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Quantum fluctuation and quantum entanglement of the pump fields reflected from an optical cavity for
type-Il second-harmonic generation are theoretically analyzed. The correlation spectra of quadrature compo-
nents between the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses,
and normalized frequency. High correlation of both amplitude and phase quadratures can be accessed in a triple
resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an en-
tangled state with quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The
proposed system can be exploited as a source for generating entangled states of continuous variables.
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Introduction Quantum information has attracted great in-tics of the reflected pump fields and calculated the spectra of
terest in recent years. The realization of quantum teleportasqueezing for SHG and OP@ptical parametric oscillatpr
tion [1-4] and quantum dense codifg—9] further enhanced respectively. It was pointed out in R¢fL6] that for the case
confidence and passion in researching and developing quanf type-Il harmonic generation there exists a threshold that is
tum cryptography and quantum-information processingidentified as the onset of an OPO formed by a subharmonic
Quantum entanglement plays an essential role in quantunmode with its polarization orthogonal to the input polariza-
information and, therefore, the preparation of quantum ention (not the original modésand that the output of the or-
tangled states becomes the basic work in quantumthogonal polarization mode from the OPO exhibits phase
information science. squeezing. Jackt al. [17] generalized the symmetric pump-
The entanglement of quantum systems with continuousng case of Ref[16] to asymmetric case which causes large
spectra is closely connected with squeezed states of opticghanges in the classical dynamical behavior of the system.
fields. The bipartite entangled states of continuous variablgqueezing and entanglement of doubly resonant type-Il SHG
have been generated through the combination of two singleyas analyzed in Ref18]. In Refs.[16—1§, the dependences
mode squeezed vacuum states at a beam splitter and hayethe quantum fluctuations as well as correlation variances
been successfully applied in the experimental realizations off the quadratures of the reflected fields on the pump param-
continuous-variable quantum teleportation of arbitrary cohereters(p/p,,) and on the losses of the subharmonic modes are
ent state$2—4]. The light beams of Einstein-Podolsky-Rosen ca|culated, but the dependence on the loss of the harmonic
(EPR entanglement have also been obtained by splitting ghode is not discussed.
two-mode squeezed-state light with a polarizing beam split- |n the present paper, we will analyze both the classical
ter and have been used in quantum optical communicatiogehavior and the quantum correlations of the amplitude and
[10] and dense codin]. Recently, by distributing one two- phase quadratures of the two eigen-subharmonic modes re-
mode squeezed state among three partites using linear optigscted from a single-ended cavity of type-ll second-
device, the bright tripartite entangled light beams are geneharmonic generation under the condition of below the intra-
ated and are utilized to achieve the controlled quantum dens&yity OPO threshold. The optical cavity is triply resonant
coding[9]. A fully inseparable tripartite continuous-variable poth for the two subharmonic modes and for the harmonic
state has also been obtained by combining three independemjde simultaneously. The dependences of quantum correla-
squeezed vacuum statiid]. So far, in all the above experi- tjons of the amplitude and phase quadratures on the analysis
ments the entangled states of continuous variables are gefiequencies, on the pump parameter, and on the loss of the
erated through degenerate or nondegenerate optical paramgirmonic field are numerically analyzed. The results show
ric amplifiers [2-13. These experimental systems have tothat the two reflected subharmonic modes are in an entangled
include two parts, first the second-harmonic generatiorstate with a phase-quadrature correlation and an amplitude-
(SHG) and then the parametric down-conversion. On theyyadrature anticorrelation, which has been shown to be of
other hand, it has been experimentally demonstrated that thgeat importance in quantum communicatih8,g. It is
pump fields reflected from a cavity of intracavity SHG arefound that the loss of harmonic wave strongly influences the
squeezed states because of the cascaded nonlinear interactipiantum correlation in the case of the triple resonance with
between subharmonic and harmonic fields inside the cavityyy |oss. According to the Peres-Horodecki inseparability
[14,195. Ou[16] and Fabre and co-workef$5] theoretically  criterion of EPR entanglement state for continuous variables
analyzed the quantum fluctuation and squeezing characterigroposed by Duaiil9], the inseparability between the two
reflected subharmonic modes is confirmed by numerical cal-
culations. The proposed system can be exploited to be a dif-
*Email address: jrgao@sxu.edu.cn ferent type of entanglement sources for continuous variables
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FIG. 1. Sketch of experimental setup.

