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Bright entanglement characteristics of
subharmonic modes reflected from cavity
for type II second-harmonic generation
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Quantum fluctuation and quantum entanglement in competing nonlinear processes of type II second-harmonic
generation in a triple-resonant cavity is analyzed. Operating above threshold with intracavity loss, the mean
amplitude and the entanglement of reflected subharmonic field as a function of pump and loss parameters are
calculated. It is found that the two eigenmodes become unbalanced when internal loss intervenes. The de-
pendence of the entanglement characteristics of two reflected subharmonic modes on output coupling efficiency
mb /m, pump parameter s, and normalized frequency V are discussed. Under appropriate conditions, this sys-
tem can be exploited as a bright entanglement resource. © 2005 Optical Society of America
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1. INTRODUCTION
Quantum entanglement plays a pivotal role in the basic
problem of quantum mechanics and quantum information
science. It has been proved that optical parametric oscil-
lators (OPOs) process is one of the important and effective
ways of generating continuous-variable entanglement
states. Several important experiments in continuous-
variable quantum information were completed with OPO.
In 1998 and 2003, Furusawa et al.1 and Zhang et al.2 cre-
ated an entanglement state by combining two indepen-
dent squeezed fields from two degenerate OPOs on a
50/50 beam splitter, with which continuous-variable
quantum teleportation was successfully demonstrated.
Through combination of two bright amplitude-squeezed
states, a bright entanglement state and the corresponding
continuous-variable quantum teleportation were realized
in Bowen et al.3 With type II phase-matching
(polarization-nondegenerate) OPO, an entanglement
state was established through direct separation of two
downconversion modes. Recently, the continuous-
variable quantum teleportation, quantum dense coding,
and controlled quantum dense coding4–6 were realized
with type II phase-matching OPO, and very recently a tri-
partite entanglement state was also generated by means
of three degenerate OPOs.7 It was proved that a stable
entanglement resource is the key for the completion of the
quantum information experiment. So far, the
continuous-variable entanglement states are generated
from degenerate or nondegenerate optical parametric pro-
cesses in each of the aforementioned experiments.1–7

Apart from parametric downconversion, the second-
harmonic generation (SHG) process also yields nonclassi-
cal light fields. It has been demonstrated experimentally
that the pump fields reflected from an optical cavity for
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SHG and OPO are squeezed because of the cascaded non-
linear interaction between subharmonic and harmonic
fields inside the cavity.8,9 In particular, the reflected
pump modes of type II SHG possess two-mode squeezing
characteristics10; therefore the generation of an entangle-
ment with SHG is interesting.11–13 Ou10 theoretically
analyzed quantum fluctuation and squeezing characteris-
tics of the reflected subharmonic modes of type II SHG
and calculated the spectra of squeezing. It was pointed
out that for the case of type II harmonic generation there
exists a threshold that is identified as the onset of an
OPO formed by a subharmonic mode with its polarization
orthogonal to the input polarization (not the original
modes) and the output of the orthogonal polarization
mode from the OPO exhibits phase squeezing. Refer-
ences 12 and 13 analyzed the quadrature squeezing and
entanglement subharmonic modes from double-resonant
and triple-resonant type II SHG operating below thresh-
old. It is shown that perfect entanglement can be ac-
cessed by triple-resonant SHG. Jack et al.11 generalized
the work in Ref. 10 to an asymmetric pumping case. Un-
der ideal conditions (without intracavity loss), Jack et al.
discussed the effect that asymmetric pumping has on the
squeezing of the transformed modes, and gave the spectra
of EPR correlation operating below and above threshold
in a symmetric pumping case with different intrcavity
amplitudes. In this paper, we present classical and
quantum characteristics of the two reflected eigenmodes
of the triple-resonant type II SHG system operating above
threshold, and the quadrature entanglement between the
two eigenmodes are interpreted in terms of experiment-
related parameters such as pump parameter (P/Pth)1/2,
output coupling efficiency, and normalized frequency. It
is a continuous work of Ref. 13 (below threshold). Under
2005 Optical Society of America
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appropriate conditions, a triple resonant type II SHG sys-
tem can be exploited as a good bright entanglement re-
source.

