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Abstract
The quantum teleportation of a single-mode thermal state of a light field is
discussed using the projection synthesis technique in the Schrödinger
picture. The statistical distance (SD) between the teleported input and
output states is introduced to evaluate the efficiency of single-mode thermal
state teleportation. For a given system and available entanglement, both the
SD and classical boundary depend on the mean photon numbers of the
teleported thermal light field. The dependences of the SD on the normalized
classical gain, EPR (Einstein–Podolsky–Rosen) entanglement and mean
photon numbers of the thermal field are calculated.
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1. Introduction

Quantum teleportation has attracted considerable interest in
recent years as important progress in quantum information
science. It was first proposed by Bennett et al in the
context of spin 1/2 particles [1] and was realized in
experiments for photon polarization states [2, 3]. Recently
the teleportation of continuous variables was proposed [4–10],
then the teleportation of an optical coherent state was
experimentally demonstrated [11] by exploiting a squeezed
vacuum state of light to provide EPR (Einstein–Podolsky–
Rosen) entanglement. The teleportation of non-local
entanglement, i.e. entanglement swapping [12], which
can be used for establishing non-local correlations over a
large distance, has also been investigated [13–15]. The
experimental demonstration of entanglement swapping was
accomplished in discrete-variable systems [16]. The
continuous-variable entanglement teleportation was suggested
for both polarization-entangled states and entangled squeezed
states using a squeezed vacuum state as the non-ideal EPR
source [17–20], and it was experimentally demonstrated
in 2004 [21]. In the real teleportation and entanglement
swapping systems of continuous variables, the entanglements
of a two-mode squeezed state used as an EPR source are
always imperfect, because perfect entanglement requires
perfect squeezing, which corresponds to a infinite amount
of energy of the light field, that is impossible to obtain in

experiments. Therefore, criteria for evaluating the efficiency
of realistic—and thus imperfect—teleportation of quantum
states are necessary. The fidelity is defined as the criterion
to characterize the quality of the teleportation of a quantum
state. The fidelities of teleportation for a coherent state
using a two-mode squeezed vacuum state and the non-local
correlations over large distance in a entanglement swapping
system have been deduced [19, 20]. The fidelities for
transfer of nonclassical features in quantum teleportation of
nonclassical states, such as the squeezed vacuum and Fock
state, have also been discussed [22, 23]. It has been proved
that the properties of each of the two modes in an entangled
two-mode squeezed state are precisely those of that of a single-
mode thermal state [24]. Actually, the entanglement swapping
is to teleport one beam of the entangled two-mode squeezed
state from one location to another where the other EPR beam
is located; correlation between the two different EPR beams is
created. The swapped correlation degree strongly depends on
the fidelity of the teleportation of one of the EPR beams. Thus
the entanglement swapping is related to the teleportation of
single-mode thermal states. Unlike the coherent and squeezed
states, both the input and output states for the single-mode
thermal state teleportation are mixed states.

In this paper, we discuss the teleportation of a single-mode
thermal state of light field from the viewpoint of quantum
mechanical theory in the Schrödinger picture. The statistical
distance between the teleported input and output single-mode
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thermal states is introduced for estimating the teleportation
efficiency. The criterion of the statistical distance (SD) with
regard to the quantum–classical boundary is also calculated.

This paper is organized as follows. A general theory of the
state evolution of teleportation is described [25] in section 2.
The calculations of the SD and the classical boundary are given
in section 3. Section 4 is a brief conclusion.

2. The state evolution of teleportation for continuous
variables

For teleportation of continuous variables, usually the two-
mode squeezed vacuum state serves as the EPR entangled state.
In the Fock state basis the density operator of the squeezed state
has the form

ρ̂1,2 = (1 − λ2)
∑

n

∑

n′
(−λ)n+n′ |n, n〉1,2〈n′, n′|, (1)

where λ = tanh r , r is the squeezing parameter and the
subscripts 1, 2 denote the two coupled modes in the squeezed
state respectively.

