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Abstract

During the fabrication of quasi-phase-matched (QPM) devices, errors of periodic structure are usually inevitable.

The errors result in the deviation of the actual periodic domain length from the theoretical value. In this paper we

numerically analyze the influence of the errors on the degenerate optical parametric amplifier consisting of QPM de-

vices. It is shown that in this case the gains of signal photon number and normalized photon number variance are

decreased with respect to those of an ideal QPM device. However, there are no extra noises to be introduced, the output

signal-noise-ratio is equal to the input signal-noise-ratio if the small linear absorption in QPM devices is ignored. It has

been also proved that the noise figure of the noiseless amplifier does not vary with the pump power and the propagation

length of the signal light in the QPM crystal.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years a new type of non-linear crys-

tals called quasi-phase-matched (QPM) crystals

has appeared. In a QPM crystal the non-linear

susceptibility is periodically inverted to compen-

sate for phase–velocity mismatch between the

interaction waves. High parametric conversion

efficiency and long utilizable interaction length

are the significant advantages of QPM crystals.

Due to the periodically inverted construction the
largest effective non-linear coefficient of crystals

can be exploited and the non-critical phase

matching can be achieved within a very large

wavelength range by tuning the temperature of

QPM [1]. The favorable features of the QPM

materials have made it being widely used in non-

linear optical frequency conversion [2–4]. In 1995

[5] analyzed the quantum noise reduction and
the noiseless optical parametric amplification

using QPM crystal for the first time. The calcu-

lated results in this paper showed that a QPM
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parametric amplifier could achieve noiseless am-

plification in one of quadratures of light field and

squeezing in other conjugate quadrature with an

equivalent gain. Comparing with the traditional

birefringent materials, the quantum noise reduc-

tion and noiseless amplification can be demon-
strated at a relatively low pump power when

QPM devices are used. More and more interests

in the theoretical and experimental investigation

of QPM crystal are growing up [6]. The genera-

tions of the squeezed state light and noiseless

amplification have been experimentally accom-

plished with QPM devices [7–13].

In a practical QPM device, there are inevitable
deviations between the real domain length and

the designed length due to the imperfect fabrica-

tion technology. Ref. [14,15] have considered the

effect of the deviations on the conversion effi-

ciency of the second harmonic generation (SHG)

and [16–18] have analyzed the effect on squeezing

of light fields produced from the process of SHG

and degenerate optical parametric amplification.
In this paper we numerically calculated the in-

fluence of the errors in domain length on the

properties of degenerate optical parametric am-

plification.

2. Model of periodic errors

At present, the best way to fabricate a QPM

device is the technique of electric-field poling re-

versal, that is a high electric field is momentarily

applied on the grating electrodes of QPM crystal

formed by lithography to produce permanent in-

version patterns. This technique is very effective,

and in fact, the production and quality have been

significantly improved. But during the fabrication
process the errors of the periodic domain length

are inevitable. For QPM materials fabricated by

the above mentioned method, the main periodic

error is the random duty cycle error as shown in

Fig. 1 [14,15]. In a QPM device with this error each

domain boundary is randomly shifted from the

ideal position while the average domain period

length remains constant.
In the calculation we assume this deviation

obeys a Gaussian distribution [14]

P ðekÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp

�
� e2k
2r2

�
; ð1Þ

where ek ¼ ðzk � kðK=2ÞÞ=ðK=2Þ, zk is the distance
from the beginning of the first domain to the end
of the k th domain, K is ideal period length, r is

standard deviation.

3. Model of calculation

The system that we consider consists of signal

field, idler field, strong pump field and a QPM
non-linear medium with its bulk effective non-lin-

ear coefficient dð2Þ. We assume that the pump field

is undepleted and described by a c-number (clas-
sical treatment of the pump field) and ignoring

optical losses, the equations of coupled waves of

the non-linear interaction are written [5]

daðzÞ
dz

¼ g exp½iðDkzþ /pumpÞ�bþðzÞ;

dbðzÞ
dz

¼ g exp½iðDkzþ /pumpÞ�aþðzÞ;
ð2Þ

where aðzÞ and bðzÞ stand for operators of signal

and idler fields, /pump is the phase of pump.

