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Quantum State Sharing by Using Two-Mode and Single-Mode Squeezed State
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We propose a quantum state sharing scheme for continuous variables using bright two-mode squeezed state

and single-mode squeezed state light. The squeezing of a single-mode state is applied to enhance the security

of information in quantum teleportation network. The signal-to-noise ratio of communication and the �delity

between the secret and reconstruction state are analysed. It is shown that both the receivers of Bob and Chailie

cannot extract information with a high signal-to-noise ratio because of the large noise come from the other

quadrature component of single mode squeezed state. Anyone of Bob and Chailie can retrive the quantum state

with a high signal-to-noise ratio if and only if the other one cooperates with measurement.

PACS: 03. 67. Hk, 42,50. Dv

In recent years, the quantum entanglement state

has been proven to be an important resource for quan-

tum information science.[1;2] One of the key appli-

cations of quantum entanglement is quantum state

sharing,[3] in which the quantum information encoded

in a quantum state at one sender (Alice) can be dis-

tributed into several remote receivers (Bobs) by us-

ing multi-particle entangled state and then one of

them is able to recover the information exactly if

and only if all the other receivers agree to cooperate.

The scheme further ensures secure transfer of an un-

known quantum state by quantum teleportation,[4] in

which an unknown quantum state can be transmitted

from a sender to a remote receiver by using an en-

tangled state. Quantum teleportation was originally

proposed for discrete variables[4] using the Bell state

and extended to continuous-variable systems[5;6] using

two-mode squeezed vacuum state. The experimental

demonstrations have been realized for both discrete

and continuous variables.[7�9]

The idea of quantum state sharing based on the

method of teleportation was �rst described[3] for dis-

crete variables using the maximally three-particle en-

tangled state or GHZ state.[10] Later several related

works based on the pure entangled state and en-

tanglement swapping were proposed.[11�14] The �rst

quantum state sharing experiment[15] for discrete vari-

ables has been accomplished by using the energy-time

entangled pseudo-GHZ states.[16] Recently, Tyc and

Sanders extended quantum state sharing in the contin-

uous variables regime with Einstein{Podolsky{Rosen

(EPR) entanglement.[17;18] Very recently, the continu-

ous variables quantum state sharing in which a secret

coherent state is encoded into a tripartite entangled

state was investigated experimentally with �delity as

high as 0.73.[19] It is known that the multipartite

entanglement is needed in the traditional quantum

state sharing protocol, however the experimental pro-

duction of more than two entangled photons directly

from nonlinear process must su�er from the low eÆ-

ciency. In this Letter, we propose a system of quantum

state sharing for continuous variables between one

sender and two receivers, in which a bright two-mode

squeezed state and a bright single-mode squeezed state

light generated from nondegenerate optical paramet-

ric ampli�er (NOPA) and degenerate OPA operating

at deampli�cation[20] are used to constitute the mul-

tipartite entangled source. Hence the direct detection

for Bell-state[21;22] is utilized to make the proposed

scheme valuable for performing experiment.

In the proposed quantum state sharing scheme

(Fig. 1). A two-mode squeezed state and a single-

mode squeezed state of the electromagnetic �eld are

utilized to constitute a multipartite entangled state.

In Heisenberg representation the quadratures of a two-

mode squeezed state (mode â1 and mode a2) and a

single-mode squeezed state (mode b) are expressed as

follows:[23;24]
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where the superscript (0) denotes the initial modes;

r and s are the squeezing parameters of two-mode

and single-mode squeezed states; X̂ and Ŷ represent

the operators of quadrature phase amplitudes of the
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�eld modes. For the �nite squeezing, when the uncer-

tainty product for the variances of the two inferences

h�2
X̂infih�2

Ŷinfi = h�2(X̂1+g
x
X̂2)i h�2(Ŷ1�g

y
Ŷ2)i

is less than the limit of unity associated with the

Heisenberg uncertainty relation, the EPR paradox for

continuous variables is demonstrated,[25] here g
x(y) is

the scaling factor for minimizing the variances. For

in�nite squeezing r ! infty, the zero uctuations of

the X̂1 + X̂2 and Ŷ1 � Ŷ2 show the fact that the two

modes (X̂1, Ŷ1) and (X̂2, Ŷ2) consisting of the two-

mode squeezed state approaches an ideal EPR entan-

gled state with anticorrelation between phase quadra-

ture components X̂ and correlation between phase

quadrature components Ŷ . In addition, r = 0 means

no quantum entanglement, i.e. the classical limit.

Fig. 1. Schematic of quantum secret sharing. BS:

beamsplitter, D1;2: photo detectors, RF: radio-frequency

power splitters, AM: amplitude modulator, PM: phase

modulator.