In the Glauber–Sudarshan coherent-state representation,
the input single-mode thermal state is expressed by

ρ̂in =
∫

d2α P(α)|α〉in〈α|, (2)

where |α〉in represents a coherent state basis for input state, α

is a complex variable and P(α) is called the p function, which
can be viewed as a probability density function in the phase
space, and is normalized

∫
d2α P(α) = 1. (3)

The density operator of the total initial state consisting of
the input unknown state and the EPR beams is

ρ̂0 = ρ̂in ⊗ ρ̂1,2. (4)

To perform a joint measurement on the input teleported
state and half of the EPR beams, the input state is combined
with half of the EPR beams on a 50:50 beamsplitter and
then the quadrature amplitude of one output mode from the
beamsplitter and the quadrature phase of the other output mode
are homodyne detected [5].

A lossless 50:50 beamsplitter which mixes the teleported
state of the light field and one half of the EPR beams is
described by the unitary operator Û [26]

Û = exp

(
π

4
(âin â+

1 − â1â+
in)

)
. (5)

For simplicity, we have ignored the phase-shifts induced by
the beamsplitter in equation (5).

In the Schrödinger picture, the density matrix of the output
state of the beamsplitter is obtained from the density matrix ρ̂0

of the initial state by the unitary transformation [27]

ρ̂BS = Û +ρ̂0Û . (6)

Using the decomposition formula of the SU (2) Lie
algebra [28],

Û + = eâ+
in â1(

√
2)â+

in âin−â+
1 â1 e−âinâ+

1 , (7)

then substituting equations (1), (2) and (7) into equation (6),
the density matrix of the output state of the beamsplitter ρ̂BS

is expanded in the coherent state basis,

ρ̂BS = (1 − λ2)

π4

∫
d2α P(α)

⊗
∫ ∫

d2β d2γ e− 3
4 |γ |2e

1
2 |λγ |2e− 1

2 |β|2 e− 1
2 |α|2 e−αγ ∗

× eβ∗γ /
√

2e
√

2αβ∗ |β〉in|γ /
√

2〉1| − λγ ∗〉2

⊗
∫ ∫

d2ζ d2η2 〈−λη∗|1〈η/
√

2|in〈ζ |e− 3
4 |η|2e

1
2 |λη|2

× e− 1
2 |ζ |2e− 1

2 |α|2e−α∗ηeζη∗/
√

2e
√

2α∗ζ , (8)

where we have used the following relations:

(
√

2)−â+
1 â1 |γ 〉1 = e− 1

4 |γ |2 |γ /
√

2〉1,

(
√

2)â+
in âin |α〉in = e

1
2 |α|2 |√2α〉in.

(9)

The amplitude quadrature X̂ of one output beam of the
beamsplitter and the phase quadrature Ŷ of the other one are
simultaneously measured by two homodyne detection systems.
In the Schrödinger picture the measured outcomes correspond
to the amplitude quadrature of the input state and the phase
quadrature of half of the EPR beams respectively:

X̂ = (âin + â+
in)/2,

Ŷ = −i(â1 − â+
1 )/2.

(10)

According to the general theory of quantum mechanical
measurement, the quantum measurement is mathematically
described by a positive operator-valued measurement (POVM)
including a projection operator [29, 30]. The positive operator-
valued measurement describing the homodyne detection of the
two quadrature phases X and Y is given by

∏

in

(X) = |X〉in〈X |,
∏

1

(Y ) = |Y 〉1〈Y |,
(11)

where X and Y are the outcomes of measurements. The
states |X〉in and |Y 〉1 are the eigenstates of the quadrature
components. They satisfy the completeness relations:∫ ∞
−∞ |X〉in〈X |dX = Î ,

∫ ∞
−∞ |Y 〉1〈Y |dY = Î . During the

process of measurement the other half of the EPR beams
collapses due to the nonlocal entanglement and the normalized
density matrix of the conditional output state becomes

ρ̂2(X, Y ) = Trin,1{ρ̂BS
∏

in(X)
∏

1(Y )}
P(X, Y )

, (12)

where Trin,1 stands for the trace operation with respect to the
input state and the first half of the EPR beams. P(X, Y ) is the
probability distribution of the measured results:

P(X, Y ) = Tr2 Trin,1

{
ρ̂BS

∏

in

(X)
∏

1

(Y )

}
, (13)

where Tr2 stands for the trace operation with respect to the
other half of the EPR beams.
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The eigenstates of the quadrature components in the
coherent state representation are used in calculating the
conditional output state of the second half of the EPR beams,
that are

in〈X |β〉in =
(

2

π

)1/4

e−X 2+2βX− 1
2 |β|2− 1

2 β2

1〈Y |γ /
√

2〉1 =
(

2

π

)1/4

e−Y 2+i
√

2γ Y − 1
4 |γ |2+ 1

4 γ 2
.