2. DYNAMIC EQUATIONS AND THEIR
STATIONARY SOLUTIONS
As shown in Fig. 1, consider a one-sided optical cavity in
which a type II phase-matching x (2) crystal is placed.
Subharmonic modes and harmonic modes resonate in the
cavity simultaneously. Assuming perfect phase match-
ing and cavity resonating, the semiclassical dynamic
equations can be expressed as

tȧ0~t ! 5 2g0a0~t ! 2 xa1~t !a2~t ! 1 A2g0c0~t !,
(1a)

tȧ1~t ! 5 2g1a1~t ! 1 xa2* ~t !a0~t !

1 A2gb1a1
in exp~if1! 1 A2gc1c1~t !, (1b)

tȧ2~t ! 5 2g2a2~t ! 1 xa1* ~t !a0~t !

1 A2gb2a2
in exp~if2! 1 A2gc2c2~t !, (1c)

where a0 , a1 , and a2 are the amplitude of harmonic and
two subharmonic modes, respectively. a1

in and a2
in are the

amplitudes of two pumping subharmonic modes outside
the cavity. The cavity round-trip time of three modes is
t. The total loss parameter for each mode is g i 5 gbi
1 gci , (i 5 0, 1, 2), where gbi is related to the amplitude
reflection coefficients ri and amplitude transmission coef-
ficients ti of the coupler by the formula

ri 5 1 2 gbi ,

ti 5 A2gbi.

gci represents intracavity loss parameter. ci(t) is the
noise term corresponding to intracavity loss.

In general, assuming the two pumping modes have the
same positive real amplitude b, zero initial phase and the
balanced loss in the cavity, we have

g1 5 g2 5 g, (2a)

gb1 5 gb2 5 gb , (2b)

gc1 5 gc2 5 gc . (2c)

Stationary mean field solutions ā0 , ā1 , and ā2 can be ob-
tained by setting ȧ0 , ȧ1 , and ȧ2 to be zero. The steady-
state equations are obtained:

Fig. 1. Sketch of experimental setup.
ā0 5
2 xā1ā2

g0
, (3a)

S 2g 2
x2

g0
uā2u2D ā1 1 A2gbb 5 0, (3b)

S 2g 2
x2

g0
uā1u2D ā2 1 A2gbb 5 0. (3c)

Equations (3b) and (3c) show that both ā1 and ā2 are real
numbers. Pumping threshold bth and pump parameter s
can be expressed as

bth 5 ~2g3g0 /x2gb!1/2, (4a)

s 5 b/bth. (4b)

After Eqs. (3b) and (3c) are solved, stationary solutions of
three modes can be obtained both below and above
threshold. Below threshold ( s < 1), the solutions are
given as

ā1 5 ā2 5 a, (5a)

a 5 Agg0s8/x (5b)

ā0 5 2gs82/x, (5c)

s8 5 @ s 1 ~ s 2 1 1/27!1/2#1/3

2
1

3
~ s 1 ~ s 2 1 1/27!1/2!21/3,

and above threshold ( s > 1) as

ā1 5 Agg0s/x 2 @gg0~ s 2 2 1 !#1/2/x, (6a)

ā2 5 Agg0s/x 1 @gg0~ s 2 2 1 !#1/2/x,
(6b)

ā0 5 2g/x. (6c)