Normalized noise variance

with relatively simple configuration and high quantum corre-
lation. The given numerical calculations may provide useful 0 1 5 3 4 5
references for the design of the entanglement sources. Q

Fluctuation and correlation spectra of reflected pump ) . ut
modes The sketch of SHG is shown in Fig. 1. We consider ~FIG- 2. The quantum noise spectra$f., andS{Ly, vs nor-
the SHG process in a triply resonating optical cavity with amalized frequency) with y=0.02, %,=0.015, %,=0.002, ando
nonlinear x? crystal cut for type-Il phase matching. The =0.8.
triple resonance means that the two subharmonic pump o .
modes and the harmonic mode simultaneously resonate ghow that bothy; and «, are real numbers. The oscillation
the cavity. Under the ideal case with perfect phase matchinthresholdg"and pump parameter are expressed by
and without any detuning, the equations of motion for a

single-ended cavity with one mirror used for input and out- B =29y X (4a)
put coupler can be expressed[26] o=pIp". (4b)

Tag(t) = = yoao(t) — xay(®ao(t) + V2yaco(t), (1) Solving Egs(3b) and(3c) the steady-state solutions of three
the modes above the threshdld=1) are given by

oy (1) = = yraq(t) + xap(t) ag(t) + V2ypa'e 1+ 12y (1), — lyye(0? = 1)
(1b) @ = \7’7’00_ VY% , (5a)
X X
() = — ) / ingidy 4/ — —
Tap(t) = = yaaa(t) + xay (Y ap(t) + V2ypa3 €72+ V2ycCo(1). — v Nywl(e?-1)
= + (5b)
(1C) ap g y
X X
Here ay, a4, anda, are the amplitudes of harmonic field and w=— (50)
two pump fields inside the cavity, respectively. The round- 0 X
trip time of all modes in the cavity is assumed to be sameand below the thresholtb-< 1) by
The single pass loss parametegs and y,; (i=0,1,2 stand
for the transmission loss through the input-output coupler = a=a, (63
and all other extra losses, respectivejy= y,;+ v denotes —
the total loss coefficienty] and @y denote the amplitudes of a=Nyylxo', (6b)
two input pump fields outside the coupler. In the case of _ -
Yi<1, w is related to the amplitude reflection coefficients ag==yo'“Ix, (6¢)
ri and transmission coefficientsof the coupler by the fol-
lowing formula: ri=1-7y,,, ti:VZij- Assuming .the two o' =(o+ \/02+ 237)1/3_ %((ﬁ \,/02+ 237)—1/3_
pump modes have the same positive real amplitgdeero
initial phase, and balanced losses in the cavity, we have Entanglement characteristics between the two subhar-
monic modes reflected from the coupler are denoted by the
Y= 725, (28 correlations of quantum fluctuations of their amplitude
Yor= Yoz = Yo (2b) quadratureX and phase quadratud We just consider the

o case of below the threshold. The dynamics of the quantum
Ye1= Ye2 = Yo (200 fiyctuations can be described by linearizing the classical

The steady-state solutions of Eq$) are obtained to be equations of motion around the stationary state. Seiting
=a;+da;, of"=p;+8b; (i=0,1,2, and using Eq.(1), we

ag=—Kajayl vy, (38  have
(= v= (X% yo)|ag) Ty + \s'z_ybg =0, (3b) Ta(t) = = yoba(t) — xlapday(t) + ay day(t)] + \"T%)Co(t),
(79
[= v~ O yo)larllaz + V27,80, (30) - .
whereay, a;, a, are the steady-state amplitudes of the three Téan(Y) = - 75;"1(") * xlagday(t) + azdag(t)] + N2y, (D
intracavity modesag, a4, and a,. Equations(3b) and (3c) + \;’Z%Cl(t), (7b)
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FIG. 3. The quantum noise spectragf’, andSiLy vs har-

monic lossy, with y=0.02, y,=0.015,0=0.6, andyB=0.001.

Toay(t) = — ySa(t) + x[agday(t) + @y Sag(t)] + \2y,6by(t)
+\2y0o(0). (70)

The optical modes O can be expressed
amplitude quadratureX and phase quadratureé as O
:%(X+IY)1 with O:[aOIalva21b01CO=blIClvb2=C2:|a
X=[Xo, X1, X2, X005 Xc0s Xp1 s Xe11 Xp2s Xeal, and Y
=[Yo,Y1,Y2, Yo, Yeo, You: Yes Yz, Yeol-
Substituting these into Eqé7a—(7¢), we have
7oXo(t) = = Yo Xot) = x[a2dXe (D) + @1 OXa(0)]

+ 290 X(1), (8a)

76Xy (1) = = y8Xq (1) + x[aptXa(t) + adXo(B)] + V29,6Xpa (1)
+ V258X (1), (8b)

76X(t) = = yXolt) + X[ apXy(t) + @OXo(1)] + V295 0Kp(t)

+ 29, X(1), (80)
and
76Yo(t) = = Y00Yo(t) — xLapdY1(t) + a3 8Y(t)]
+V2908Y (1), (9a)
1
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FIG. 4. The quantum noise spectrum@fl’ixz(ﬂ) li‘_YZ(Q) VS
harmonic lossyg with 1=0.6, y=0.02, 1,=0.015, andy3=0.001.
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FIG. 5. The quantum noise spectrum@fiixz(ﬂ)gj‘l“_\(z(ﬂ) Vs

pump parameterr with y=0.02, 14,=0.015, y,=0.002, andQ
=0.6.