(14)

Substituting equations (11) and (14) into (12) and
integrating out the parameters β and γ , the equation (12)
becomes

ρ̂2(X, Y ) = (2/π)(1 − λ2)e−2(X 2+Y 2)
∫

d2α P(α)|	〉〈	|
P(X, Y )

,

(15)
where |	〉 = f (α)D̂(λ[α − √

2(X − iY )])|0〉2, and f (α) =
e− 1

2 |α|2e
√

2α(X+iY )e
1
2 λ2|α−√

2(X−iY )|2 ; the displacement operator
is given by

D̂(λ[α − √
2(X − iY )]) = e− 1

2 λ2|α−√
2(X−iY )|2

× eλ[α−√
2(X−iY )]â+

2 eλ[α−√
2(X−iY )]â2 .

Then equation (15) becomes

ρ̂2(X, Y ) = (2/π)(1 − λ2)

P(X, Y )
e−2(X 2+Y 2)

∫
d2α P(α) f (α) f ∗(α)

× D̂(λ[α − √
2(X − iY )])|0〉2〈0|

× D̂+(λ[α − √
2(X − iY )]). (16)

Using the above obtained equations, the probability
distribution equation (13) is simplified to

P(X, Y ) = (2/π)(1 − λ2)e−2(X 2+Y 2)

∫
d2α P(α) f (α) f ∗(α).

(17)
We note that, for λ = 1, i.e., for the ideal entangled EPR

beams, the probability of the measured observables goes to
zero. This implies that no information on the input state can
be extracted from the classically measured outcomes, that is
just the necessary requirement for faithful teleportation.

The last step of teleportation is to perform a unitary
transformation on the other half of the EPR beams with the
results measured at Alice’s sending station to retrieve the input
unknown state. For the case of continuous variables the unitary
transformation is a displacement transformation D̂(Z); here
Z ∝ X − iY is associated with the classical information
of the infinitesimal measured values X and Y [31]. Then
equation (16) is transformed into

ρ̂out
2 = (2/π)(1 − λ2)

P(X, Y )
e−2(X 2+Y 2)

∫
d2α P(α) f (α) f ∗(α)

× D̂(λα + [Z − √
2λ(X − iY )])|0〉2〈0|

× D̂+(λα + [Z − √
2λ(X − iY )]). (18)

For a system of teleportation, we take Z = √
2g(X − iY )

and equation (18) becomes

ρ̂out
2 = (2/π)(1 − λ2)

P(X, Y )
e−2(X 2+Y 2)

∫
d2α P(α) f (α) f ∗(α)

× D̂(λα +
√

2(g − λ)(X − iY ))|0〉2〈0|
× D̂+(λα +

√
2(g − λ)(X − iY )), (19)

where g represents the normalized classical gain for the
transformation from classical measured values X and Y to
complex field amplitudes Z . Equation (19) shows that the
output state depends on the particularly measured results X
and Y .

Considering the ideal condition of infinite squeezing with
unit classical transformation gain, λ = 1, g = 1, we can obtain
the density matrix of the conditional output state of the other
half of the EPR pair:

ρ̂out
2 = (2/π)(1 − λ2)

∫
d2α P(α)|α〉2〈α|

P(X, Y )

=
∫

d2α P(α)|α〉2〈α| = ρ̂in. (20)

Equation (20) shows that any unknown input quantum
state can be perfectly reconstructed at the receiving station
by means of the help of EPR nonlocal correlation under ideal
conditions.

In the real world it is impossible to produce a perfect
EPR pair, so a two-mode squeezed vacuum state with finite
squeezing is used as the EPR source for the continuous
variable teleportation. Thus the input and output states in
the continuous variable teleportation system are not exactly
the same using the imperfect EPR entanglement, only partly
overlapped. Usually the fidelity is used for evaluating the
quality of an imperfect teleportation. However, for the
teleportation of a single-mode thermal state, a mixed state,
the calculation of fidelity is not straightforward; this is why
there are no publications discussing it so far. In the following
we will introduce a statistical distance to estimate the quantum
efficiency of a thermal state teleportation.

