β corresponds to the amplitude quadrature fluc-

tuations of the local oscillator while δX+
s and δX−

s are the
amplitude and phase quadrature fluctuations of the input
squeezed mode, respectively. β is the average, time inde-
pendent coherent amplitude of the local oscillator and is
assumed to be much greater than the coherent amplitude
of the signal beam.

Successive measurements of these currents allow the
construction of a two dimensional probability density dis-
tribution P (δnθ

1, δn
θ
2) of current amplitudes. As mentioned

above, this is made visible by displaying the currents δnθ
1

and δnθ
2 simultaneously with an storage oscilloscope in

x/y-mode. The density of dots, (as seen in the experimen-
tal results of Fig. 8) is proportional to the joint proba-
bility distribution function, P (δnθ

1, δn
θ
2), of the joint fluc-

tuations. Since the fluctuations of the two photocurrents
manifest individually Gaussian statistics, P (δnθ

1) and
P (δnθ

2), the combined statistical realization, P (δnθ
1, δn

θ
2)

is a bivariate Gaussian as shown in the simulation in Fig-
ure 7. A contour of the joint probability distribution will
in general yield an ellipse.

The shape of P (δnθ
1, δn

θ
2) is determined by the correla-

tion of the entangled pair, created by the squeezed beam
and the beamsplitter. If the quadratures of the two beams
are statistically independent the correlation between them
is zero (C2 = 0) and the two data sets create a circular,
symmetric shape. Perfect correlation or anti-correlation
(C2 = 1) gives a straight line at either 45◦ or –45◦ with
respect to the coordinate axis, while partial correlation
(see Fig. 7) yields a shape of an ellipse oriented at ±45◦.
Other correlation angles are not possible since the system
is perfectly balanced.

In addition to the two projected marginal distribu-
tion functions shown in Figure 7, projections on the +45◦
and −45◦ are also of high relevance as these marginal func-
tions provide the probability distributions of the sum and
difference currents of the two beams, respectively. In other
words, the marginal distribution functions along the ±45◦

axes give us a link back to conventional homodyne mea-
surements. Therefore, the standard deviation along the
+45◦ and the –45◦ axes correspond to the standard de-
viations of the sum and the difference of the photocur-
rents as would regularly be obtained from homodyne
detection with a spectrum analyser. These, in turn, cor-
respond to the standard deviations of the noise of the lo-
cal oscillator,

√
V +

β =
√
〈|δX+

β |2〉, and the signal beam,√
V θ

s =
√〈|δXθ

s |2〉, as indicated in Figure 7. Finally, the
conditional deviation,

√
Vδn2|δn1 , can be deduced by fix-

ing one of the variables while considering the probability
distribution of the other one, as shown in Figure 7.

The size of the scatter plot may be calibrated in the
same way as any other homodyne measurements: by using
the vacuum state. Setting the signal beam to be the vac-
uum state gives

√
V θ

s = 1, therefore providing a quantum
noise reference for all other measurements. The existence
of quantum entanglement and hence squeezing is thus vi-
sualised directly on the oscilloscope by the observance of a
45◦ tilted ellipse with a standard deviation less than that
of the vacuum state.

The correlation coefficient, C, between the photocur-
rents may be found by measuring the standard deviations
of the ±45◦ projections. Alternatively and more accu-
rately, the coefficient can be calculated using all individual
current data and the definition

C =
1

m
√

V θ
1 V θ

2

m∑
i=1

[
δnθ

1

]
i

[
δnθ

2

]
i

(8)

where m is the number of acquired pairs of data. This
provides a value for C of high accuracy. This, in turn,
may be used to find the variance of the signal beam Vs,
as will be demonstrated below. In the simplest case, if
the local oscillator is shot noise limited, we find Vs =
(1 − C)/(1 + C).