Dk ¼ kpump � kidler � ksignal is the wave vector mis-
match,

g ¼ m
2xsignalxidlerjdð2Þj2Ipump
nsignalnidlernpumpe0c3

" #1=2

is the non-linear coupling coefficient, the parame-
ter m is 1 for non-inverted domains and )1 for

inverted domains. dð2Þ is the second order effective

non-linear coefficient, c is the speed of light in

vacuum, Ipump is the pump power, e0 is the dielec-
tric constant of vacuum, nsignal, nidler and npump are
the refractive indices for signal, idler and pump

fields, respectively. For a degenerate frequency

Fig. 1. Model of random duty-cycle error. Up arrows and

down arrows indicate non-inverted and inverted polarization,

respectively, the dash dot line and the solid line are ideal

boundary and actual boundary, respectively.
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down-conversion with identical signal and idler

fields Eq. (2) are simplified to

daðzÞ
dz

¼ g exp½iðDkzþ /pumpÞ�aþðzÞ: ð3Þ

According to the method proposed by [5] we

introduce two variables

pðzÞ ¼ 1

2
exp

��
� i

Dk
2
z

�
þ
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2

��
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þ exp i
Dk
2
z

��
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;

qðzÞ ¼ �i
2

exp

��
� i

Dk
2
z
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þ

/pump

2

��
aðzÞ

� exp i
Dk
2
z
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2

��
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:

ð4Þ

Combining Eqs. (3) and (4), the equations of

motion of pðzÞ and qðzÞ are obtained
dpðzÞ
dz

¼ gpðzÞ þ Dk
2
qðzÞ;

dqðzÞ
dz

¼ �gqðzÞ � Dk
2
pðzÞ:

ð5Þ

Taking K ¼ ½ðDk=2Þ2 � g2�1=2 and assuming

ðDk=2Þ2 > g2 (which is usually satisfied in the

practical system), we introduce the dimensionless

variables

D ¼ Dk=2K; G ¼ g=K;

C ¼ cosðKzÞ; S ¼ sinðKzÞ:
Equation (4) can be simplified to

pðzÞ
qðzÞ

� �
¼ C þ GS DS

�DS C � GS

� �
pð0Þ
qð0Þ

� �
: ð6Þ

For a first order QPM device, we have K ¼ p=K.
At the end of the first domain, we have

C1 ¼ cos
p
2
ð1

h
þ e1Þ

i
and

S1 ¼ sin
p
2
ð1

h
þ e1Þ

i
;

thus Eq. (6) becomes

pðz1Þ
qðz1Þ

� �
¼ C1 þ GS1 DS1

�DS1 C1 � GS1

� �
pð0Þ
qð0Þ

� �
: ð7Þ

At the end of the second domain we have

pðz2Þ
qðz2Þ

� �
¼

C2 þ GS2 DS2

�DS2 C2 � GS2

� �



C1 þ GS1 DS1

�DS1 C1 � GS1

� �
pð0Þ
qð0Þ

� �
: ð8Þ

After propagating through n periods, we obtain

pðz2nÞ
qðz2nÞ

� �
¼ A B

C D

� �
pð0Þ
qð0Þ

� �
; ð9Þ

where matrix

A B
C D

� �
is the product of 2n matrices

Ci þ GSi DSi
�DSi Ci � GSi

� �
describing the propagation of the signal wave.
Combining Eqs. (4) and (9) we have

aðzÞ ¼
exp½iðDkz=2þ /p=2Þ�

2
að0Þ expð
�

� i/p=2Þa

þ iaþð0Þ expði/p=2Þb


; ð10Þ

where a ¼ ðAþ DÞ þ iðC � BÞ, b ¼ ðBþ CÞþ
iðD� AÞ.
We assume that the original signal is in a

coherent state jasi, after some calculations the
mean number of photon and the photon number

variance at the output of the amplifier are given

by

hn̂ni ¼ jasj2 jaj2
�

þ jbj2 þ a
beiðUþp=2Þ þ ab
e�iðUþp=2Þ
�
;