Using the input-output relations a i
in 1 a i

out 5 A2gba i ,
the amplitude of output field below threshold ( s < 1) can
be written as

a1
out 5 a2

out 5 aout 5 ~2gg0 /x2gb!1/2~ s8gb 2 sg!,
(7a)

a0
out 5 2s82gA2g0/x, (7b)

and above threshold ( s > 1) can be written as

a1
out 5 ~2gg0 /x2gb!1/2@ sgb 2 sg 2 gb~ s 2 2 1 !1/2#,

(8a)

a2
out 5 ~2gg0 /x2gb!1/2@ sgb 2 sg 1 gb~ s 2 2 1 !1/2#,

(8b)

a0
out 5 2gA2g0/x. (8c)

Dependence of the output amplitude of two eigenmodes
on pump parameter s in condition of with (g . gb ,
dashed curve) and without (g 5 gb , solid curve) intracav-
ity loss are shown in Fig. 2, which indicates that coherent
output appears when s . 1. It is shown in Fig. 2 and
Eqs. (8a) and (8b) that the amplitudes of the two modes
have balanced absolute value and opposite phase without
internal loss. But when internal loss intervenes, the co-
herent output of the two modes becomes unbalanced. It
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is easy to verify that, when g 5 gb , the output field of all
three modes both below and above threshold satisfies the
law of energy conservation 2a0

out2
1 a1

out2
1 a2

out2
5 2b2.

3. FLUCTUATION AND CORRELATION
SPECTRA OF SUBHARMONIC
MODES ABOVE THRESHOLD
Quantum fluctuation and the squeezing of subharmonic
modes of type II SHG below threshold in double- and
triple-resonant cases were discussed in Refs. 12 and 13,
respectively. It was shown that almost-perfect entangle-
ment can be accessed in a triple-resonant case. In this
section, entanglement between two pumping eigen sub-
harmonic modes of triple-resonant SHG operating above
threshold is considered.

Quantum fluctuations can be obtained through linear-
ization of the evolution Eqs. (1) around the mean values
given by Eqs. (6). Setting a i 5 ā i 1 da i , we obtain

tdȧ0~t ! 5 2g0da0~t ! 2 x@ā2da1~t ! 1 ā1da2~t !#

1 A2g0c0~t !, (9a)

tdȧ1~t ! 5 2gda1~t ! 1 x@ā0da2* ~t ! 1 ā2da0~t !#

1 A2gbb1~t ! 1 A2gcc1~t !, (9b)

tdȧ2~t ! 5 2gda2~t ! 1 x@ā0da1* ~t ! 1 ā1da0~t !#

1 A2gbb2~t ! 1 A2gcc2~t !, (9c)

introducing amplitude quadrature (X) and phase quadra-
ture (Y) of optical modes (O), which are defined by

O 5
1

2
~X 1 iY !, (10)

where O 5 @a0 , a1 , a2 , b0 , c0 , b1 , c1 , b2 , c2#, X
5 @X0 , X1 , X2 , Xb0 , Xc0 , Xb1 , Xc1 , Xb2 , Xc2#, and Y
5 @Y0 , Y1 , Y2 , Yb0 , Yc0 , Yb1 , Yc1 , Yb2 , Yc2#.

Substitution of Eq. (10) into Eqs. (9a)–(9c), yields the
following fluctuations of amplitude and phase quadra-
tures:

tdẊ0~t ! 5 2g0dX0~t ! 2 x@ā2dX1~t ! 1 ā1dX2~t !#

1 A2g0dXc0~t !, (11a)

Fig. 2. Dependence of amplitude of the two output eigenmodes
on pump parameter ( s) with g 5 gb 5 0.02, g0 5 0.001 for solid
curve and g 5 0.02, gb 5 0.018, g0 5 0.001 for dashed curve.
tdẊ1~t ! 5 2gdX1~t ! 1 x@ā0dX2~t ! 1 ā2dX0~t !#