6.2 Using a quantum noise limited local oscillator

Examples of visualising the correlation created by mixing
a phase squeezed beam and a quantum noise limited local
oscillator at a beamsplitter are shown in Figure 8. Here
the scatter plots of the joint density function are shown
for different operating conditions with m = 10, 000 pairs
of acquired data at Ωd/2π = 4.5 MHz and a bandwidth
of δΩ/2π = 100kHz. The contours in Figure 8 are defined
as the conditional deviation of the data as a function of
the data angle (see Ref. [8b]). First we considered the case
where the two beams are blocked and hence only the dark
noise is recorded (Fig. 8a). Due to the nature of dark noise
we expect the two measured variables to be statistically
independent and hence the correlation to be vanishingly
small. This is indeed the case and we measure a correlation
of only C2 = 0.008. Similarly, a small correlation is en-
countered when the squeezed beam is blocked, leaving only
vacuum entering the homodyne system. This measure-
ment is shown in Figure 8b and the correlation is measured
to C2 = 0.009. Unblocking the squeezed beam and setting
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Fig. 8. Experimental two-dimensional correlation plots taken
at 4.5 MHz. (a) All beams into the homodyne detection system
are blocked and only the dark noise is recorded. (b) The local
oscillator beam is unblocked while the other beamsplitter input
port is illuminated by vacuum only. (c) Phase squeezing is
created and the relative phase between the local oscillator and
the squeezed beam is locked to θ = π/2. (d) The relative phase
is rotated to θ = 0 in order to detect the correlations produces
by the anti-squeezed quadrature.

the local oscillator phase to θ = π/2 gives rise to quantum
correlation between the two output beams from the beam-
splitter. This is seen from equation (7) with θ = π/2 and
δX−

s → 0. The generated quantum correlation is clearly
visualised in Figure 8c by an uncertainty area, which is
squashed relative to the vacuum noise in Figure 8b. We
measure a strong quantum correlation of C2 = 0.16. Since
the local oscillator is quantum noise limited the origin of
the correlation is purely quantum mechanically. Setting
the phase of the local oscillator relative to the squeezed
beam to zero (θ = 0) means that the noisy amplitude
quadrature of the squeezed beam is detected and a strong
anti-correlation between the two output beams is evident
since the anti-squeezing is much bigger than the shot noise
(see Eq. (8)). This anti-correlation is shown in Figure 8d
with a correlation coefficient of C2 = 0.47.

6.3 Using a local oscillator in a mixed state

The quantum noise limited nature of the local oscillator
at 4.5 MHz was verified by the symmetry of the fluctu-
ation circle in Figure 8b. However, at lower frequencies
we expect that technical noise from the laser which passes
through the mode-cleaner contributes classical noise to the
local oscillator. This leads to a modification of the local
oscillator noise in equation (7). The noise now consists of
a quantum part, δX+

βq, and a classical part, δX+
βc, such

that δX+
β = δX+

βc + δX+
βq. For the two choices θ = 0 and

θ = π/2 equations (7) now become (dropping the argu-
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Fig. 9. Below: power spectrum of the (a) detectors dark noise,
(b) the amplitude squeezing, (c) the shot noise and (d) the
phase anti-squeezing. Above: two-dimensional correlation plots
at three different frequencies and three different operation con-
ditions; from the top θ = π/2, θ = 0 and with blocked signal
beam.

ments for simplicity):

δn0
1,2 ∝ 1

2

(
δX+

βq + δX+
βc ± δX+

s

)
→ 1

2

(
δX+

βq + δX+
βc

)

δn
π/2
1,2 ∝ 1

2

(
δX+

βq + δX+
βc ± δX−

s

)
→ 1

2

(
δX+

βc ± δX−
s

)
(9)

where we have used the fact that the fluctuations in the
amplitude quadrature of the squeezed beam is small so
δX+

βq � δX+
s and δX−

s � δX+
βq. Owing to the eventual

classical excess noise in the local oscillator the correla-
tion displayed by the scatter diagram may originate from
quantum modulations in the squeezed beam as well as the
classical modulations in the local oscillator beam. The to-
tal correlation we denote Cm, while the quantum correla-
tion and the classical correlation is denoted by Cq and Cc,
respectively. The three correlation coefficients are related
through the expression:

Cq =
(1 + Ve)(Cm − Cc)

(1 + Ve)(1 − Cm)Cc + (1 − Ve)(1 − Cc)
(10)

where Ve is the spectral variance of the electronic noise
floor relative to the quantum noise level. The correlation
of the electronic noise was found to be zero and therefore
neglected in this expression.