Firstly mixing one mode a2 of the two-mode

squeezed state with the mode b of single-mode

squeezed state on the beamsplitter BS1, the annihi-

lation operators of the outcomes are given by

d̂1 = (â2 � b̂)=
p
2;

d̂2 = (â2 + b̂)=
p
2: (2)

As for the protocol of quantum state sharing, sev-

eral parties, i.e. Alice (at the sending station), Bob

and Charlie (at the receiving stations) in three sys-

tems, have been arranged to share an entangled state.

In our scheme, mode a1 is sent to Alice, mode d1 and

d2 are sent to Bob and Charlie. We suppose that the

quantum information teleported to and distributed se-

cretly into remote stations named by Bob and Charlie

is encoded in an input quantum state at Alice. Then

Alice performs a joint measurement on the input un-

known quantum state and the mode a1, and she com-

municates her measurement results to Bob and Char-

lie via classical channels. With the obtained classical

results, Bob and Charlie perform appropriate rota-

tions on the modes d1 and d2 to make the quantum

information be shared by the two stations Bob and

Charlie secretly. When the two receivers agree to co-

operation, both of them send their own rotated mode

to a 50% beamsplitter (BS3). In the following we

demonstrate that one of the outcomes from BS3 will

recover the input quantum state at a certain phase

di�erence between the two rotated modes.

At the sending station Alice, the input state a
in

is

superimposed with the mode a1 at a 50% beamsplit-

ter (BS2) for implementation of the joint detection of

Bell-state. To accomplish the Bell-state detection via

direct measurement of photo currents, a phase shift

of �=2 is imposed between a1 and a
in

before they are

injected into BS2. The annihilation operators of two

outputs from BS2 equal to

ĉ1 = (â
in
� iâ1)=

p
2;

ĉ2 = (â
in
+ iâ1)=

p
2: (3)

The two beams are directly detected by detectors

D1 and D2, then the photocurrent of each detector

is divided into two parts of identical intensity by rf

power splitters (RF1 and RF2), and the sum and dif-

ference of the divided ac photocurrents are expressed

by[21]

i+ = (X
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+X

1
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1
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p
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In order to realize quantum secret sharing, both

outcomes from beamsplitter BS2 have to be transmit-

ted to receivers Bob and Charlie simultaneously, thus

the photocurrents from the power combiners (+) and

(�) are split into two equal parts with rf power split-

ters (RF3 and RF4), then are sent to Bob and Charlie

to transform the beam d1 and d2 by means of the am-

plitude and phase modulators (AM and PM):
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0
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0
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In Eq. (5) the parameter g
i
(i = 1; 2) describes a nor-

malized gain for the transformation from classical val-

ues to complex amplitude. Substituting Eq. (2) and

(4) into Eq. (5), we obtain
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We take the classical unit gain, and the two-mode

squeezed state is assumed to be perfectly squeezed,

i.e. hÆ2(X̂1 + X̂2)i ! 0, hÆ2(Ŷ2 � Y1)i ! 0, then the

above equations are simpli�ed to
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It is obvious that the two receivers individually

can not recover the quantum information of the in-

put state. Although they have received the quadra-

ture phase amplitude information X̂
in

and Ŷ
in

of a
in

mode, due to the existence of huge noise in the noisy

component of single-mode squeezed state (esX̂
(0)
b

), the

quantum information X̂
in
of a

in
is submerged in noise

background. Considering the �nite squeezing of EPR

beams and unit gain for classical channel, Bob or

Charlie can extract some information of input state

â
in

with the signal-to-noise ratios (SNR):

SNR
d
0

1
;X

=
hÆ2X̂

in
i

2e�2rÆ2X̂
(0)
2 + e2sÆ2 bX(0)

b

;

SNR
d
0

2
;Y

=
hÆ2Ŷ
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In a single-mode squeezed state, the noise of one

quadrature component, i.e. e2sÆ2 bX(0)
b

, is higher than

the other one e
�2s

Æ
2 bY (0)

b

. Thus the SNR
d
0

1
(d0

2
);X of

measurement quadrature component X at the receiv-

ing station of Bob or Charlie is poor, this leads to the

fact that Bob or Charlie cannot obtain the exact in-

formation of input state though SNR
d
0

1
(d0

2
);Y for the

other quadrature component Y is high. Therefore,

the application of single-mode squeezed state (mode

b) avoids the possibility to reconstruct completely the

teleported quantum state a
in

at either Bob or Char-

lie. It is noted that the quantum secret sharing pro-

tocol does not permit anyone of the two receivers Bob

and Charlie to reconstruct the quantum state without

communicating among themselves, and meanwhile it

allows the honest one of them to recover it with the as-

sistance of the other receivers.[3] Now we discuss how

to meet this requirement. Assuming that the Bob is

honest and Charlie agrees to cooperate, Charlie sends

her possessive �eld to Bob, then Bob can combine the

two modes at a 50% beamsplitter BS3, the two modes

emerging from the beamsplitter BS3 are given by
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where � is the relative optical phase between two input