T6Y1(t) = = y8Y1(t) = X[@pdYa(t) = @dYo(t)] + V2yp8Ypa ()
+\29.8Y(0), (9b)

TOY4(t) = = ySY (1) = X[@dY1(t) = adYo(t)] + V2,8V pa(t)
V298 eol1). (90)

Under the condition of below threshold, combining steady-
state solution expressioli8a) and(6bh), the correlation spec-
tra SXq(w)+ 8Xy(w) and 8Y;(w) = 8Y,(w) (Fourier transfor-
mation atw) are given by

2\ 7700’ Qo+ (Quu + Q) (7o + iw7)

OXy(w) + 0Xp(w) = 5

(10a

8Y1(w) = 8Y5(w) = (Qyr = Q) (y+iwT+ ya'?),
(10b)

where

D=(y+ion(y+ioT+yo'?) +2yy0o'?, (11

/—
Qx(y)O =\V290X(Y)co, (129
1p
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FIG. 6. The quantum noise spectrumﬁiﬁxz(Q)S@‘ile(Q) Vs
normalized frequency) with y=0.02, y,=0.015, y,=0.002, and
0=0.8.
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Quyr = V29X )p1 + V27X (YV)er, (12p)  Inseparability of amplitude and phase quadraturde
inseparability criterion of EPR entanglement state for con-

— — tinuous variables proposed by Dugt8] is
Qxiyy2 = V2¥pX(V)pz + V27 X(Y) o (129 t t
. . . , S () + S (Q) < 2, 15
Using the input-output relations of cavity, 1+X2( ) gj(1 Yz( ) (15)

[ which is suitable for entangled beams with equal quadrature
X} (@) + 8X3 () = V2 [ ¥4 (@) + Xo(w)] fluctuations. For the uneq%al case, asymmtgtrizagon proce-
—[Xp(w) + Xo(w)], (138  dure has to be carried out, and the criterion becoféb
ut ut
BY0) - Y30) = 2l Y3 (0) ~ Y] () < 1. 10
—[6Ypi(w) — Ypo(w)], (13p)  Based on Eqgs(14) we numerically analyzed the depen-
) _ dences of inseparabilit§",, ()™, (Q)on the pump pa-
the correlation spectra of the sum of amplitude q.uadraturercametersgy normalized 1fre2quencl3(f and harmonic loss
and the difference of phase quadratures of outgoing subhary—o, respectively. Figure 4 shows the inseparability of two

monic fields are obtained: subharmonic modes as a function gf at 0=0.6, x8
Ut () = 18X o) + XU ) |2 =0.001, y=0.02, andy,=0.015. InFigs. 5 and 6 the cor-
ol D) =13 @) 21| relation spectr@‘l’ixz(ﬂ)?@‘f_\(z(ﬂ) are plotted vsr and(Q,

_ 8 , 2 . 2 respectively, in which the loss parameters are chosen to be
=21 A+ (o +iQy) - DI2) ¥=0.02,7,=0.015, andy,=0.002, withQ = 0.6 (Fig. 5 and
JE— _ ) 0=0.8 (Fig. 6). It is obvious that the inseparability crite-
+ Vvl vo +1Q9)7], (148 rjon is satisfied in a wide frequency range with reasonable

loss parameters. As is the same in general OPO, the per-
2% fect continuous-variable entangled state can be obtained in
Sriy+ 0l ideal limit. | |
In summary, we analyzed the continuous-variable en-

2

Sy, (@) =[8Y2 (@) - 63 (w)]=2

‘2 2\ Ye (14b) tanglement characteristic of the reflected subharmonic field
y+iQy+ yo'? in type-ll SHG using semiclassical approaches. Dependence

) ) of correlation variances on the parameters are calculated.

whereQ:wT/y is the normahzeq frequency. _ Compared to parametric down-conversion usually used for

ultzlgure Zm'shows the normalized correlation spectra Ofpe entangled-state generation, this scheme is relatively
%, andSyZy . both of which are smaller than the standard simple. The reflected pump field from the SHG cavity is an
quantum limit(SQL, normalized to 1L Figure 3 shows the entangled state with an anticorrelated amplitude quadrature
correlation variances of amplitude and phase quadrature \nd a correlated phase quadrature, which is very useful in the
harmonic loss for given pump powey and normalized quantum informatiori6,8,9.
frequency(). Both %}, andSy:, promptly increase when  We would like to acknowledge Professor Changde Xie for
o increases from 0 to 0.02, then they increase smoothly twaluable discussions. The National Fundamental Research
SQL. With enough smally,, say y,<0.002, the reflected Program(Grant No. 2001CB309304the National Natural
subharmonic modes from a triply resonating cavity forScience Foundation of ChingGrant Nos. 66238010, and
type-ll SHG are in a strongly entangled state with an anti-1027404%, the High Education Institute of MOE
correlation of amplitude quadratures and a correlation of TRAPOYT) of China, and Shanxi Provincial Science Foun-

phase quadraturds,9]. dation supported this work.
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