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Quantum fluctuation and quantum entanglement of the pump fields reflected from an optical cavity for
type-II second-harmonic generation are theoretically analyzed. The correlation spectra of quadrature compo-
nents between the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses,
and normalized frequency. High correlation of both amplitude and phase quadratures can be accessed in a triple
resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an en-
tangled state with quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The
proposed system can be exploited as a source for generating entangled states of continuous variables.
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Introduction. Quantum information has attracted great in-
terest in recent years. The realization of quantum teleporta-
tion [1–4] and quantum dense coding[5–9] further enhanced
confidence and passion in researching and developing quan-
tum cryptography and quantum-information processing.
Quantum entanglement plays an essential role in quantum-
information and, therefore, the preparation of quantum en-
tangled states becomes the basic work in quantum-
information science.

The entanglement of quantum systems with continuous
spectra is closely connected with squeezed states of optical
fields. The bipartite entangled states of continuous variable
have been generated through the combination of two single-
mode squeezed vacuum states at a beam splitter and have
been successfully applied in the experimental realizations of
continuous-variable quantum teleportation of arbitrary coher-
ent states[2–4]. The light beams of Einstein-Podolsky-Rosen
(EPR) entanglement have also been obtained by splitting a
two-mode squeezed-state light with a polarizing beam split-
ter and have been used in quantum optical communication
[10] and dense coding[8]. Recently, by distributing one two-
mode squeezed state among three partites using linear optics
device, the bright tripartite entangled light beams are gener-
ated and are utilized to achieve the controlled quantum dense
coding [9]. A fully inseparable tripartite continuous-variable
state has also been obtained by combining three independent
squeezed vacuum states[11]. So far, in all the above experi-
ments the entangled states of continuous variables are gen-
erated through degenerate or nondegenerate optical paramet-
ric amplifiers [2–13]. These experimental systems have to
include two parts, first the second-harmonic generation
(SHG) and then the parametric down-conversion. On the
other hand, it has been experimentally demonstrated that the
pump fields reflected from a cavity of intracavity SHG are
squeezed states because of the cascaded nonlinear interaction
between subharmonic and harmonic fields inside the cavity
[14,15]. Ou [16] and Fabre and co-workers[15] theoretically
analyzed the quantum fluctuation and squeezing characteris-

tics of the reflected pump fields and calculated the spectra of
squeezing for SHG and OPO(optical parametric oscillator),
respectively. It was pointed out in Ref.[16] that for the case
of type-II harmonic generation there exists a threshold that is
identified as the onset of an OPO formed by a subharmonic
mode with its polarization orthogonal to the input polariza-
tion (not the original modes) and that the output of the or-
thogonal polarization mode from the OPO exhibits phase
squeezing. Jacket al. [17] generalized the symmetric pump-
ing case of Ref.[16] to asymmetric case which causes large
changes in the classical dynamical behavior of the system.
Squeezing and entanglement of doubly resonant type-II SHG
was analyzed in Ref.[18]. In Refs.[16–18], the dependences
of the quantum fluctuations as well as correlation variances
of the quadratures of the reflected fields on the pump param-
eterssp/pthd and on the losses of the subharmonic modes are
calculated, but the dependence on the loss of the harmonic
mode is not discussed.

In the present paper, we will analyze both the classical
behavior and the quantum correlations of the amplitude and
phase quadratures of the two eigen-subharmonic modes re-
flected from a single-ended cavity of type-II second-
harmonic generation under the condition of below the intra-
cavity OPO threshold. The optical cavity is triply resonant
both for the two subharmonic modes and for the harmonic
mode simultaneously. The dependences of quantum correla-
tions of the amplitude and phase quadratures on the analysis
frequencies, on the pump parameter, and on the loss of the
harmonic field are numerically analyzed. The results show
that the two reflected subharmonic modes are in an entangled
state with a phase-quadrature correlation and an amplitude-
quadrature anticorrelation, which has been shown to be of
great importance in quantum communication[6,8,9]. It is
found that the loss of harmonic wave strongly influences the
quantum correlation in the case of the triple resonance with
low loss. According to the Peres-Horodecki inseparability
criterion of EPR entanglement state for continuous variables
proposed by Duan[19], the inseparability between the two
reflected subharmonic modes is confirmed by numerical cal-
culations. The proposed system can be exploited to be a dif-
ferent type of entanglement sources for continuous variables*Email address: jrgao@sxu.edu.cn
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with relatively simple configuration and high quantum corre-
lation. The given numerical calculations may provide useful
references for the design of the entanglement sources.