�elds on BS3. Taking � = 0 and combining Eqs. (1),

(6) and (9) we obtain
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From Eq. (10) it can be seen easily that in the case

of the ideal situation of g1 + g2 = 2 and r ! 1, the

one output dout2 of BS3 retrieves the input state ain:

d̂
out

1 = �b̂; d̂
out

2 = â
in
: (11)

With a totally analogous calculation for � = � we

obtain

d̂
out

1 = â
in
; d̂

out

2 = �b̂: (12)

i.e., the input state is retrieved at other output of BS3.

Ideal quantum state sharing [Eqs. (11) and (12)]

should be that the output state emerging at one of the

receiving stations is the same as the input state. How-

ever, in real experiment for continuous variables the

ideal quantum secret sharing may not be accomplished

since the non-ideal EPR pair used by the two-mode

squeezed states. Thus it is necessary to discuss the

criteria for evaluating the eÆciency of realistic- and

thus imperfect-quantum state sharing system. For

our teleportation system, the �delity quantifying the

quality of teleportation is de�ned for a coherent input

state (j�i) by F = h�j�̂
out
j�i[26;27], and it describes

the matching between the input and teleported states.

According to the discussion in teleportation, the quan-

tum secret sharing �delity for a coherent state input

�
in

reads
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2q
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where Æ2X̂
out

and Æ
2
Ŷ
out

are the variance of in-phase

quadrature and out-of-phase quadrature phases of

the output mode, g describes a normalized gain for

the transformation from classical values to complex

�eld amplitude performed by Bobs, it takes the value
g1 + g2

2
in our calculation. Using Eq. (10), they are

given by
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+

�
1�

g1 + g2
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�2
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e
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where hÆ2X̂
in
i and hÆ2Ŷ

in
i are the variances of the in-

put coherent state, then we have hÆ2X̂
in
i = hÆ2Ŷ

in
i =

1.

According to Eqs. (13) and (14), the best opti-

mal �delity for quantum secret sharing occurs around

g1 = g2 = 1. In this case the �delity becomes

F =
1

1 + e�2r
: (15)

In the classical system without quantum correlation

r = 0, we obtain F = 1=2 for the normalized gain

g1(2) = 1. In order to meet the requirement of the

quantum region F > 1=2, it requires that r > 0.

On the other hand, for a strict no-cloning measure-

ment, the �delity which warrants that no other copy

of the input state can remain is described[28] as F =
1

2 + e�2r
, thus the F > 2=3 criteria can be taken for

non-cloning quantum state sharing.

In conclusion, we have proposed an quantum se-

cret sharing scheme for continuous variables, in which

a bright two-mode squeezed state and a single-mode

squeezed state of electromagnetic �eld are used to con-

stitute the three partite entanglement. The two-mode

squeezing provides the squeezed state entanglement

distributed between a sender (Alice) and two receivers

(Bob and Charlie) and the single-mode squeezing of-

fers the performance of secret sharing of the system.

If without the single-mode squeezed state, half of the

EPR beam a2 from two-mode squeezed state is com-

bined with a vacuum �eld at the beamsplitter BS1
and then the quantum entanglement between mode

a1 and mode a2 is distributed in modes a1, d1 and

d2 with lower correlation.[29;30] Thus once r 6= 0, the

�delity between the output state (X̂
out

, Ŷ
out

) from ei-

ther output ports of BS3 and the input state (X̂
in
,

Ŷ
in
) will surpass the classical limitation (F > 1=2).

Only when the single-mode squeezed state is applied,

the noisy component (esX̂
(0)
b

) protects from that the

information of the same quadrature in the input state

[X̂
in
in Eqs. (7) and (8)] is extracted independently by

Bob or Charlie without cooperation. The appointed

relative phase di�erence between two input �elds on

BS3 (�) con�rms that the input state is retrieved at

an honest receiver (for example, � = 0 at Charlie,

d̂
out

2 = â
in
; � = � at Bob, d̂out1 = â

in
). The other fea-

tures of the system are that instead of usually used two

balanced homodyne detectors[21] at Alice, a direct de-

tection scheme for Bell-state is utilized and the bright

squeezed state light[31] with in-phase quadrature anti-

correlation and out-of-phase quadrature correlation is

chosen. The mature technique to produce the bright

squeezed state light and the simpli�cation of direct

detection[21] make the proposed scheme easier to be

realized experimentally.
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