1 A2gbdXb1~t ! 1 A2gcdXc1~t !, (11b)

tdẊ2~t ! 5 2gdX2~t ! 1 x@ā0dX1~t ! 1 ā1dX0~t !#

1 A2gbdXb2~t ! 1 A2gcdXc2~t !, (11c)

and

tdẎ0~t ! 5 2g0dY0~t ! 2 x@ā2dY1~t ! 1 ā1dY2~t !#

1 A2g0dYc0~t !, (12a)

tdẎ1~t ! 5 2gdY1~t ! 2 x@ā0dY2~t ! 2 ā2dY0~t !#

1 A2gbdYb1~t ! 1 A2gcdYc1~t !, (12b)

tdẎ2~t ! 5 2gdY2~t ! 2 x@ā0dY1~t ! 2 ā1dY0~t !#

1 A2gbdYb2~t ! 1 A2gcdYc2~t !. (12c)

Under condition of above threshold ( s > 1), substituting
stationary solutions (6a) and (6b) into Eqs. (11) and (12),
performing Fourier transformation, and solving these
equations with quadratures X1(V), X2(V), Y1(V), and
Y2(V) in frequency domain, one can get

dX1~V! 5 dXco

A2g0

D
$2g@gg0~ s 2 2 1 !#1/2

1 igAgg0V@ s 1 ~ s 2 2 1 !1/2#%

1
1

D
~A2gbdXb1 1 A2gcdXc1!@2gg0s

3 @ s 2 As 2 2 1# 2 g2V2 1 igV~g 1 g0!#

1
1

D
~A2gbdXb2 1 A2gcdXc2!

3 @22gg0 2 ig2V#, (13a)

dX2~V! 5 dXco

A2g0

D
$22g@gg0~ s 2 2 1 !#1/2

1 igVAgg0@ s 2 ~ s 2 2 1 !1/2#%

1
1

D
~A2gbdXb2 1 A2gcdXc2!$2gg0s

3 @ s 1 A~ s 2 2 1 !#

2 g2V2 1 igV~g 1 g0!%

1
1

D
~A2gbdXb1 1 A2gcdXc1!

3 @22gg0 2 ig2V#, (13b)
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dY1~V! 5 dYco

A2g0

B
$2sgAgg0 1 iVgAgg0

3 @ s 1 ~ s 2 2 1 !1/2#%

1
1

B
~A2gbdXb1 1 A2gcdXc1!$2gg0s

3 @ s 2 ~ s 2 2 1 !1/2# 2 V2g2

1 iVg ~g 1 g0!%

1
ig2V

B
~A2gbdXb2 1 A2gcdXc2!, (13c)

dY2~V! 5 dYco

A2g0

B
$2sgAgg0 1 iVgAgg0

3 @ s 2 ~ s 2 2 1 !1/2#%

1
1

B
~A2gbdXb2 1 A2gcdXc2!$2gg0s

3 @ s 1 ~ s 2 2 1 !1/2# 2 V2g2

1 iVg ~g 1 g0!%

1
ig2V

B
~A2gbdXb1 1 A2gcdXc1!, (13d)

where V 5 vt/g is normalized frequency. By use of the
input-output relations of the optical cavity for the fluctua-
tions of quadrature-phase amplitude dX(dY)out

1 dX(dY)in 5 A2gbdX(dY), one can easily derive the
fluctuations of sum (difference) of amplitude (phase)
quadratures inherent in the output field of a triple-
resonant SHG system in terms of pumping parameter s,
normalized frequency V, and the ratio of cavity loss be-
tween subharmonic and harmonic fields:

dX~V!1
out 1 dX~V!2

out

5
4iVsmAmmb

D
dXc0 2 ~dXb1 1 dXb2!

1
1

D
~2mbdXb1 1 2AmcmbdXc1!

3 $2m@ s 2 2 s~ s 2 2 1 !1/2 2 1# 2 V2m2 1 iVm%

1
1

D
~2mbdXb2 1 2AmcmbdXc2!$2m@ s 2

1 s~ s 2 2 1 !1/2 2 1# 2 V2m2 1 iVm%, (14a)
dY~V!1
out 2 dY~V!2

out

5
4iVmAmmb

B
~ s 2 2 1 !1/2dYco 2 ~dYb1 2 dYb2!