3. Statistical distance between input and output
states of single-mode thermal state teleportation

Now we consider a general and thus practical case of λ < 1 and
g < 1, which corresponds to the non-ideal EPR entanglement
and non-unit gain. For continuous variables, the output state
behaves like a mixture of the un-normalized density matrix
elements. The average density matrix of the output state is

ρ̂out = (2/π)(1 − λ2)

∫ ∞

−∞

∫ ∞

−∞
dX dY e−2(X 2+Y 2)

×
∫

d2α P(α) f (α) f ∗(α)

× D̂(λα +
√

2(g − λ)(X − iY ))|0〉2〈0|
× D̂+(λα +

√
2(g − λ)(X − iY )). (21)

The calculated result satisfies the normalized relation for
the total output light field:

P(X, Y ) = (2/π)(1 − λ2)

∫ ∞

−∞

∫ ∞

−∞
dX dY e−2(X 2+Y 2)

×
∫

d2α P(α) f (α) f ∗(α) = 1.

To evaluate the efficiency of realistic—and thus
imperfect—teleportation of quantum states, some measures
are needed to indicate the similarity between the teleported
state and the input state; one such measure is called the fidelity,
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which is successfully used to deal with the continuous variable
teleportation of a pure quantum state [5]. But for quantum
teleportation of mixed states, e.g. the teleportation of a single-
mode thermal state in our discussion, it may not be easy to
obtain the result with the so-called mixed-state fidelity defined
as [32]

F = {Tr[(
√

ρ̂inρ̂out

√
ρ̂in)

1/2]}2 (22)

where ρ̂in and ρ̂out are the density operators of the input and
output states respectively. The square root of the density
operator appearing in the above equation introduces extra
difficulties in calculating the fidelity of the mixed state.

Thus, instead of using the fidelity for the mixed state, we
use the statistical distance (SD) between two density operators
of input and output states to evaluate their difference. Based
on the Hilbert–Schmidt norm [33], the SD is defined:

d = [
1
2 Tr(ρ̂in)

2 + 1
2 Tr(ρ̂out)

2 − Tr(ρ̂inρ̂out)
]1/2; (23)

obviously, the square root acting on the trace of the density
operators in the SD leads to an easy calculation process. Unlike
the definition of fidelity, for which F = 1 corresponds to a case
of ρ̂out = ρ̂in, SD reflects the efficiency of the teleportation
from the opposite side. If ρ̂out is exactly equal to ρ̂in, we can
get d = 0; on the contrary, if d > 0, and the bigger d is, the
larger the distance between input and output states is.

For an input single-mode thermal state with the average
photon numbers n̄, we have [24]

P(α) = 1

π n̄
e− |α|2

n̄ , (24)

ρ̂in = (1 − e−µ)e−µâ+ â, (25)

where e−µ = 1/( 1
n̄ + 1).

Substituting equations (25), (24) and (21) into equation
(23), we obtain

D = [A + B − C]1/2, (26)

where

A = 1

2(2n̄ + 1)

B =
{

1

2[(1 − λ4)n̄2 + 2n̄ + 1]

}
1

E F

C =
{

1

(1 − λ2)n̄2 + 2n̄ + 1

}
1

H

E = 1 +
(g − λ)2

1 − λ2
− (1 − gλ)2

1 − λ2

n̄

n̄ + 1

− λ2(g − λ)2

1 − λ2

n̄(n̄ + 1)

(1 − λ4)n̄2 + 2n̄ + 1

− λ4(1 − gλ)2

1 − λ2

n̄3

[(1 − λ4)n̄2 + 2n̄ + 1](n̄ + 1)

− 2λ3(1 − gλ)(g − λ)

1 − λ2

n̄2

(1 − λ4)n̄2 + 2n̄ + 1

F = 1 +
(g − λ)2

1 − λ2
− λ2(g − λ)2

1 − λ2

n̄

n̄ + 1

− (1 − gλ)2

1 − λ2

n̄(n̄ + 1)

(1 − λ4)n̄2 + 2n̄ + 1

0.6

0.5

0.4

0.3
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0.1

0.2 0.4 0.6 0.8 1
g

d
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Figure 1. The dependences of SD on the normalized classical gain
g and EPR entanglement λ are plotted for the mean photon numbers
n̄ = 20. (1) λ = 0.3; (2) λ = 0.5; (3) λ = 0.7; (4) λ = 0.9.