Examples of mixed states are given in Figure 9, where
the signal beam is amplitude quadrature squeezed and
the local oscillator is either in a thermal state or in a co-
herent state depending on the detection frequency. The
lower part of the figure shows the power spectrum of
the electronic detector noise (a), the amplitude quadra-
ture squeezing (b), the quantum shot noise (c) and the



190 The European Physical Journal D

amplitude quadrature anti-squeezing (d). At four distinct
frequencies, 2.2 MHz, 3.5 MHz and 4.5 MHz, marked with
vertical lines, we constructed the correlation plots shown
in the upper part of the figure. Nine different plots were
obtained; three at each frequency with θ = π/2 (up-
per row), θ = 0 (middle row) and when the amplitude
squeezed beam is blocked such that only the amplitude
quadrature of the local oscillator is monitored (lower row).
In the latter case all quantum correlations are excluded
and only correlations of pure classical origin are seen.
At 4.5 MHz the classical correlation is negligible C2

c = 0.01
and can hardly be seen. Small visible classical correlations
start to appear at 3.5 MHz (C2

c = 0.08), and at 2.2 MHz
we see that they become very large with C2

c = 0.67. Turn-
ing our attention to the middle row pure quantum corre-
lation at 4.5 MHz appears due to the squeezed beam and
attains a value of C2

q = 0.16. At 3.5 MHz and at 2.2 MHz a
mixture of quantum and classical correlation is seen with
a total correlation of C2

m = 0.37 and C2
m = 0.83, respec-

tively. Because we know the degree of classical correla-
tion (lower row), the degree of total correlation (middle
row) and the spectral variance of the dark noise, the pure
quantum correlation can be inferred from equation (10).
We calculate C2

q = 0.18, C2
q = 0.22 and C2

q = 0.14
at 2.2 MHz, 3.5 MHz and 4.5 MHz respectively. While
equation (4) shows that the quantum correlation should
be best at lower frequencies with maximum at zero, tech-
nical noise in the laser masks this effect. We see a trend
from 4.5 MHz to 3.5 MHz with an enhancement of 0.08,
but the correlation is reduced again at 2.2 MHz.

When the relative phase is switched to θ = π/2 the
phase quadrature anti-correlation originating from the
squeezed beam is monitored together with the ampli-
tude laser noise correlation as evident from equations (9).
At 4.5 MHz and 3.5 MHz the anti-correlation dominates,
with correlation of C2

m = 0.51 and C2
m = 0.57 respectively.

However, at 2.2 MHz the laser noise becomes comparable
to the anti-squeezing resulting in a big noisy uncorrelated
state as is shown in the top left corner of Figure 9.

7 Conclusion

We have demonstrated four different modes of generat-
ing squeezed light using a monolithic degenerate opti-
cal parametric amplifier in the quantum regime. Efficient
generation of vacuum squeezing, dim and bright ampli-
tude quadrature squeezing and phase quadrature squeez-
ing have been shown. We have demonstrated the relia-
bility and stability of the squeezing and obtained 5 dB
of amplitude squeezing over one hour of operation using
five stable, electronic locking loops. In addition we have
showed the first demonstration of bright phase squeezed
light and achieved 4.2 dB noise suppression.

Quantum correlations as well as classical correlations
were visualised directly by displaying the photocurrents
of the two output beams that were created by mixing a
squeezed beam with either a quantum noise limited or a
thermal noisy local oscillator at a beamsplitter; a homo-
dyne detection system. The degree of noise suppression

and the correlation coefficient for both the nonclassical
signal beam and the local oscillator can be determined
quantitatively. The results are very educational in that
they are showing the different types of correlations di-
rectly and provide an attractive means of demonstrating
the properties of squeezed light.
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