ð11Þ

hðDn̂nÞ2i ¼ jasj2 ðjaj2
n

þ jbj2Þ2 þ 4jaj2jbj2

þ 2 jaj2
�

þ jbj2
�

a
beiðUþp=2Þ�
þ ab
e�iðUþp=2Þ�o; ð12Þ

where U ¼ /pump � 2/signal is the relative phase
between the pump and the signal fields, /signal is the

phase of signal field.

It is useful to introduce the noise figure NF
defined as the ratio between the input and output

signal-to-noise ratio [19]
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NF ¼ Sin=Nin

Sout=Nout

¼ jaj2
��

þ jbj2
�2

þ 4jaj2jbj2

þ 2 jaj2
�

þ jbj2
�

a
beiðUþp=2Þ�
þ ab
e�iðUþp=2Þ��

�
jaj2

�
þ jbj2 þ a
beiðUþp=2Þ þ ab
e�iðUþp=2Þ

�2
;

ð13Þ
where Sout and Sin are the output and input signal
powers, Nout and Nin are the output and input noise
powers. In the case of NF ¼ 1, the amplifier is

noiseless, i.e., the input signal-to-noise ratio is

preserved and no extra noise is introduced during

the amplification.

4. Numerical analysis

As an example, we consider the first-order QPM

lithium niobate, the d33 of which is used for per-

forming the parametric down conversion from

1064 to 2128 nm. The corresponding parameters

used in the calculation are as follows: kpump ¼
1:064 lm, ksignal ¼ kidler ¼ 2:128 lm, the non-lin-

ear coefficient dð2Þ ¼ 22 pm=V, and the period

length K ¼ 31 lm.
The maximum gains of mean photon number

and normalized photon variance, and the noise

figure NF as the functions of standard deviation r
are plotted in Fig. 2. As r increases, the gains of

mean photon number and normalized photon

number variance decrease. The two curves of gains

overlap at any point of r, that means they are al-
ways equal. However, NF remains the constant of
1, i.e., noiseless amplification. Although the period

errors degrade the gain of the amplifier, the noise

figure is not changed, so the amplifier is still

noiseless. In Fig. 3 we show the gains of mean

photon number and normalized photon number

variance, and the noise figure NF as the functions

of the relative phase between the pump and the

signal light with r ¼ 0. We can see the gains
of photon number and normalized photon num-

ber variance are the same for the two cases of

amplification (highest point) and deamplification

(lowest point). The curve of NF goes to 1 at the

maximum and minimum gain points, it shows that

only when the amplifier operates at the maximum
amplification and deamplificaton the amplifier is

exactly noiseless. Fig. 4 is similar to Fig. 3 but with

r ¼ 0:1. The gains of mean photon number and

normalized photon number variance are less than

that of r ¼ 0 due to the existence of errors. We

should pay attention on that there are totally

similar function relationships between Figs. 3 and

4. The two gains are still same at the maximum

Fig. 2. The gains of photon number and normalized photon

number variance, noise figure NF as the functions of standard

deviation, Ipump ¼ 2:55 MW=cm2, Lppln ¼ 2 cm.

Fig. 3. The gains of photon number (a) and normalized photon

number variance (b), noise figure NF (c) as the functions of

relative phase between pump and signal light for r ¼ 0,

Ipump ¼ 2:55 MW=cm2, Lppln ¼ 2 cm.
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amplification and deamplification points and
where NF equal to 1 also. Thus when there are

errors of domain length in QPM materials the

noiseless parametric amplification and deamplifi-

cation can be still be accomplished.