− λ6(g − λ)2

1 − λ2

n̄3

[(1 − λ4)n̄2 + 2n̄ + 1](n̄ + 1)

− 2λ3(1 − gλ)(g − λ)

1 − λ2

n̄2

(1 − λ4)n̄2 + 2n̄ + 1
− G2

E

G = (g − λ)2

1 − λ2
+

λ(g − λ)(1 − gλ)

1 − λ2

n̄

n̄ + 1

− λ(g − λ)(1 − gλ)

1 − λ2

n̄(n̄ + 1)

(1 − λ4)n̄2 + 2n̄ + 1

− λ5(g − λ)(1 − gλ)

1 − λ2

n̄3

[(1 − λ4)n̄2 + 2n̄ + 1](n̄ + 1)

− λ2(1 − gλ)2 + λ4(g − λ)2

1 − λ2

n̄2

(1 − λ4)n̄2 + 2n̄ + 1

H = 1 +
(g − λ)2

1 − λ2

1

n̄ + 1
− [(1 − λ2) − λ(g−λ)

n̄+1 ]2

1 − λ2

× n̄(n̄ + 1)

(1 − λ2)n̄2 + 2n̄ + 1
.

When taking λ = 1, g = 1, equation (26) gives d = 0;
this demonstrates ρ̂out = ρ̂in, that is the output state perfectly
mimics the input state.

The curves in figure 1 show the dependence of the SD on
the normalized classical gain (g) and EPR entanglement (λ)
at given mean photon numbers of thermal state n̄ = 20. The
entanglements of curves (1)–(4) are respectively 0.3, 0.5, 0.7
and 0.9. This shows, for getting high teleportation efficiency,
i.e. small SD, large classical gain and high EPR entanglement
have to be required. The dependence of the SD on mean photon
numbers and normalized gain for a given EPR entanglement
(λ = 0.7) is plotted in figure 2. We can see that for a thermal
state with larger photon numbers, the teleportation of higher
efficiency with lower SD can be achieved with a gain lower
than that needed for a thermal state with low mean photon
numbers.

The boundary between the classical and quantum
teleportation of single-mode thermal states is created by setting
λ = 0 and g = 1,

dboundary =
[

1

2(2n̄ + 1)
+

1

2(2n̄ + 3)
− 1

2n̄ + 2

]1/2

. (27)

It is seen that the boundary is strongly dependent on the
average photon number of thermal states; for input thermal
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Figure 2. Plot of the SD between the input and output states as a
function of mean photon number n̄ and the normalized classical gain
g. Here the EPR entanglement is given, λ = 0.7.
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Figure 3. The dependences of the SD between the teleported input
and output states on the mean photon number n̄ of a single-mode
thermal field in the case of unit classical gain g = 1. λ = 0 for
curve (1) is the classical–quantum boundary; curves (2), (3) and (4),
λ = 0.3, λ = 0.6 and λ = 0.9 respectively.

states with different average numbers, the boundary justifying
quantum teleportation should have a different criterion; when
d < dboundary the teleportation in the quantum domain is
reached.

The dependences of the SD on the photon numbers and the
degree of entanglement are plotted in figure 3 for unit classical
gain g = 1. Curve (1) stands for the boundary. Curves (2), (3)
and (4) correspond to λ = 0.3, 0.6 and 0.9. For a given EPR
entanglement, the larger the photon numbers are, the lower the
SD is.

4. Conclusion

In conclusion, the quantum teleportation of single-mode
thermal states has been theoretically analysed from the
viewpoint of the general quantum mechanical theory of
measurements. The statistical distance characterizing the
efficiency of teleportation is deduced from the definition of
the Hilbert–Schmidt norm. The dependences of the SD upon
the entanglement λ, the mean photon number n̄ of the thermal
state and the gain g of the system are numerically calculated,

and the classical–quantum boundary for the SD is established
for the first time to the best of our knowledge.
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