Fluctuation and correlation spectra of reflected pump
modes. The sketch of SHG is shown in Fig. 1. We consider
the SHG process in a triply resonating optical cavity with a
nonlinear xs2d crystal cut for type-II phase matching. The
triple resonance means that the two subharmonic pump
modes and the harmonic mode simultaneously resonate in
the cavity. Under the ideal case with perfect phase matching
and without any detuning, the equations of motion for a
single-ended cavity with one mirror used for input and out-
put coupler can be expressed as[20]

tȧ0std = − g0a0std − xa1stda2std + Î2g0c0std, s1ad

tȧ1std = − g1a1std + xa2
*stda0std + Î2gb1a1

ineif1 + Î2gc1std,

s1bd

tȧ2std = − g2a2std + xa1
*stda0std + Î2gb2a2

ineif2 + Î2gc2c2std.

s1cd

Herea0, a1, anda2 are the amplitudes of harmonic field and
two pump fields inside the cavity, respectively. The round-
trip time of all modes in the cavity is assumed to be same.
The single pass loss parametersgbi andgci si =0,1,2d stand
for the transmission loss through the input-output coupler
and all other extra losses, respectively.gi =gbi+gci denotes
the total loss coefficient,a1

in anda2
in denote the amplitudes of

two input pump fields outside the coupler. In the case of
gbi!1, gbi is related to the amplitude reflection coefficients
r i and transmission coefficientsti of the coupler by the fol-
lowing formula: r i =1−gbi, ti =Î2gbi. Assuming the two
pump modes have the same positive real amplitudeb, zero
initial phase, and balanced losses in the cavity, we have

g1 = g2 = g, s2ad

gb1 = gb2 = gb, s2bd

gc1 = gc2 = gc. s2cd

The steady-state solutions of Eqs.(1) are obtained to be

ā0 = − kā1ā2/g0, s3ad

f− g − sx2/g0duā2u2gā1 + Î2gbb = 0, s3bd

f− g − sx2/g0duā1u2gā2 + Î2gbb = 0, s3cd

whereā0, ā1, ā2 are the steady-state amplitudes of the three
intracavity modesa0, a1, and a2. Equations(3b) and (3c)

show that bothā1 and ā2 are real numbers. The oscillation
thresholdbthand pump parameters are expressed by

bth = Î2g3g0/x
2gb, s4ad

s = b/bth. s4bd

Solving Eqs.(3b) and(3c) the steady-state solutions of three
the modes above the thresholdssù1d are given by

ā1 =
Îgg0

x
s −

Îgg0ss2 − 1d
x

, s5ad

ā2 =
Îgg0

x
s +

Îgg0ss2 − 1d
x

, s5bd

ā0 = − g/x, s5cd

and below the thresholdssø1d by

ā1 = ā2 = a, s6ad

a = sÎgg0/xds8, s6bd

ā0 = − gs82/x, s6cd

s8 = ss + Îs2 + 1
27d1/3 − 1

3ss + Îs2 + 1
27d−1/3

.

Entanglement characteristics between the two subhar-
monic modes reflected from the coupler are denoted by the
correlations of quantum fluctuations of their amplitude
quadratureX and phase quadratureY. We just consider the
case of below the threshold. The dynamics of the quantum
fluctuations can be described by linearizing the classical
equations of motion around the stationary state. Settingai
=āi +dai, ai

in=bi +dbi si =0,1,2d, and using Eq.(1), we
have

tdȧ0std = − g0da0std − xfā2da1std + ā1da2stdg + Î2g0c0std,

s7ad

tdȧ1std = − gda1std + xfā0da2
*std + ā2da0stdg + Î2gbdb1std

+ Î2gcc1std, s7bd

FIG. 2. The quantum noise spectra ofSX1+X2

out andSY1−Y2

out vs nor-
malized frequencyV with g=0.02, gb=0.015, g0=0.002, ands
=0.8.

FIG. 1. Sketch of experimental setup.
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tdȧ2std = − gda2std + xfā0da1
*std + ā1da0stdg + Î2gbdb2std

+ Î2gcc2std. s7cd

The optical modes O can be expressed through
amplitude quadraturesX and phase quadraturesY as O
= 1

2sX+ iYd, with O=fa0,a1,a2,b0,c0,b1,c1,b2,c2g,
X=fX0,X1,X2,Xb0,Xc0,Xb1,Xc1,Xb2,Xc2g, and Y
=fY0,Y1,Y2,Yb0,Yc0,Yb1,Yc1,Yb2,Yc2g.

Substituting these into Eqs.(7a)–(7c), we have

tdẊ0std = − g0dX0std − xfā2dX1std + ā1dX2stdg

+ Î2g0dXc0std, s8ad

tdẊ1std = − gdX1std + xfā0dX2std + ādX0stdg + Î2gbdXb1std

+ Î2gcdXc1std, s8bd

tdẊ2std = − gdX2std + xfā0dX1std + ādX0stdg + Î2gbdXb2std

+ Î2gcdXc2std, s8cd

and

tdẎ0std = − g0dY0std − xfā2dY1std + ā1dY2stdg

+ Î2g0dYc0std, s9ad

tdẎ1std = − gdY1std − xfā0dY2std − ādY0stdg + Î2gbdYb1std

+ Î2gcdYc1std, s9bd

tdẎ2std = − gdY2std − xfā0dY1std − ādY0stdg + Î2gbdYb2std

+ Î2gcdYc2std. s9cd

Under the condition of below threshold, combining steady-
state solution expressions(6a) and(6b), the correlation spec-
tra dX1svd+dX2svd and dY1svd−dY2svd (Fourier transfor-
mation atv) are given by

dX1svd + dX2svd =
2Îgg0s8Qx0 + sQx1 + Qx2dsg0 + ivtd

D
,

s10ad

dY1svd − dY2svd = sQy1 − Qy2d/sg + ivt + gs82d,

s10bd

where

D = sg0 + ivtdsg + ivt + gs82d + 2gg0s82, s11d

Qxsyd0 = Î2g0dXsYdc0, s12ad

FIG. 3. The quantum noise spectra ofSX1+X2

out andSY1−Y2

out vs har-
monic lossg0 with g=0.02,gb=0.015,V=0.6, andxb=0.001.