1
1

B
~2mbdYb1 1 2AmbmcdYc1!

3 $2m@ s 2 2 s~ s 2 2 1 !1/2# 2 V2m2 1 iVm%

2
1

B
~2mbdYb2 1 2AmbmcdYc2!

3 $2m@ s 2 1 s~ s 2 2 1 !1/2# 2 V2m2 1 iVm%,

(14b)

where

B 5 4m2s 2 2 V2m2~1 1 2m! 1 4iVm2s 2 2 iV3m3,

D 5 4m2~ s 2 2 1 ! 2 V2m2~1 1 2m!

1 4iVm2s 2 2 iV3m3,

mb 5 gb /g0 , mc 5 gc /g0 , m 5 mb 1 mc .

The correlation spectra are defined as

VX11X2

out 5 ^@dX1
out~V! 1 dX2

out~V!#@dX1
out~V!

1 dX2
out~V!#1&, (15a)

VY12Y2

out 5 ^@dY1
out~V! 2 dY2

out~V!#@dY1
out~V!

2 dY2
out~V!#1&. (15b)

For continuous-variable Gaussian states, under the
constraint that the variance of all quadrature fluctuations
of entangled beams is equal, the Peres–Horodecki crite-
rion of entanglement proposed by Duan et al.14 is

VX11X2

out 1 VY12Y2

out , 2. (16)

For unequal correlations between orthogonal quadra-
tures, a symmetrization procedure must be carried out to
use this criterion for entanglement verification. This can
be done through performance of local unitary squeezing
operations on the correlated beams,15 and thus the crite-
rion can be rewritten as

Fig. 3. Correlation spectra VX11X2

out as a function of normalized
frequency V with m 5 mb 5 40, s 5 1.1 (solid curve), s 5 4
(dashed curve), and s 5 8 (dotted curve).
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VX11X2

out VY12Y2

out , 1, (17)

which is suitable to our case. Figures 3, 4, and 5 show
the dependence of VX11X2

out , VY12Y2

out and the product
VX11X2

out VY12Y2

out on normalized frequency V at different val-
ues of pump parameter s, respectively. It is clear that
the best correlation and entanglement can be accessed
when s approaches 1, and obvious entanglement can also
be obtained when pump power is far from threshold (In

Fig. 4. Correlation spectra VY12Y2
(V) as a function of normal-

ized frequency V with m 5 mb 5 40, s 5 1.1 (solid curve), s
5 4 (dashed curve), and s 5 8 (dotted curve).

Fig. 5. VX11X2
(V)VY12Y2

(V) as a function of normalized fre-
quency V with m 5 mb 5 40, s 5 1.1 (solid curve), s 5 4
(dashed curve), and s 5 8 (dotted curve).

Fig. 6. VX11X2
(V)VY12Y2

(V) as a function of normalized fre-
quency V and output coupling efficiency mb /m with m 5 40, s
5 2.
Fig. 5, VX11X2

out VY12Y2

out , 0.6 when s 5 8). Furthermore,
different pump parameters correspond to different opti-
mum normalized frequencies. Figure 6 shows the prod-
uct VX11X2

out VY12Y2

out as a function of output coupling effi-
ciency mb /m and normalized frequency V. Meanwhile,
the broad-bandwidth entanglement can be obtained at
the value of an output-coupling efficiency larger than 0.6,
and an almost-perfect entanglement can be obtained
when the output-coupling efficiency equals 1.

By means of semiclassical method, we have analyzed
quantum fluctuation and the entanglement of subhar-
monic fields reflected from the cavity of type II SHG op-
erating above threshold. Correlation spectra as a func-
tion of normalized frequency, pump parameter, and
output-coupling efficiency are calculated. Compared
with general OPO, a type II SHG system can be exploited
as a very useful and relatively simple bright entangle-
ment resource with broadband.16
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