The maximum gain of amplifier and corre-

sponding noise figure NF as the functions of

propagation length for three different standard

deviation are shown in Fig. 5. It is clear the gain
increases along with the increase of the propaga-

tion length for all given r, but when the error r is

larger the gain becomes lower. For example, at the
propagation length of 2 cm, the gains are 10.3, 7.5

and 3.7, respectively, with respect to r ¼ 0, r ¼ 0:1
and r ¼ 0:2. Whatever the noise figure NF always

equals 1 as mentioned above.

The maximum gain of amplifier and corre-

sponding noise figure NF as the functions of pump

power for three different standard deviations are

shown in Fig. 6. Similar to Fig. 5, the gain in all
cases increases when the pump power is increased.

Existence of errors only reduces the slope of

curves. The larger r is, the smaller the slope of the
gain curves is, while NF still remains constant.

5. Conclusion

In this paper we numerically analyze the influ-

ence of random boundary error in QPM crystals

which are formed in the fabrication process on the

degenerate optical parametric amplification. It is

shown that when the errors increase the gains of

the signal photon number and normalized photon

number variance degrade synchronously, but the

noise figure remains constant and thus the QPM
amplifier is still noiseless. We also prove that the

noise figure does not vary with the propagation

length of signal light in QPM material and pump

power when the amplifier operates at the maxi-

mum parametric amplification and deamplifica-

Fig. 5. The gains of photon number and normalized photon

number variance, noise figure NF as the functions of propa-

gation length for different standard deviation, Ipump ¼
2:55 MW=cm2.

Fig. 6. The gains of photon number and normalized photon

number variance, noise figure NF as the functions of pump

power for different standard deviations, Lppln ¼ 2 cm.

Fig. 4. The gains of photon number (a) and normalized photon

number variance (b), noise figure NF (c) as the functions of

relative phase for r ¼ 0:1, Ipump ¼ 2:55 MW=cm2, Lppln ¼ 2 cm.
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tion. A QPM device with the random boundary

errors do not result in the extra noises and only

suffer from the degradation of the parametric gain

relative to an ideal QPM amplifier. However, the

gains of the present QPM amplifiers with random

boundary errors are still much higher than that of
normal birefringent crystals. Therefore, QPM de-

vices can be widely used not only in the field of

non-linear optics but also in the field of quantum

optics, such as the squeezing of quantum noise and

noiseless amplifier etc.
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Fabre, Phys. Rev. A 64 (2001) 033815.

[13] D.J. Lovering, J.A. Levenson, P. Vidakovic, Opt. Lett. 21

(1996) 1439.

[14] S. Helmfrid, G. Arvidsson, J. Opt. Soc. Am. B 17 (1991)

797.

[15] M.M. Fejer, A. Magel, D.H. Jundt, R.L. Byer, IEEE J.

Quantum Electron. 28 (1992) 2631.

[16] L. Noirie, P. Bidakovic, J.A. Levenson, J. Opt. Soc. Am. B

14 (1997) 2631.

[17] J. Maeda J, I. Matsuda, Y. Fukuchi, J. Opt. Soc. Am. B 17

(2000) 942.

[18] Y.-M. Li, Y.-R. Wu, K.-S. Zhang, C.-D. Xie, K.-C. Peng,

Chin. Phys. 11 (2002) 790.

[19] I.E. Protsenko, L.A. Lugiato, C. Fabre, Phy. Rev. A 50

(1994) 1627.

418 Y. Li et al. / Optics Communications 215 (2003) 413–418


	Influence of random deviation of domain length in quasi-phase-matched crystals on degenerate optical parametric amplification
	Introduction
	Model of periodic errors
	Model of calculation
	Numerical analysis
	Conclusion
	Acknowledgements
	References