FIG. 4. The quantum noise spectrum ofSX1+X2

out sVdSY1−Y2

out sVd vs
harmonic lossg0 with V=0.6, g=0.02,gb=0.015, andxb=0.001.

FIG. 5. The quantum noise spectrum ofSX1+X2

out sVdSY1−Y2

out sVd vs
pump parameters with g=0.02, gb=0.015, g0=0.002, andV
=0.6.

FIG. 6. The quantum noise spectrum ofSX1+X2

out sVdSY1−Y2

out sVd vs
normalized frequencyV with g=0.02, gb=0.015, g0=0.002, and
s=0.8.
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Qxsyd1 = Î2gbdXsYdb1 + Î2gcdXsYdc1, s12bd

Qxsyd2 = Î2gbdXsYdb2 + Î2gcdXsYdc2. s12cd

Using the input-output relations of cavity,

dX1
outsvd + dX2

outsvd = Î2gbfdX1svd + dX2svdg

− fdXb1svd + dXb2svdg, s13ad

dY1
outsvd − dY2

outsvd = Î2gbfdY1svd − dY2svdg

− fdYb1svd − dYb2svdg, s13bd

the correlation spectra of the sum of amplitude quadratures
and the difference of phase quadratures of outgoing subhar-
monic fields are obtained:

SX1+X2

out sVd = udX1
outsvd + dX2

outsvdu2

=
8

uDu2
f2ug0s8Îgbgu2 + ugbsg0 + iVgd − D/2u2

+ uÎgbgcsg0 + iVgdu2g, s14ad

SY1−Y2

out sVd = udY1
outsvd − dY2

outsvdu2=2U 2gb

g + iVg + gs82 − 1U2

+ 2U 2Îgbgc

g + iVg + gs82U2

, s14bd

whereV=vt /g is the normalized frequency.
Figure 2 shows the normalized correlation spectra of

SX1+X2

out andSY1−Y2

out , both of which are smaller than the standard
quantum limit (SQL, normalized to 1). Figure 3 shows the
correlation variances of amplitude and phase quadrature vs
harmonic loss for given pump powerxb and normalized
frequencyV. BothSX1+X2

out andSY1−Y2

out promptly increase when
g0 increases from 0 to 0.02, then they increase smoothly to
SQL. With enough smallg0, say g0ø0.002, the reflected
subharmonic modes from a triply resonating cavity for
type-II SHG are in a strongly entangled state with an anti-
correlation of amplitude quadratures and a correlation of
phase quadratures[8,9].

Inseparability of amplitude and phase quadratures. The
inseparability criterion of EPR entanglement state for con-
tinuous variables proposed by Duan[18] is

SX1+X2

out sVd + SY1−Y2

out sVd , 2, s15d

which is suitable for entangled beams with equal quadrature
fluctuations. For the unequal case, asymmetrization proce-
dure has to be carried out, and the criterion becomesf21g

SX1+X2

out sVdSY1−Y2

out sVd , 1. s16d

Based on Eqs.s14d we numerically analyzed the depen-
dences of inseparabilitySX1+X2

out sVdSY1−Y2

out sVdon the pump pa-
rameterss, normalized frequencyV, and harmonic loss
g0, respectively. Figure 4 shows the inseparability of two
subharmonic modes as a function ofg0 at V=0.6, xb
=0.001,g=0.02, andgb=0.015. InFigs. 5 and 6 the cor-
relation spectraSX1+X2

out sVdSY1−Y2

out sVd are plotted vss andV,
respectively, in which the loss parameters are chosen to be
g=0.02,gb=0.015, andg0=0.002, withV=0.6 sFig. 5d and
s=0.8 sFig. 6d. It is obvious that the inseparability crite-
rion is satisfied in a wide frequency range with reasonable
loss parameters. As is the same in general OPO, the per-
fect continuous-variable entangled state can be obtained in
ideal limit.

In summary, we analyzed the continuous-variable en-
tanglement characteristic of the reflected subharmonic field
in type-II SHG using semiclassical approaches. Dependence
of correlation variances on the parameters are calculated.
Compared to parametric down-conversion usually used for
the entangled-state generation, this scheme is relatively
simple. The reflected pump field from the SHG cavity is an
entangled state with an anticorrelated amplitude quadrature
and a correlated phase quadrature, which is very useful in the
quantum information[6,8,9].
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